
DeepRoad: GAN-Based Metamorphic Testing and Input
Validation Framework for Autonomous Driving Systems

Mengshi Zhang∗
University of Texas at Austin

USA
mengshi.zhang@utexas.edu

Yuqun Zhang†
Shenzhen Key Laboratory of
Computational Intelligence,

Department of Computer Science and
Engineering, Southern University of

Science and Technology
China

zhangyq@sustc.edu.cn

Lingming Zhang
University of Texas at Dallas

USA
lingming.zhang@utdallas.edu

Cong Liu
University of Texas at Dallas

USA
cong@utdallas.edu

Sarfraz Khurshid
University of Texas at Austin

USA
khurshid@utexas.edu

ABSTRACT
While Deep Neural Networks (DNNs) have established the funda-
mentals of image-based autonomous driving systems, they may ex-
hibit erroneous behaviors and cause fatal accidents. To address the
safety issues in autonomous driving systems, a recent set of testing
techniques have been designed to automatically generate artificial
driving scenes to enrich test suite, e.g., generating new input images
transformed from the original ones. However, these techniques are
insufficient due to two limitations: first, many such synthetic images
often lack diversity of driving scenes, and hence compromise the re-
sulting efficacy and reliability. Second, for machine-learning-based
systems, a mismatch between training and application domain can
dramatically degrade system accuracy, such that it is necessary to
validate inputs for improving system robustness.

In this paper, we propose DeepRoad, an unsupervised DNN-
based framework for automatically testing the consistency of DNN-
based autonomous driving systems and online validation. First,
DeepRoad automatically synthesizes large amounts of diverse driv-
ing scenes without using image transformation rules (e.g. scale,
shear and rotation). In particular, DeepRoad is able to produce driv-
ing scenes with various weather conditions (including those with
rather extreme conditions) by applying Generative Adversarial Net-
works (GANs) along with the corresponding real-world weather
scenes. Second, DeepRoad utilizes metamorphic testing techniques

∗This work was partially accomplished during visit to Southern University of Science
and Technology
†Yuqun Zhang is the corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238187

to check the consistency of such systems using synthetic images.
Third, DeepRoad validates input images for DNN-based systems
by measuring the distance of the input and training images using
their VGGNet features. We implement DeepRoad to test three well-
recognized DNN-based autonomous driving systems in Udacity
self-driving car challenge. The experimental results demonstrate
that DeepRoad can detect thousands of inconsistent behaviors for
these systems, and effectively validate input images to potentially
enhance the system robustness as well.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
Software testing, Test generation, Input validation, Deep Neural
Networks
ACM Reference Format:
Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz
Khurshid. 2018. DeepRoad: GAN-Based Metamorphic Testing and Input
Validation Framework for Autonomous Driving Systems. In Proceedings of
the 2018 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE ’18), September 3–7, 2018, Montpellier, France. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3238147.3238187

1 INTRODUCTION
The train came out of the long tunnel into the snow
country. The earth lay white under the night sky. The
train pulled up at a signal stop.

—Yasunari Kawabata, Snow Country
The above quotation is from the first paragraph of fiction “Snow

Country”, which describes the scene when the protagonist Shima-
mura enters the snow country. Back to that time, train was the
major vehicle for long-distance travels, while people have more
choices today. Now, suppose Shimamura takes a Tesla in Autopliot
mode [2], after coming out of the tunnel, there raises a question:

132

https://doi.org/10.1145/3238147.3238187
https://doi.org/10.1145/3238147.3238187

ASE ’18, September 3–7, 2018, Montpellier, France M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid

can the autopilot system operate safely on the snow-covered road,
or the story just ends with a tragedy?

Autonomous driving is expected to transform auto industry.
Typically, autonomous driving refers to utilizing sensors (cameras,
Radar, Lidar, GPS, etc) [38] to automatically control vehicles without
human intervention. The recent advances in Deep Neural Networks
(DNNs) enable autonomous driving systems to adapt their driving
behaviors according to dynamic environments [2, 14]. In particular,
an end-to-end supervised learning framework is made possible
to train a DNN for predicting driving behaviors (e.g., steering an-
gles) by inputing driving images, using ⟨driving image, driving
behavior⟩ pairs as training data. For instance, DAVE-2 [14], re-
leased by NVIDIA in 2016, can accurately predict steering angles
based on only images captured by a single front-centered camera
of autonomous cars.

Recent testing techniques [31, 38] demonstrate that the autonomous
driving systems are error-prone to synthetic images of driving
scenes. DeepXplore [31] applies differential testing technique to
systematically generate images which disclose the inconsistent be-
haviors of multiple DNN systems. Specifically, it formulates the
image generation problem as a joint optimization problem, which
uses gradient-based search techniques to find images for maximiz-
ing neuron coverage and the number of inconsistent behaviors of
such systems. DeepTest [38] designs systematic ways to automati-
cally generate test cases, seeking tomimic real-world driving scenes.
Its main methodology is to transform labeled images of driving
scenes by applying simple affine transformations and various effect
filters such as blurring/fog/rain to the original images, and check if
the autonomous driving systems perform consistently among the
original and transformed scenes. With large amounts of original
and transformed driving scenes, DeepTest can detect various er-
roneous driving behaviors for some well-performed open-source
autonomous driving models, in a cheap and quick manner.

However, we observe that the methodologies applied in DeepX-
plore and DeepTest to generate test cases may not accurately reflect
the real-world driving scenes, which can rarely contain colored
patch or black holes and sidelines; the blurring/fog/rain effects
made by simple simulation also appear to be unrealistic, which
compromises their efficacy and reliability. For instance, Figure 1
shows the synthetic images which are quoted from the papers of
DeepXplore and DeepTest. Note that the colored arrows are at-
tached to present the predicted steering angles. From Figure 1a, 1b
and 1c, it can be observed that the images of driving scenes include
several artifacts (patch, holes and sidelines), which significantly
hurt the image quality. Moreover, for Figure 1d, it appears to be
synthesized by simply dimming the original image and mixing it
with the scrambled “smoke" effect and it violates the facts that the
density of fog varies along depth. Similarly, in Figure 1e, DeepTest
simply simulates rain by adding a group of lines over the original
image. This rain effect transformation is even more distorted be-
cause usually when it rains, the camera or front windshield tends
to be wet and the image is highly possible to be blurred. These
facts show that it is difficult to determine whether the erroneous
driving behaviors are caused by the flaws of the DNN-based mod-
els, or the inadequacy of the testing technique itself. Furthermore,
these transformations (e.g. translation, shear and rotation) can only

generate similar images, while they cannot sophisticatedly syn-
thesize images with different styles and thus limit the diversity of
test cases. For instance, the snowy road condition demands differ-
ent complicated transformations for rendering the texture of road
and roadside objects (such as trees), and it cannot be generated by
simple transformation rules.

