
Resource and Role Hierarchy Based Access Control
for Resourceful Systems

Nidhiben Solanki, Yongtao Huang,
I-Ling Yen, Farokh Bastani

University of Texas at Dallas
{nxs121130, hxy131530, ilyen, bastani}@utdallas.edu

Yuqun Zhang
Southern University of Science & Technology

zhangyq@sustc.edu.cn

Abstract. Role based access control (RBAC) has been used
extensively in practice since it naturally capturing the
structure of the users in an organization. It is especially useful
in multi-tenant cloud platforms. However, with the growing
amount of data and growing number of devices, assigning
permissions for these resources (such as data and devices) to
roles become challenging. We develop a resource hierarchy
based permission model and integrate it with RBAC to create
the RRBAC (resource and role based access control) model
to simplify the permission assignment in RBAC. However,
realizing RRBAC requires careful design to ensure efficient
permission assignment, validation, and revocation. Instead of
using policy based solutions, such as XACML, we design a
resource tree based approach to achieve high performance for
various permission related operations. Preliminary
experiments show that RRBAC approach can achieve more
efficient permission assignment and validation.

Keywords: Cloud security, Role based access control,
resource hierarchy, attribute based access control, permission
assignment, permission validation.

1 Introduction
Cloud has been expanding and nowadays a large number

of cloud providers at different scales are available. Also,
more and more companies are shifting their services and
applications to cloud platforms. Cloud computing has many
benefits. It can reduce the overall operational cost for large
and small companies due to sharing of computing resources
[1]. Also, it facilitates application and service sharing cross
organizations via SaaS (software as a service), Web services,
and service computing technologies. Moreover, it promotes
data sharing due to centralized hosting, which can provide
semantically enhanced data management for effective data
discovery [2]. One important issue in cloud computing is
security. For example, in service sharing, the cloud provider
needs to protect the services to ensure that only legitimate
accesses are allowed. Same for data sharing, data resources
should be protected against illegitimate accesses and
information flows [3] [4]. In this paper, we focus on the
access control aspect of security for cloud systems.

Many access control models have been developed in the
past three decades and among all these models, role-based
access control (RBAC) models are most widely used in
enterprises and other organizations. Role-based models can
greatly cut down the cost for policy specification. Also, Role

hierarchy in RBAC provides a natural representation (role
hierarchy) of the structure of the users in an organization.
Role faithfully describes the responsibility and authority of
the user in the position represented by the role.

The RBAC model focuses on building hierarchy of the
subjects to reduce the overhead in access right specification
and management, but does not consider the same for the
objects (i.e., the resources to be accessed). Generally, data
resources such as database and file systems have natural
hierarchies. With the expansion of cloud computing to many
application domains, more and more varieties of resources
are to be considered and permissions assignment under the
RBAC model becomes a major challenge.

Attribute-based access control (ABAC) is another access
control model that has been widely used in recent years. In
ABAC, attributes are defined for each subject and each object.
Access control policies are defined based on these attributes.
ABAC is a unified model of many conventional access
control models since attributes can encompass any user
descriptors such as the user name, the security level, the role,
etc. More importantly, ABAC can define specific attributes
and attribute values for the objects, and the desired policies
can be defined based on them. In other words, ABAC can
help avert the problem above.

ABAC is the most flexible and powerful access control
model, but it comes at a price. Since there is no well-formed
standard for attribute definition, the selection of attributes for
specific systems becomes a burden. Also, the complexity for
access right validation depends on the complexity of the
attributes selected for the system. Moreover, the flexibility in
ABAC makes policy verification and auditing difficult since
the identification of the subjects having a certain attribute
value can be time consuming [5]. The problem becomes more
significant in the privilege revocation process when it is
necessary to identify the exact subjects who may have
accessed certain objects and the effects need to be reversed.
To balance flexibility and operational cost, some research
works consider mixed models to take advantage of RBAC
and ABAC and eliminate their problems [6].