For traditional software, input validation (IV) is an important step
before executing programs. For instance, in web applications, IV
checks and filters illegal or malicious inputs to prevent application-
level attacks such as buffer overflow and code-injection attack [25].
However, to the best of our knowledge, current DNN-based systems
lack to validate inputs (e.g., images of driving scenes) and thus
tends to cause system vulnerability. Specifically, invalid inputs
such as outlier images of driving scenes can highly degrade the
prediction accuracy and dramatically increase the risks of DNN-
based systems. For example, suppose a DNN-based autonomous
driving system is trained on a dataset which only includes images of
sunny driving scenes. For out-of-domain inputs (e.g. rainy images
of driving scenes) that the system is not trained with, it is highly
possible that the system outputs wrong control signals which lead
to danger for drivers and passengers.

To address above issues, in this paper, we propose an unsuper-
vised learning framework, namely DeepRoad, to systematically
analyze DNN-based autonomous driving systems. DeepRoad is
composed of a metamorphic testing module, DeepRoadMT and an
input validation module, DeepRoadIV . DeepRoadMT employs a
Generative Adversarial Network (GAN)-based technique [18, 27] to
synthesize driving scenes with various weather conditions, and de-
velops a metamorphic testing module for DNN-based autonomous
driving systems. Specifically, the metamorphic relations are de-
fined such that no matter how the driving scenes are synthesized
to cope with different weather conditions, the driving behaviors
are expected to be consistent with those under the corresponding
original driving scenes. At this point, DeepRoadMT enables us to
test the accuracy and reliability of DNN-based autonomous driving
systems under different scenarios, including heavy snow and hard
rain, which can greatly complement the existing approaches (e.g.,
DeepXplore, DeepTest). For instance, Figure 2 presents the snowy
and rainy scenes generated by DeepRoadMT (from sunny scenes),
which can hardly be distinguished from genuine ones and cannot
be generated using simple transformation rules. DeepRoadIV is
designed to validate inputs for DNN-based autonomous driving
systems based on image similarity. Firstly, DeepRoadIV applies a
pre-trained DNN model–VGGNet to extract high-level features (i.e.
contents and styles) of both training and test input images. Then,
the Principle Component Analysis (PCA) technique is applied on
these features for dimension reduction. Finally, DeepRoadIV vali-
dates inputs by comparing the average distance between training
and input images with a preset threshold.

To evaluate the effectiveness of DeepRoad, we first synthesize
driving scenes under heavy snow and hard rain. In particular, based
on GAN, we collect images with two extreme weather conditions
from YouTube videos to transform real-world driving scenes, and
deliver them with the corresponding weather conditions. Subse-
quently, these synthetic scenes are used to test three open-source
DNN-based autonomous driving systems from Udacity commu-
nity [7]. The experimental results reveal that DeepRoadMT can

133

DeepRoad: GAN-Based Metamorphic Testing and Input Validation Framework for ... ASE ’18, September 3–7, 2018, Montpellier, France

(a) Patch (b) Holes (c) Translation (d) Fog (e) Rain

Figure 1: Driving scenes synthesized by DeepXplore (a)(b) and DeepTest (c)(d)(e)

(a) Snow (b) Rain

Figure 2: Snowy and rainy scenes synthesized by DeepRoad

effectively detect thousands of inconsistent behaviors of different
levels for these systems. Furthermore, we use DeepRoadIV to vali-
date the input images sampled from different driving scenes. The
results demonstrate that in the embedding space, the cluster of the
rainy and snowy image points are separately distributed to the clus-
ter of training images, however, the training cluster is mixed with
the majority of the sunny image points. It indicates that given a
proper threshold, DeepRoadIV can effectively validate input, which
potentially improve the system robustness.

The key contributions of this paper are as follows.
• We propose the first GAN-based metamorphic testing ap-
proach to generate driving scenes with various weather con-
ditions for detecting inconsistent behaviors of autonomous
driving systems.
• We propose a novel approach to validate inputs for DNN-
based autonomous driving system. We present that the dis-
tance between the high-level features of training and input
images can be used for validating inputs.
• We implement the proposed approaches in DeepRoad, which
can generate images of diverse driving scenes (e.g. rain and
snow) and measure the similarity between multiple image
sets in embedding space. We use DeepRoad to test well-
recognized DNN-based autonomous driving models and suc-
cessfully detect thousands of inconsistent driving behaviors.
Additionally, DeepRoad can accurately distinguish images
with extreme weather conditions to the training images,
which is effective to validate input for autonomous driving
systems.

2 BACKGROUND
Autonomous driving systems have been rapidly evolving in recent
years [14, 32]. For example, many major auto manufacturers (in-
cluding Tesla, GM, Volvo, Ford, BMW, Honda, and Daimler) and IT
companies (including Waymo/Google, Uber, and Baidu) are work-
ing on building and testing various autonomous driving systems.

Typically, autonomous driving systems capture data from environ-
ment via multiple sensors (e.g. camera, Radar, Lidar, GPU, IMU, etc.)
as input, and use Deep Neural Networks (DNNs) to process data
and output control signals (e.g. steering and braking decisions). In
NVIDIA’s work [14], their autonomous driving system, DAVE-2
can fluently control cars only based on the images captured by a
single front camera. In this work, we mainly focus on DNN-based
autonomous driving systems with camera inputs and steering angle
outputs.

2.1 DNN Architectures
To date, Convolutional Neural Network (CNN) [23] and Recurrent
Neural Network (RNN) [33] are the most widely used DNNs for
autonomous driving systems. Typically, CNNs are good at analyzing
visual imagery and RNNs can effectively process sequential data.
In this work, the evaluated models are built on CNN and RNN
modules. We briefly introduce the basic concepts and components
of each architecture as follows, where more details about DNNs are
provided in [24].

2.1.1 Convolutional Neural Networks. Convolutional Neural Net-
works are similar to regular neural networks, which include a large
amount of neurons and pass information in a feed-forward way.
However, since the input data are images, several properties can
be applied to optimize the regular neural networks, where con-
volutional layer is a key component in CNNs. Instead of being
fully connected, a neuron in a layer only connects to some neu-
rons in the previous layer, and the computational process can be
presented as a convolution with kernels. Figure 3a shows an ex-
ample of CNN-based autonomous driving system that consists of
an input layer (images) and an output layer (steering angles), as
well as multiple hidden layers. Convolution hidden layers allow
weight sharing across multiple connections and can greatly save
the training efforts.

2.1.2 Recurrent Neural Networks. Regular neural networks and
CNNs are designed to process independent data, such as using CNN
to classify images. However, for sequential data like videos, the
neural networks should not only capture information of each single
frame, but are also expected tomodel the connections between them.
Unlike regular NNs and CNNs, RNN is a kind of neural network
with feedback connections. As shown in the left part of Figure 3b,
RNNs use loops to forward the previous states to input, which
model the connection of input data. The right part of Figure 3b
shows the workflow of the unfolded RNN for predicting steering
angles based on a sequence of images. At each step, RNN takes

134

ASE ’18, September 3–7, 2018, Montpellier, France M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid

(a) CNN architecture

(b) RNN architecture

Figure 3: Autonomous driving systems built on CNN and
RNN

the current input image and previous hidden states as input and
predicts the steering angle.

DNN-based autonomous driving systems are essentially soft-
ware systems, which are error-prone and can lead to tragedies.
For example, on January, 2018, a Tesla Model S plowed into a fire
truck at 65 mph while using Autopilot [9]. And on Mar, 2018, an au-
tonomous Uber failed to slow down and killed a pedestrian during
road test at night [10]. To ensure the quality of software systems,
many software testing techniques have been proposed in the lit-
erature [11, 29], where typically, a set of specific test cases are
generated to test if the software programs perform as expected.
The process of determining whether the software program per-
forms as expected upon the given test inputs is known as the test
oracle problem [11]. Despite the abundance of traditional software
testing techniques, they cannot be directly applied for DNN-based
systems since the logics of DNN-based softwares are learned from
data with minimal human interference (like a blackbox) while the
logics of traditional software programs are manually created.

3 APPROACH
3.1 Metamorphic Testing for DNN-Based

Autonomous Driving Systems
3.1.1 Metamorphic DNN Testing. Metamorphic Testing [35] (MT)
has been widely used to automatically generate tests to detect soft-
ware faults. The strength of MT lies in its capability to automatically
solve the test oracle problem via Metamorphic Relations (MRs). In
particular, let p be a program mathematical representation that
maps program inputs to program outputs (e.g., p⟦i⟧ = o). Assum-
ing fI and fO are two specific functions for transforming the input
and output domain respectively, and they satisfy the following MR
formulation:

∀i, p⟦ fI (i)⟧ = fO (p⟦i⟧) (1)

, where i denotes the input of program p.
With such MRs, we can test a specific implementation p̂ of p

by checking whether p̂⟦ fI (i)⟧ = fO (p̂⟦i⟧) for various input i . Ac-
cordingly, MT is defined as testing a program implementation via

cross-checking inputs and outputs with MRs. For instance, given
a program implementing function sine , MT can be used to delin-
eate test oracles and create various new tests. For any existing
input i to test function sine , various facts can serve as MRs, e.g.,
sin(−i) = − sin(i) and sin(i + 2π) = sin(i). These facts can be for-
mulated as 1) fI (x) = fO (x) = −x , 2) fI (x) = x +2π and fO (x) = x .
With such MRs, we can transform the existing test inputs according
to fI to generate additional tests, and check the output based on
fO . For instance, suppose the default test case of function sine is
AssertTrue(sin(0.5·Pi), 1.0). Based on above MRs, we can
generate two extra tests: AssertTrue(sin(-0.5·Pi), -1.0) and
AssertTrue(sin(2.5·Pi), 1.0).

In this work, we further applyMT to test DNN-based autonomous
driving systems. Formally, denoteDNN as aDNN-based autonomous
driving system that continuously maps each image into predicted
steering angle signal (e.g., turning left for 15◦). One MR can be
defined as given the original image stream I, various image trans-
formations T can simply change the road scenes (detailed shown
in Section 3.1.2) without impacting the predictions for each image
i ∈ I (e.g., the predicted direction should be approximately the same
on the same road under different weather conditions). This MR to
test DNN with additional transformed inputs can be formalized as
follows:

∀i ∈ I ∧ ∀τ ∈ T, DNN ⟦τ (i)⟧ = DNN ⟦i⟧ (2)

3.1.2 DNN-Based Road Scene Transformation. The recent work
DeepTest [38] also applied MT to test DNN-based autonomous
driving systems. However, it only performs basic image transforma-
tions, such as adding simple blurring/fog/rain effect filters, and thus
has the following limitations: (1) DeepTest may generate images
which violate common scenes (discussed in Section 1). (2) DeepTest
cannot simulate complex road scene transformations (e.g., snowy
scenes).

To complement DeepTest by automatically generating various
real-world road scenes, in this work, we leverage UNIT [27], a recent
published DNN-based method to perform unsupervised image-to-
image transformation based on Generative Adversarial Networks
(GANs) [18] and Variational Autoencoders (VAEs) [22]. One insight
of UNIT is that suppose two images contain the same contents but
lie in different domains, they should have the same representations
in a shared-latent space. Accordingly, given a new image from one
domain (e.g., the original driving scene), UNIT can automatically
generate its corresponding version in the other domain (e.g., rainy
driving scene).

Figure 4 [27] presents the structure of UNIT, S1 and S2 denote
two different domains (e.g., sunny and rainy driving scenes), E1 and
E2 denote two autoencoders which project the images from S1 and
S2 to a shared-latent space Z . Suppose x1 and x2 are paired images
which share the same content. Ideally, E1 and E2 would encode
them to the same latent vector z, and it can be translated back to S1
and S2 by two domain specific generators G1 and G2, respectively.
D1 and D2 are two discriminators which detect whether the image
belongs to S1 and S2 respectively. Specifically, they are expected
to differentiate whether the input image is sampled from target
domain (e.g. real image) or produced by a well-trained generator
(e.g. synthetic image). Based on the autoencoders and generators,

135

DeepRoad: GAN-Based Metamorphic Testing and Input Validation Framework for ... ASE ’18, September 3–7, 2018, Montpellier, France

UNIT can be used to transform images between two domains. For
instance, image x1 can be transformed to S2 by G2 (E1 (x1)).

x1

z

x2

S1 S2

Z

E1 E2

G1 G2

D1 D2

Figure 4: Structure of UNIT

In UNIT, all Di , Ei and Gi are incarnated as neural networks,
and the learning objective of UNIT can be decomposed to optimize
the following costs:

• VAE loss: minimizing the loss of image reconstruction for
each ⟨Ei ,Gi ⟩.
• GAN loss: achieving the equilibrium point in the minimax
game for each ⟨Gi ,Di ⟩, where Di aims at discriminating
the images to find out whether they are sampled from the
domain Si or produced by Gi that aims at fooling Di .
• Cycle-consistency loss: minimizing the loss of cycle- re-
construction for each ⟨Ei ,G j ,Ej ,Gi ⟩, where x1 is expected
to equal to G1 (E2 (G2 (E1 (x1)))) and x2 is expected to equal
to G2 (E1 (G1 (E2 (x2)))).