For the problem of high complexity for privilege
assignment in RBAC, instead of using ABAC, we consider a
resource hierarchy based approach. Similar to role hierarchy,
data resources also have their natural hierarchy. Thus,
permission assignment can be performed on resources based
on the hierarchy. For example, in file systems, files are
structured in the directory tree. Hierarchical structure also
exists in database systems, from database to tables to
rows/columns and to cells. An XML document, where

480

2018 42nd IEEE International Conference on Computer Software & Applications

0730-3157/18/$31.00 ©2018 IEEE
DOI 10.1109/COMPSAC.2018.10280

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:40:54 UTC from IEEE Xplore. Restrictions apply.

different access rights are assigned to different branches at
various levels, has its natural hierarchy. In an IoT system, the
IoT resources can form a hierarchy based on, for example,
their ownership role hierarchy. Within each IoT device, its
data can be categorized into a hierarchy as well. Thus, we can
make use of the resource hierarchy to ease permission
assignment. Similar to role hierarchy, when a permission for
a parent resource is granted to a role, it is highly likely that
the permissions for all the child and descendant resources in
the hierarchy are to be granted to that role. Based on this
consideration, we define the concept of resource hierarchy to
simplify permission assignment for cloud computing systems.

In this paper, we extend RBAC model by adding resource
hierarchy as part of the access control mechanism and create
the RRBAC (Resource and Role Hierarchy Based Access
Control) model. By providing resource hierarchy as part of
the access control mechanism, we can eliminate redundant
access rights assignments. Once access right assignment is
done at the parent data resource, we don’t have to assign
access rights to the dependent data resources. Resource
hierarchy can be used to propagate access rights from parent
to children data resources. In addition, resource hierarchy can
also accommodate newly created data resources, as they are
mostly created at the leaf levels. This also eliminates the need
of assigning access rights for new resources. The access
rights for new resources are also propagated from the parent
data resource.

In RBAC, generally permissions are associated with
atomic resources, so, permission validation can be performed
directly when an atomic resource is accessed. If we allow the
permissions to be defined on a group of resources and allow
the subjects to access individual resources in the group, then
it will be difficult to find the proper permissions without a
proper mechanism. In a resource hierarchy, this problem for
permission validation becomes more complex. A naïve
solution is to first define the atomic resources based on the
lowest granularity in which the resources can be accessed by
the users. When there is a permission assignment at a non-
atomic resource, the permission is propagated to all the
children resources and all these generated permissions are
inserted into the permission database. However, this will not
simplify the permission management due to a large number
of permissions and cannot improve the performance for
permission validation (slow reasoning due to the large
number of permission rules).

We design a resource tree based permission assignment
and validation mechanism for RRBAC. A resource tree is
maintained and the atomic resources are the leaves of the
resource tree. For each resource (at any level of the tree), we
maintain links in the tree to locate the permissions needed for
access right validation. These links are established during
permission assignments. We design algorithms to correctly
and efficiently establish and traverse various tree links so that
permission management can be greatly simplified and access
rights validation can be handled efficiently.

The rest of the paper is organized as follow. Section 2

provides further literature survey (in addition to the general
survey in Section 1), focusing on access control in multiple
organizations. Section 3 introduces the resource and role
hierarchy based access control concept and formally defines
the RRBAC model. The detailed permission assignment,
validation, and revocation algorithms are discussed in
Section 4. Section 5 discusses the experimentation setup and
the preliminary results. Section 6 concludes the paper and
discusses future research directions.

2 Literature Survey
There have been significant advances in access control

technologies over the last three decades. In the early era,
basic access control schemes, such as access control matrix
and capability lists, have been used. Multi-level security [7]
introduces information flow control into access control to
ensure that information will never flow from the higher
security classes to the lower ones. From late 90s, RBAC has
become the major paradigm, especially for large enterprises
and organizations. Role hierarchy semantically reflects the
structure of authorities and responsibilities of the personnel
in an organization and, hence, the access rights can be defined
accordingly. But due to the complexity of permission
assignment in RBAC, ABAC has been adopted to
compensate this deficiency. ABAC is flexible and powerful,
but as discussed earlier, the power of ABAC also brings some
problems.