The total loss can be summarized as follows:

min
E1,E2,G1,G2

max
D1,D2

LCC1 (E1,G2,E2,G1)

+LCC2 (E2,G1,E1,G2)

+LVAE1 (E1,G1) + LVAE2 (E2,G2)

+LGAN1 (D1,G1) + LGAN2 (D2,G2)

, and this loss function can be optimized using Stochastic Gradient
Descent algorithm.

Figure 5: Framework of DeepRoadMT

3.1.3 Framework of DeepRoadMT . Figure 5 shows the overall de-
sign of our metamorphic testing framework for DNN-based au-
tonomous driving systems–DeepRoadMT . In Figure 5, DeepRoadMT
first takes unpaired training images from two target domains (e.g.,
datasets of the driving scene under sunny and snowy weather re-
spectively), and utilizes UNIT to project two domains to the same
latent space by optimizing the loss functions presented in Sec-
tion 3.1.2. When the training process finished, DeepRoadMT uses
the well-trained model to transform the whole dataset of sunny
driving scenes to snowy weather. Specifically, given any image
under sunny weather i , DeepRoadMT encodes it to vector zi by E1,
and synthesizes its corresponding version under snowy weather
τ (i) using G2. DeepRoadMT feeds each pair of real and synthetic
driving scene images to the autonomous driving systems under
test, i.e., DNN , and compare their prediction results DNN ⟦τ (i)⟧
and DNN ⟦i⟧ to detect any inconsistent behaviors. Normally, the
transformed driving scenes are expected not to significantly impact
the predicted steering angles, and any inconsistency may indicate
correctness or robustness issues of the systems under test [31, 38].

3.2 Input Validation for DNN-Based
Autonomous Driving Systems

Driving scenes synthesized by DeepTest and DeepXplore can be
used as test cases to test DNN-based autonomous driving systems in
an offline manner. Though these test cases are useful to expose the
system vulnerability and advise developers to complement training
data from real world to improve the system robustness, it is not
sufficient for online testing. For instance, a DNN-based autonomous
driving system can be well trained and perfectly function in sunny
environments, yet it might perform incorrectly at night or on a
snow-covered road, because the lane marks it detected for guiding
cars disappear in such driving scenes. This example suggests that
if the system can validate input images online, and actively advise
drivers to control the car when it cannot handle the invalid inputs,
the autonomous driving systems can become safer and more robust.
In the following, we first define the criteria of input validation for
DNNs (especially image-oriented models), and present our input
validation framework for DNN-based autonomous driving systems.

3.2.1 Input validation of DNNs. The goal of input validation (IV) is
to ensure that only properly formed data can be accepted by systems,
andmalformed data should be rejected before execution. The reason
is that an invalid input may trigger malfunction of downstream
components, which makes the system insecure. Generally, the valid
input of a program can be explicitly defined such as the input string
should not be null/empty or the value of a certain input variable
should be greater than 0. However, it is not trivial to properly define
input validity of a DNN-based program. For example, we can define
an IV criteria as the input data should be any RGB image with size
640*480, or any input data should exist in the training dataset to
guarantee the correctness. However, none of them are proper since
the first criteria is too weak to improve system robustness, and the
second is so strong that makes the system lack generalisability.

We define the IV criteria of DNN-based program based on the
Probably Approximately Correct (PAC) Learning theory. According
to the PAC Learning theory [13], a machine learning model Λ is
expected to learn the distribution D from the training dataset,

136

ASE ’18, September 3–7, 2018, Montpellier, France M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid

and predict the correct label with high probability. 1 This can be
formulated as follows:

E (Λ;D) = Prx∼D (Λ(x) , y) (3)

Pr (E ≤ ϵ) ≥ 1 − σ (4)
In Formula 3, E denotes that the probability of Λ makes incorrect
prediction (Λ(x) , y) on input data x sampled from D , and in
Formula 4, ϵ and σ are two parameters between 0 and 1, such that
it is highly possible (greater that 1 − σ) E is small (less than ϵ),
which means Λ is effective on D . Based on the above equations, we
first define an abstract IV criteria of DNN-based systems is that the
input data should be sampled from D . As discussed before, suppose
the input data is not sampled from D , the IV criteria is violated and
the prediction accuracy is not guaranteed. Therefore, it is necessary
to validate inputs to improve the robustness of DNN-based systems.

Intuitively, the IV criteria should be instantiated as:

Prx∼D (x = i) > θ (5)

, which means the probability of input i being sampled from D
should be greater than the predefined threshold θ . Otherwise, the
system refuses to predict on i . However, this definition is not
tractable for image data, because image data is highly dimensional
and their distribution (e.g. Gaussian Mixture model) is difficult to be
explicitly represented. To address this issue, we project image data
to a low-dimensional space and use the distance between inputs
and training data to replace Prx∼D (x = i). In particular, accord-
ing to the Manifold Learning theory [13], the images generated
by D can be embedded into a non-linear low-dimension manifold
MD . Suppose the input data i is sampled from D , its projection
ip should be included by MD . Furthermore, we propose an extra
constraint for the non-linear embedding that suppose the input
data are generated by a different distribution D ′, their projections
are expected to be included by another manifold MD′ , which is
linearly separable toMD . Based on the constraint, we can compute
the minimal distance of ip and the projections of training data to
validate if ip belongs toMD . The IV criteria is redefined as follows:

min
j
∥h(i) − h(j)∥2 < θ ′ (6)

, where ∥ · ∥2 denotes L2 norm, h(·) denotes the required non-liner
projection and θ ′ denotes predefined threshold for input validation.
If the input satisfies Equation 6, it will be processed by DNNs for
prediction, otherwise, it will be rejected.

3.2.2 Framework of DeepRoadIV . We propose DeepRoadIV , an in-
put validation framework for autonomous driving systems. DeepRoadIV
separate the projection h(·) to two parts: non-linear transformation
and dimension reduction. For the first part, DeepRoadIV applies
VGGNet [37], a widely used DNN [17, 20] to extract high-level fea-
tures from each image. To be specific, the input image is encoded
in each layer of VGGNet by kernels. Suppose layer i includes Ni
distinct kernels, it generates Ni feature maps each of size (wi ,hi),
wherewi and hi are the width and height of the feature maps re-
spectively. These feature maps can be stored as a feature matrix F i
with size (Ni ,Mi), where each row of Fi is the vector flattened from
the corresponding feature map andMi iswi · hi . DeepRoadIV also
1For simplicity, here we only discuss DNNs for classification, the same approach can
be applied to explain DNNs for other tasks such as regression.

Figure 6: Framework of DeepRoadIV

generates style information which are introduced in [16]. These
style information aims at capturing the texture of images and it
is defined by feature correlation, which can be computed by the
Gram matrix

Gi = Fi · F
T
i (7)

Suppose we choose layer i and j to extract the feature and style
matrix Fi andG j respectively, the representation vector of the given
image is v⃗ = [v⃗F , v⃗G], where v⃗F , v⃗G are flattened vector of Fi and
G j receptively. Further, we apply Principle Component Analysis
(PCA) technique to reduce feature dimension of input and training
data as follows:

Y = X · P (8)

X denotes the input matrix with size (n,m), where n is the total
number of input and training data andm is the length of feature
vector v⃗ . P denotes the projection matrix with size (m,k), where k
is the target dimension less thanm, and P can be computed using
X [13].

Figure 6 shows the overall design of our input validation frame-
work, DeepRoadIV . DeepRoadIV first takes the training and online
driving images as input, and uses VGGNet to extract their content
and style features. As shown in Figure 6, DeepRoadIV inputs a
snowy image to VGGNet, and chooses the convolutional layer conv
4_2 and conv 5_3 to extract content and style features respec-
tively. To be specific, the colored grids F 4_2 and F 5_3 denote the
content features extracted from VGGNet, and the style feature G
5_3 is computed by Equation 7. Note that these colored grids are
just used to visualize results, and their dimensions do not match
the real outputs. Then, matrix F 4_2 and G 5_3 are flattened and
concatenated to feature vector v. DeepRoadIV processes all image
data using the same approach and the feature vectors compose
matrix X. In the second step, DeepRoadIV applies PCA to reduce
the feature dimension. In Figure 6, we set the target dimension to
2. The processed data Y are presented on a 2-D plane, where the
blue and red nodes denote the training and online driving images
respectively. Finally, DeepRoadIV computes the minimal distance
between training data and each online image, and refuses to predict
for the images whose distances are greater than a certain threshold.

137

DeepRoad: GAN-Based Metamorphic Testing and Input Validation Framework for ... ASE ’18, September 3–7, 2018, Montpellier, France

Table 1: Details of image sets

Dataset Frame Duration Weather Cond.
Udacity Training 33805 N.A. Sunshine
Udacity Test Ep1 15212 N.A. Sunshine
Udacity Test Ep2 5614 N.A. Sunshine
Youtube Ep1 1000 28:55 Heavy snow
Youtube Ep2 1000 1:09:03 Hard rain

4 EXPERIMENTS
4.1 Data
We use a real-world dataset released by Udacity [8] as a baseline to
check the inconsistency of autonomous driving systems. From the
dataset, we select two episodes of high-way driving video where
obvious changes of lighting and road conditions can be observed
among frames. To train UNIT model, we also collect images of ex-
treme scenarios from YouTube. In the experiments, we select heavy
snow and hard rain, two extreme weather conditions to transform
real-world driving scenes. To make the variance of collected im-
ages relatively large, we only search for videos which is longer
than 20 mins. In the scenario of hard rain, the video records wipers
swiping windshield, which would potentially degrade the quality
of synthetic images. Hence, in data preprocessing phase, we man-
ually check and filter those images. Note that all images used in
the experiments are cropped and resized to 320*240, and we have
performed down-sampling for YouTube videos to skip consecutive
frames with close contents. The detailed information is present in
Table 1.

4.2 Models
We evaluate our metamorphic testing framework DeepRoadMT on
three DNN-based autonomous driving models which are released
by Udacity [8]: Autumn [4], Chauffeur [5], and Rwightman [6]. We
choose these threemodels as their pre-trainedmodels are public and
can be evaluated directly on the synthetic datasets. To be specific,
the model details of Rwightman are not publicly available, however,
similar to black-box testing, our approach aims at detecting the
inconsistencies of the model. Hence, Rwightman is still used for
evaluations.
Autumn. Autumn is composed of a data preprocessing module and
a CNN. Specifically, Autumn first computes the optical flow of raw
images and inputs them to a CNN to predict steering angles. The
architecture of Autumn is: three 5x5 conv layers with stride 2 pluses
two 3x3 conv layers and followed by five fully-connected layers
with dropout. The model is implemented by OpenCV, Tensorflow
and Keras.
Chauffeur. Chauffeur consists of one CNN and one RNN with
LSTM module. The workflow is that CNN first extracts the fea-
tures of input images and then utilizes RNN to predict the steering
angle from previous 100 consecutive images. This model is also
implemented by Tensorflow and Keras.

4.3 Metric
Metric of model inconsistency. In this work, an autonomous
driving system is defined to act consistent if its steering angle
prediction falls within certain error bounds after modifying the

weather condition of driving images. We define the number of
inconsistent behaviors of autonomous driving systems as follows:

IB (DNN , I) =
∑
i ∈I

f (|DNN ⟦i⟧ − DNN ⟦τ (i)⟧) | > ϵ)

,where DNN denotes the autonomous driving model and I is the
real-world driving dataset. i denotes the ith image in I. τ denotes
the image generator/transformer which can change the weather
condition of the input image. f is an indicator function which
outputs 1 or 0 if and only if the input is True or False and ϵ is the
error bound.
Metric of input validation. As introduced in Section 3.2.2, the
input validity of DNN-based autonomous driving systems is defined
by the minimal distance of input and training images in the embed-
ding space. This metric can reflect the similarity between the input
and training data, however, it has the following limitations: first,
generally, the training dataset is large (e.g. 10k images). Suppose we
use the above metric to validate a single input image, the numerous
training data points will dominate PCA and the results are biased.
Second, using the minimal distance for input validation is not stable.
For example, suppose the distance of input i and training data j is
minimal and it is less than the threshold. However, j is far from
other training data and actually i is not similar to the majority of
the training dataset. We address these limitations in the following
ways: first, to balance the input data and training data, we collect
M images from online driving scenes as input data, and randomly
selectM images from training dataset as training data. Second, to
estimate the distance more stable, we average the Top-N minimal
distances of each image to represent their similarities. The metric
of input validity is defined as follow:

mIV (i, St) = f (
1
N

∑
k ∈{N }

min
j ∈St

k (∥h(i) − h(j)∥2) < θ)

, where N is a parameter less than M , i denotes the image of the
input dataset with sizeM . St denotes the set ofM randomly selected
training images,mink (·) denotes the k-th minimal value among in-
put array. Function f is an indicator function and θ is the threshold
of input validation.