Most of the traditional access control models, including
RBAC and ABAC, are developed under the assumption of a
unified environment. For example, the role hierarchy in
RBAC and the attributes in ABAC are uniformly defined for
the entire system. However, this frequently is not the case in
multiple domain systems and handling cross domain accesses
becomes a challenge. There are generally two approaches to
secure cross-domain accesses. The first approach is to have a
trusted mediator to integrate the subjects and objects of the
two interacting domains (e.g., an integrated role hierarchy in
the role-based model, an integrated lattice in the multi-level
security model) [8]. In RBAC model, the solution is to create
a federated role hierarchy. In ABAC, the mediator needs to
provide a unified set of attributes and perform attribute
translation during accesses. However, the mediator-based
approach suffers from the scalability and fairness issues [8].
It also requires a fully trusted mediator to perform the
integration. In [9], a mediator-free solution is proposed to
secure cross-domain interoperation. Instead of creating a
federated hierarchy of roles or security attributes, mappings
of the roles or attributes from one domain to another are
defined in a decentralized way. Access control in a domain is
realized by mapping the external roles or attributes to the
corresponding ones in the local domain during access right
validation for incoming accesses.

Generally, ABAC requires a more complex mapping in
multi-domain systems. In RBAC, one can simply map roles
from one domain to another (the role is a fixed single attribute

481

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:40:54 UTC from IEEE Xplore. Restrictions apply.

and role name is the attribute value). For ABAC, it is
necessary to first map the attributes, and then map the
attribute values, which can be challenging.

3 Basic Concepts in RRBAC
Role based access control (RBAC) model has been

investigated extensively in the literature and is most
commonly used in practice. The basic idea of RBAC is to
define roles according to the responsibilities within an
organization. Hence, the organization structure is mapped
into a role hierarchy. Each user is assigned to one or more
roles and these roles are assigned permissions for accessing
data resources. When a session is activated by a user, he/she
can activate a subset of assigned roles to perform data
accesses. Even though RBAC is the most widely used model
in enterprises, RBAC models has some drawbacks. In RBAC
managing permission assignments can have high complexity
in systems with a large number of data resources. Also, it is
not clear how to assign permissions for dynamically created
data resources.

To solve the problems discussed above, we extend RBAC
to resource and role hierarchy based access control (RRBAC).
Generally, data resources have their natural hierarchy and we
can perform permission assignment based on this resource
hierarchy. For example, in file systems, files are structured in
the directory tree. Hierarchical structure also exists in
database systems, from database to tables to rows/columns
and to cells. XML/HTML files also have tag structure which
can be easily converted to the resource hierarchy structure.
We can make use of the resource hierarchy to ease permission
assignments. When a permission for a parent resource is
granted to a role, it is highly likely that the permissions for
all the child and descendant resources in the hierarchy are to
be granted to that role as well. Based on this observation, we
define the RRBAC (Resource and Role Hierarchies Based
Access Control) model to simplify permission assignment.
RRBAC eliminates the need for assigning permissions for
each data resource. Also, data resource creations happen
more frequently at the lower level of the resource hierarchy.
If most of the permissions are assigned for resources at a
higher level, then the problem for assigning permissions to
newly created resources can greatly diminish.

Next, we define the RRBAC model by tuple
��� ��� ��� ��� �� ��	. �� is the role hierarchy, which can
be represented like a graph with vertices and directed edges,
i.e., ��
<�� ��>, where �
 �
��
��
�� � � is the set of
roles and �� is the set of parent-child relations in the role
hierarchy. We have ��
 ��
��
���
��
� � ��,where �
��
�� is
an edge in the role hierarchy and
� is the parent of
�. We also
define the partial order
� �
� if
� is an ancestor of
��
� is the set of users and �
 ���� ��� ��� � �. In RBAC,

each user is assigned to one or more roles. �� is the set of
user to role assignments, where

��
 �����
����� � ��
� � ���

�� is the resource tree and similar to ��, and it can be
expressed as the set of vertices and the set of edges, <�� ��>,
where �
 ���� ��� ��� � � is the set of resources and �� is
the set of parent-child relations in the resource hierarchy. We
further define �� by ��
 ����� ������� �� � �� , where
���� ��� implies �� is the parent of �� in the resource tree. We
also define �� � �� if �� is an ancestor of ��.

Now we consider permission and permission to role
assignments. � in the RBAC tuple is the set of permissions.
A permission � , � � �, is associated to a resource �� and
access right !�. Thus, we can express � as
�
 ���� !��, where �� � �� !� � ".

Here, we assume that all resources have the same action set
" and "
 �!�� !�� !� � �. When permission � is assigned
to a role
, it permits
 to access �� with access right !�. Let
�� denote the set of permission to role assignments, where
��
 ��� �
�� �#��� � ��
� � ��,

where �# is the permission propagation constraint, which
will be properly defined later.

When an access �
 � ��� !�� is issued, the permission
validation process checks whether there exists a �

���� !�� such that ��$�
%� �#� � ��. If so, then the access is
granted; otherwise, it is declined.

In RBAC, a parent role inherits the permissions of its
children. Formally, we have
�
��
�� � �� & � � �
 & �� �
�� �#� � �� & '�#�
(
)
* +� �
� � �#, � ��
In RRBAC, if a permission to access a parent resource �-

is assigned to a role, then the role has the permissions to
access all the resources that are in the sub-tree of �- in the
resource hierarchy. Formally, we have
�
 +�-� !�, & �� �
�� �#� � �� & �#� �(
)
* .�/� �/ � 0�12
33+�-,,'��4�
�� �#� � ��,
 where �4
 ��/� !��.

Here, 0�12
33+�-, is the set of nodes in the subtree of �-.
To increase flexibility, we use �# to specify the permission

propagation constraint. �# includes two fields, �#�
(, which
specifies whether role hierarchy propagation is allowed, and
�#� �(, which specifies whether resource tree propagation is
allowed. �#�
(and �#� �(can be True (T) or False (F) and
they have the default value True. The default permission
propagation feature can reduce the effort in permission to role
assignment. However, there are situations where such
propagations are undesirable. Adding the control by �#
provides additional capability in managing the access rights.

4 RRBAC Algorithms
Role based access control (RBAC) considers privilege

propagation along the role hierarchy, while in RRBAC we
consider privilege propagation along the role hierarchy and
resource tree. Due to privilege propagations, the access right

482

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:40:54 UTC from IEEE Xplore. Restrictions apply.

validation mechanism needs to be done properly. One naïve
way to do this is to derive all the permissions from the
assigned ones and store them in a permission database. When
given an access for a data resource, we need to check whether
the permission is in the permission database. This approach
requires maintaining a large number of permissions. Another
potential approach is to record the permission to role
assignments on the resource tree. When given an access to a
data resource �- by a role
�, we need to traverse the resource
tree from �- up to find out whether a permission for
accessing an ancestor of �- has been assigned to
� (without
propagation constraint). If so, then
� has access to �-. If no
such ancestor exists, then the traversal will go all the way up
to the root of the resource tree, resulting in very inefficient
access privilege validation.

In this section, we design algorithms to provide more
efficient privilege assignment and validation in RRBAC. To
simplify the discussion of the algorithm and related concepts,
we consider a single access right ! for all data resources.
Thus, the parameter for access right “!�”, in permissions (�),
are omitted in algorithm. Also, we assume that there is no
constraint on permission propagations. Moreover, we assume
that role hierarchy is much smaller than the resource tree in
size. So, our performance improvement goal is to reduce
resource tree traversal instead of role hierarchy traversal.

In the following subsection (Section 4.1), we introduce the
data structure maintained to keep track of the access rights
and the ideas about the operations. RRBAC has three major
operations: permission assignment, validation, revocation.
Due to space limit, we will only discuss the algorithm for
permission assignment (Section 4.2).