4.4 Results
4.4.1 Results of DeepRoadMT . We first present several YouTube
screenshots as ground truth in Figure 7 to help readers check the
quality of synthetic images. In Figure 8, we list real and GAN-
generated images pairs, where the two rows present the transfor-
mation of Udacity dataset to snowy and rainy scenes, respectively,
and the odd and even columns present original and GAN-generated
images, respectively. Qualitatively, the GAN-generated images are
visually similar to the images collected from YouTube videos and
they also can keep the major semantic information (such as the
shape of tree and road) of the original images. Interestingly, in the
first snowy image in Figure 8, the sky is relatively dark and GAN can
successfully render the snow texture and the light in front of the car.
In the second column, the sharpness of rainy images are relatively
low and this is consistent to the real scene showed in Figure 7. Our
results are consistent with the original UNIT work [27], and further
demonstrate the effectiveness of UNIT for image transformation.

138

ASE ’18, September 3–7, 2018, Montpellier, France M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid

(a) Heavy snow (b) Hard rain

Figure 7: Images collected from YouTube

Figure 8: Real and GAN-generated images

(a) Autumn (b) Chauffeur (c) Rwightman

Figure 9: Inconsistency of steering angle prediction on real and synthetic images

We further present examples for the detected inconsistent be-
haviors of autonomous driving models in Figure 9. In the figure,
each row shows the scenes of snow and rain, respectively. In each
sub-figure, the blue caption indicates the model name, while the
red and green captions indicate the predicted steering angles on
the real and synthetic images, respectively. The curves visualize
the predictions which help check the differences. From the figure
we can observe that model Autumn (the first two columns) has the
highest inconsistency number on both scenes; in contrast, model
Rwightman (the last two columns) is the most stable model under
different scenes. This figure shows that DeepRoadMT is able to find
inconsistent behaviors under different road scenes for real-world
autonomous driving models. For example, a model like Autumn or
Chauffeur [3] (they are both ranked higher than Rwightman in the
Udacity challenge) may work perfectly in a sunny day but can crash
into the curbside (or even worse, the oncoming cars) in a rainy or
snowy day (shown in Figure 9).

Table 2 presents the detailed number of detected inconsistent
behaviors under different weather conditions and error bounds for

each studied autonomous driving model on the Udacity dataset. For
example, when using the error bound of 10° and the rainy scenes,
DeepRoadMT detects 5279, 710, and 656 inconsistent behaviors for
Autumn, Chauffeur, and Rwightman, respectively. From the table
we can observe that the inconsistency number of Autumn is the
highest under both weather conditions. We think one potential
reason is that Autumn is purely based on CNN, and does not uti-
lize history information (e.g., via RNN), and thus may not always
perform well in all road scenes. On the other hand, Rwightman
performs the most consistently than the other two models under
all error bounds. This result presents a very interesting phenome-
non – DeepRoadMT can not only detect thousands of inconsistent
behaviors of the studied autonomous driving systems, but can also
measure different autonomous systems in terms of their robustness.
For example, with the original Udacity dataset, it is hard to find the
limitations of autonomous driving systems like Autumn.

4.4.2 Results of DeepRoadIV . We use sunny, rainy and snowy
driving scenes to test DeepRoadIV . The expectation of this exper-
iment is, in the embedding space, the sunny images are close to

139

DeepRoad: GAN-Based Metamorphic Testing and Input Validation Framework for ... ASE ’18, September 3–7, 2018, Montpellier, France

(a) Sunny (b) Rainy (c) Snowy (d) Distribution of Distances

Figure 10: Results of DeepRoadIV : Image embeddings and Distance distributions.

Table 2: Number of inconsistency behavior of three models
under different weather conditions

Scene Model Num. of Inconsist. Behav.
10° 20° 30° 40°

Snowy
Autumn 11635 11602 11388 10239
Chauffeur 4839 2105 1093 653
Rwightman 334 115 45 14

Rainy
Autumn 5279 5279 5279 5279
Chauffeur 710 175 94 71
Rwightman 656 92 23 0

the training images, and the rainy and snowy images are linearly
separable to them. Specifically, sunny images are collected from
the original test dataset, and the rainy and snowy images are ex-
tracted from YouTube videos. Note that to ensure the authenticity
of input images, we only choose real-world instead of synthetic
images. Moreover, we choose convolutional layer conv 3_2 and
conv 4_1 of VGGNet to extract the content and style features from
the input images, and we set the PCA dimension to 3 for visualizing
experimental results. To reduce the computational complexity, we
resize all the images to 120*90 and set the sampling number M
of each dataset to 600. Furthermore, we use the average of Top-
100 minimal distances of each data point to reduce the variance of
similarity estimation for each input image. Figure 10 visualizes the
results of DeepRoadIV on sunny, rainy and snowy driving scenes.
To be specific, the first three figures of Figure 10 present the results
of sunny, rainy and snowy images, respectively. And the orange
and blue points present the sampled training and corresponding
input images. We first analyze the results of the image embedding.
From Figure 10a, we observe that the majority of the input images
are mixed with the training samples, and a few inputs are far from
the cluster. From Figure 10b and 10c, there are gaps between the
input and training points and the clusters are linearly separable.
These results indicate that the distributions of sunny and training
images are close but the rainy and snowy images are not. On the
other hand, the cluster of rainy and snowy images are relatively
compact but the sunny images are scattered. The reason may be
the texture of rainy and snowy images are unified and the con-
tent is relatively poor, so that the distances between images are
small. However, the light condition and content of sunny images
are more diverse, hence the distances are large. Moreover, from
Figure 10d, we find the distances of sunny images mainly lie be-
tween 0 and 3, and almost all of the distances of rainy and snowy
images are larger than 2. Suppose the threshold of input validation

is 2.5, DeepRoadIV can detect 100% of rainy, 85% of snowy images
and 21% outliers among sunny images as invalid inputs, which
effectively improve the system robustness. Furthermore, we study
if the non-linear transformation of input images is necessary for
input validation. Figure 11 visualizes the results of DeepRoadIV
without feature extraction. From Figure 11, we observe that all blue
clusters are surrounded by the orange points, which show that
input images are not linearly separable to the training images in
the embedding space. It implies in this case, the distance is not a
proper metric for input validation, and non-linear transformation
(i.e. feature extraction using VGGNet) is indeed needed.

5 THREATS TO VALIDITY
There are several threats to the validity of the proposed approach
and its result, which include the followings.

In this work, the main threat to internal validity is potential
defects in the implementation of our techniques. To reduce these
threats, in implementing DeepRoadMT , we used the original im-
plementation of UNIT to ensure DeepRoadMT ’s performance. Fur-
thermore, in implementing of DeepRoadIV , we downloaded the
pre-trained VGGNet weights from PyTorch website2 instead of
training it on ImageNet.