 Data Structure for RRBAC Algorithms
The basic idea in our design is to use the resource tree to

maintain permission related information. In the resource tree,
each node maintains information about permissions assigned
explicitly. If the security officer assigns permission �� for
accessing resource �- to role
� , i.e., ��5�
%� �#�, then �- in
the resource tree should keep
� in its list of assigned roles.
The attribute “roles with permission”, specifically �-�
6�, is
used to record the list of all assigned roles with permission to
access �-.

To achieve efficient permission assignment and validation,
we introduce two pointers to be maintained by each resource
node �- in the resource tree. First, we maintain an “access
control parent node” pointer, denoted as �-� !#�7, to point to
the closest ancestor of �- that has at least one permission
assigned to it. Let �/ denote the node that �-� !#�7 points to.
Since the roles that can access �/ should be able to access �-
(recall that we assume default propagation), �-� !#�7 allows
an access to �- to be validated through �/ without needing
�- to duplicate �/�
6�. Since there is no other node between
�- to �/ that has its access permission being assigned to
some roles, validating the access right to �- via �/ without

traversing through the intermediate nodes will not cause any
problem.

However, �/ may inherit some “roles with permissions
(rwp)” from node �/� !#�7 . Thus, permission validation
procedure needs to traverse the “!#�7 ” pointers up the
resource tree. We can leave the traversal along “!#�7 ”
pointers to validation time, or we can propagate newly
assigned roles down so that for any node �-, validation can
be done only by checking the rwp list of node �-� !#�7. We
assume that the number of access right validations will be
much more than the number of access right assignments and,
hence, we choose to propagate down the rwp. We use a new
attribute �-� 3
6� to record the “expanded roles with
permissions” for �-, including the ones explicitly assigned to
�- (�-�
6�) and the ones obtained after propagation. We
specifically maintain �-�
6� and �-� 3
6� because we need
to retain the direct permission assignments �-�
6� so that
we can check revocation requests against it.

The downward propagation of rwp does not need to go
through nodes that do not keep any rwp because those nodes
will simply check the access rights via their !#�7 nodes. To
avoid a full subtree traversal for rwp propagation, we
maintain a pointer set �8� !##7 for each node �8 in the
resource tree. �8� !##7 contains a set of pointers which point
to the closest descendants of �8 with non-empty rwp. In other
words, if �/
 �8� !##7, then �/ has a non-empty rwp and
there is no node between �8 and �/ has a non-empty rwp.
Note that !##7 is a pointer set and !#�7 is a single pointer.
When a new permission to role assignment ��5�
%� �#� is
issued and �� is a permission for resource �8, then
� will be
propagated to all �/ , �/ � �8� !##7 , and the propagation
continues down along all the !##7 pointers. At the same time,
once
� is propagated to �/, �/ adds '
� into �/� 3
6�.

From the discussions above, we formally define the
attributes !#�7 and !##7 as follows.

�/
 �-� !#�7
* +�/ � �-, & +�/� 3
6� 9 :, & +�-� 3
6�
 :,
 & .�;� �/ � �; � �-, �;� 3
6�
 :.

�/
 �8� !##7 * +�8 � �/,
 & +�8� 3
6� 9 :, & +�/� 3
6� 9 :,
 & .�;� �8 � �; � �/, �;� 3
6�
 :.

Here we analyze the properties of �-� 3
6� . Note that
�-�
6� simply records the original permission assignments
to �- so there is no need for further elaboration. If the
permissions associated with �- have never been assigned
explicitly to any role, i.e., �-�
6�
 :, then �-� 3
6�
 :.
Also, if
�-�
6�
 �/�
6�
''''''''''& .�;� �/ � �; � �-, �;�
6�
 :,

then we do not need to maintain �-� 3
6�, i.e., we can set
�-� 3
6�
 : to reduce space overhead. Similarly, if after
access rights propagation, we have

483

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:40:54 UTC from IEEE Xplore. Restrictions apply.