The threats to external validity mainly lie in image quality,
dataset and autonomous driving models. First, we lack a good stan-
dard to evaluate image quality (i.e. realisticity). In this paper, we
present GAN-generated images to let readers check their quality.
This approach is quite straightforward but less objective. Salimans
et.al [34] proposed Inception Score to evaluate the quality of syn-
thetic images. To be specific, Inception Score uses an Inception-v3
Network pre-trained on ImageNet to compute a statistic of the
network’s outputs as the quality of generated images. However,
Barratt et.al [12] demonstrate that Inception Score fails to provide
useful guidance when comparing generative models (e.g. GANs).
Furthermore, the generation process of GANs is not controllable
that some semantic content (e.g. trees or cars) may be missing in
synthetic images, and this may threaten the validity of Metamor-
phic Testing. Second, the Udacity dataset is relative small and the
autonomous driving models are quite simple. Suppose the dataset
is sufficiently large, a more complicated and robust model is able to
be trained, and the inconsistent behaviors would be dramatically
reduced. Moreover, an autonomous driving system is complicated,
and its input and output are diverse. In this work, we only focus

2https://download.pytorch.org/models/vgg19-dcbb9e9d.pth

140

ASE ’18, September 3–7, 2018, Montpellier, France M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid

(a) Sunny (b) Rainy (c) Snowy

Figure 11: Results of DeepRoadIV (without non-linear transformation): Image embeddings and Distance distributions.

on testing the accuracy of the steering angle instead of speeding
adjustments.

6 RELATEDWORK
Metamorphic Testing. Metamorphic testing is a classical soft-
ware testing method that identifies software bugs [15, 36, 44]. Its
key idea is to detect violations of domain-specific metamorphic
relations defined across outputs from multiple runs of the program
with different inputs. Metamorphic testing has been applied for
testing machine learning classifiers [30, 40, 41]. In this paper, Deep-
Road develops a specific GAN-based metamorphic testing module
for DNN-based autonomous driving systems, where the metamor-
phic relations are defined such that regardless of how the driving
scenes are synthesized to cope with weather conditions, the driv-
ing behaviors are expected to be consistent with those under the
corresponding original driving scenes.
Input Validation. Input Validation aims at ensuring that only
properly formed data can be accepted by an information system, and
preventing malformed data leading systems errors. Input Validation
has be applied to enhance the robustness of web application [1, 25].
In this paper, DeepRoad develops a distance-based input validation
framework for DNN-based autonomous driving systems, where
the key idea is that a valid input image is similar to a part of the
images in the training dataset, and the similarity can be measured
by the distance in a non-linear low-dimension space. To enhance
the systems’ security, the images will be rejected if their distance is
greater than a given threshold.
Testing andVerification ofDNN-BasedAutonomousDriving
Systems. Different from traditional testing practices for DNN mod-
els [28, 39], a recent set of approaches (such as DeepXplore [31]
and DeepTest [38]) utilize differential and metamorphic testing al-
gorithms for identifying inputs that trigger inconsistencies among
different DNN models, or among the original and transformed driv-
ing scenes. Although such approaches have successfully found var-
ious autonomous driving system issues, there still lack approaches
that can test DNN-based autonomous driving system with diverse
and realistic synthesized driving scenes. Moreover, DeepSafe [19]
focuses on automatically identifying safe regions of the input space,
within which the network is robust against adversarial perturba-
tions.
GAN-Based Image Translation. GAN-based domain adaption
has been recently shown to be effective in unsupervised image-to-
image translation [21, 27, 43, 45]. CycleGan [45], DiscoGAN [21]
and DualGan [43] propose the similar idea that image-to-image

translation should satisfy the cycle consistency, where an image
from Domain A should be identical when it is translated to Domain
B and translated back to A. The experiments show that this extra
constraint can make the translated images more realistic. UNIT [27]
further assumes that the representations of two domains may be
projected to the same vector space (shared latent space), and is
constructed based on VAEs and GANs. Specifically, they also apply
cycle consistency to the GAN model to regularize the translation.

Moreover, GAN-based domain adaption is also applied for virtual-
to-real and real-to-virtual driving scene adaption [26, 42]. DU-
drive [42] proposes an unsupervised real to virtual domain uni-
fication framework for end-to-end driving. Their key insight is the
raw image may contain nuisance details which are not related to
the prediction of steering angles, and a corresponding virtual scene
can ignore these details and also address the domain shift problem.
Grad-GAN [26] is designed to automatically transfer the scene an-
notation in virtual-world to facilitate real-world visual tasks. In that
work, a semantic-aware discriminator is proposed for validating
the fidelity of rendered image w.r.t each semantic region.

7 CONCLUSION
In this paper, we propose DeepRoad, an unsupervised learning
framework to synthesize realistic driving scenes to test inconsis-
tent behaviors of DNN-based autonomous driving systems, and
validate online input images to improve the system robustness.
The experimental results on three real-world Udacity autonomous
driving models indicate that DeepRoad can successfully detect thou-
sands of inconsistent behaviors. Furthermore, our results also show
that DeepRoad can effectively validate input images to potentially
enhance the system robustness.

ACKNOWLEDGMENTS
This work was supported by the Ministry of Science and Tech-
nology of China (Grant No. 2017YFC0804002), Shenzhen Peacock
Plan (Grant No. KQTD201611 2514355531), and Science and Tech-
nology Innovation Committee Foundation of Shenzhen (Grant No.
ZDSYS201703031748284 and No. JCYJ20170817110848086). It was
also supported by NSF grants CNS 1527727, CCF-1566589, CNS
CAREER 1750263, and CCF-1704790. The authors thank Shiwei Yan
for the support of evaluations, and thank Chenguang Liu, Meng Li,
Yibo Lin and anonymous reviewers for the valuable comments.

141

DeepRoad: GAN-Based Metamorphic Testing and Input Validation Framework for ... ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] 2013. Open Web Application Security Project: Data Validation. https://www.

owasp.org/index.php/Data_Validation. Accessed: Jun. 2018.
[2] 2014. Tesla Autopilot System. https://www.tesla.com/autopilot. Accessed: Jun.

2018.
[3] 2016. Final leaderboard of Udacity Challenge 2. https://github.com/udacity/

self-driving-car/tree/master/challenges/challenge-2. Accessed: Jun. 2018.
[4] 2016. Steering anglemodel: Autumn. https://github.com/udacity/self-driving-car/

tree/master/steering-models/evaluation. Accessed: Jun. 2018.
[5] 2016. Steering angle model: Chauffeur. https://github.com/udacity/

self-driving-car/tree/master/steering-models/community-models/chauffeur. Ac-
cessed: Jun. 2018.

[6] 2016. Steering angle model: Rwightman. https://github.com/udacity/
self-driving-car/tree/master/steering-models/evaluation. Accessed: Jun. 2018.

[7] 2016. Udacity pre-trained Models. https://github.com/udacity/self-driving-car/
tree/master/steering-models/evaluation. Accessed: Jun. 2018.

[8] 2016. Udacity self driving car. https://github.com/udacity/self-driving-car. Ac-
cessed: Jun. 2018.

[9] 2018. Tesla Model S crash. https://www.wired.com/story/
tesla-autopilot-why-crash-radar. Accessed: Jun. 2018.

[10] 2018. Uber’s Self-Driving Cars Were Struggling Before Arizona Crash. https:
//www.nytimes.com/2018/03/23/technology/uber-self-driving-cars-arizona.
html. Accessed: Jun. 2018.

[11] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge
University Press.

[12] Shane Barratt and Rishi Sharma. 2018. A Note on the Inception Score. arXiv
preprint arXiv:1801.01973 (2018).

[13] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer.
http://research.microsoft.com/en-us/um/people/cmbishop/prml/

[14] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, et al. 2016. End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016).

[15] Tsong Y Chen, Shing C Cheung, and Siu Ming Yiu. 1998. Metamorphic testing: a
new approach for generating next test cases. Technical Report. Technical Report
HKUST-CS98-01, Department of Computer Science, Hong Kong University of
Science and Technology, Hong Kong.

[16] Leon Gatys, Alexander S Ecker, and Matthias Bethge. 2015. Texture synthesis us-
ing convolutional neural networks. In Advances in Neural Information Processing
Systems. 262–270.

[17] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image style transfer
using convolutional neural networks. In Computer Vision and Pattern Recognition
(CVPR), 2016 IEEE Conference on. IEEE, 2414–2423.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[19] Divya Gopinath, Guy Katz, Corina S Pasareanu, and Clark Barrett. 2017. Deepsafe:
A data-driven approach for checking adversarial robustness in neural networks.
arXiv preprint arXiv:1710.00486 (2017).

[20] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-
time style transfer and super-resolution. In European Conference on Computer
Vision. Springer, 694–711.

[21] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee, and Jiwon Kim. 2017.
Learning to discover cross-domain relations with generative adversarial networks.
arXiv preprint arXiv:1703.05192 (2017).

[22] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

[25] Nuo Li, Tao Xie, Maozhong Jin, and Chao Liu. 2010. Perturbation-based user-
input-validation testing of web applications. Journal of Systems and Software 83,
11 (2010), 2263–2274.

[26] Peilun Li, Xiaodan Liang, Daoyuan Jia, and Eric P Xing. 2018. Semantic-
aware Grad-GAN for Virtual-to-Real Urban Scene Adaption. arXiv preprint
arXiv:1801.01726 (2018).

[27] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. 2017. Unsupervised image-to-image
translation networks. In Advances in Neural Information Processing Systems. 700–
708.

[28] Alexis C Madrigal. 2017. Inside waymo’s secret world for training self-driving
cars. The Atlantic (2017).

[29] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100–107.

[30] Christian Murphy, Gail E Kaiser, Lifeng Hu, and Leon Wu. 2008. Properties of
Machine Learning Applications for Use in Metamorphic Testing. In SEKE, Vol. 8.
867–872.

[31] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 1–18.

[32] Dean A. Pomerleau. 1989. Advances in Neural Information Processing Systems
1. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, Chapter ALVINN:
An Autonomous Land Vehicle in a Neural Network, 305–313.

[33] Haşim Sak, Andrew Senior, and Françoise Beaufays. 2014. Long short-term mem-
ory recurrent neural network architectures for large scale acoustic modeling. In
Fifteenth annual conference of the international speech communication association.

[34] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. 2016. Improved techniques for training gans. In Advances in Neural
Information Processing Systems. 2234–2242.

[35] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes. 2016. A Survey on
Metamorphic Testing. IEEE Transactions on Software Engineering 42, 9 (Sept
2016), 805–824.

[36] Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. 2016. A
survey on metamorphic testing. IEEE Transactions on software engineering 42, 9
(2016), 805–824.

[37] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[38] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. DeepTest: Automated
Testing of Deep-Neural-Network-driven Autonomous Cars. In Proceedings of the
40th International Conference on Software Engineering, Gothenburg, Sweden, May
27 - June 3, 2018 (ICSE 2018).

[39] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. 2016. Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann.

[40] Xiaoyuan Xie, Joshua Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
Tsong Yueh Chen. 2009. Application of metamorphic testing to supervised
classifiers. In Quality Software, 2009. QSIC’09. 9th International Conference on.
IEEE, 135–144.

[41] Xiaoyuan Xie, Joshua WK Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and
Tsong Yueh Chen. 2011. Testing and validating machine learning classifiers by
metamorphic testing. Journal of Systems and Software 84, 4 (2011), 544–558.

[42] Luona Yang, Xiaodan Liang, and Eric Xing. 2018. Unsupervised Real-to-
Virtual Domain Unification for End-to-End Highway Driving. arXiv preprint
arXiv:1801.03458 (2018).

[43] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. 2017. Dualgan: Unsupervised
dual learning for image-to-image translation. arXiv preprint (2017).

[44] Zhi Quan Zhou, DH Huang, TH Tse, Zongyuan Yang, Haitao Huang, and TY
Chen. 2004. Metamorphic testing and its applications. In Proceedings of the 8th
International Symposium on Future Software Technology (ISFST 2004). 346–351.

[45] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired
image-to-image translation using cycle-consistent adversarial networks. arXiv
preprint arXiv:1703.10593 (2017).

142

https://www.owasp.org/index.php/Data_Validation
https://www.owasp.org/index.php/Data_Validation
https://www.tesla.com/autopilot
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation
https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation
https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation
https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation
https://github.com/udacity/self-driving-car/tree/master/steering-models/evaluation
https://github.com/udacity/self-driving-car
https://www.wired.com/story/tesla-autopilot-why-crash-radar
https://www.wired.com/story/tesla-autopilot-why-crash-radar
https://www.nytimes.com/2018/03/23/technology/uber-self-driving-cars-arizona.html
https://www.nytimes.com/2018/03/23/technology/uber-self-driving-cars-arizona.html
https://www.nytimes.com/2018/03/23/technology/uber-self-driving-cars-arizona.html
http://research.microsoft.com/en-us/um/people/cmbishop/prml/

	Abstract
	1 Introduction
	2 Background
	2.1 DNN Architectures

	3 Approach
	3.1 Metamorphic Testing for DNN-Based Autonomous Driving Systems
	3.2 Input Validation for DNN-Based Autonomous Driving Systems

	4 Experiments
	4.1 Data
	4.2 Models
	4.3 Metric
	4.4 Results

	5 Threats to Validity
	6 Related work
	7 Conclusion
	Acknowledgments
	References