�-� 3
6�
 �/� 3
6�
''''''''''& .�;� �/ � �; � �-, �;� 3
6�
 :,

we can also set �-� 3
6�
 : to reduce space overhead.
Besides rwp propagation down the resource tree, we also

need to consider the access right propagation up the role
hierarchy. Again, to facilitate efficient permission validation,
we push the complexity to permission assignment. When the
security officer assigns permission �� for accessing resource
�- to role
�, we also traverse the role hierarchy to include all
ancestors of
� in �-�
6�. Note that if we choose to traverse
the role hierarchy at permission validation time for an access
to �-, there may be multiple roles in �-�
6�, and we may
need to traverse multiple paths from the roles in �-�
6�.

Figure 1. Example for the attributes.

We give an example (in Figure 1) to illustrate the attributes

6�, !#�7, and !##7. Assume that permissions ��
 +��� !,,
��
 +��� !,, and �<
 +�<� !, are assigned to roles
�, �
�,
and
� , respectively. As can be seen, initially we have
���
6�
 �
�� , ���
6�
 �
�� , and �<�
6�
 �
�� . After
the assignments, �� becomes the “!#�7” for �� , �= and �<
and �� becomes the “!#�7” for �> and �?. Also, �� needs to
set its !##7 to point to the closest descendants with
nonempty rwp and we have ��� !##7
 ���� �<�. �� and �<
do not have descendants with nonempty rwp and, hence, their
!##7 pointers are 75@. The attribute values of some nodes up
to this step are shown in black in the figure.

Now we consider the propagations after the example
permission assignments. Following the !##7 pointer, ��
propagates its
6� down and we compute the expanded rwp
for �� and �< , where ��� 3
6�
 �
��
�� and �<� 3
6�

�
��
��. Next we need to propagate up the role hierarchy and
will get ��� 3
6�
 �
��
�� and �<� 3
6�
 �
��
��
�� . By
propagation along the role hierarchy ��� 3
6�
 �
��
�� is
not changed. However, after we check ��� 3
6� against
��� !#�7� 3
6� (
 ��� 3
6�) and find that they are the same,
we can set ��� 3
6�
 : and ��� !#�7
 ��. Subsequently,
we need to change the !#�7 of those nodes originally pointed
to ��, i.e., �>� !#�7
 �� and �?� !#�7
 ��. We also need
to remove �� from ��� !##7 and now ��� !##7
 ��<�. The

new values of the attributes of some nodes are shown in red
in the figure.

 Permission Assignment
The pseudo code for permission_assignment +�/�
�, ,

which assigns permission for accessing resource �/ to role
�,
is given as follows. To make the code easier to understand,
we have �8
 �/� !#�7 and �- is used for nodes in the
subtree of �/.

permission_assignment +�/�
�,:
 if
� A �/�
6� then // otherwise, do nothing
1 if �/�
6�
 : then // originally, �/� !#�7 is �8
 �8 B �/� !#�7;
 add �/ to �8� !##7; �/� !#�7 B 75@;
2 foreach �- in 0�12
33+�/,
 if �-�
6� 9 :'then
 remove �- from �8� !##7, add �- to �/� !##7;
 stop going further to �-’s subtree;
 else // originally �-� !#�7
 �8
 �-� !#�7 B �/;
 endif;
 endfor;
3 endif;
4 add
� to �/�
6�;
 736
6� B �
��;
5 foreach
�,
� �
�'do add
� to 736
6�; endfor;
 propagate_rwp (�/, 736
6�);
6 endif;
 endif;

If
� � �/�
6�, then the permission assignment request is
redundant and nothing needs to be done.

Note that
6� can be used to decide whether a node has
its own “roles with permission” (
6� 9 :) or only has
propagated
6� and uses !#�7 to an ancestor to get its roles
with permission (
6�
 :). In the latter case, since now �/
becomes a node with its own
6�, the !#�7 link of �/ needs
to be 75@ and the !#�7 links of �/ ’s descendants needs to
point to �/ . Similarly, some original !##7 links of �8 , if
pointing to �/ ’s descendants, needs to become �/ ’s !##7
and �8 should put �/ in its !##7 . These updates are done
between code indices 1 and 3. The foreach loop at code index
2 is a subtree traversal which can be done recursively. A
recursive can terminate when we reach a node, say �-, with
its own
6� , because the !##7 and !#�7 links in �- ’s
subtree nodes are all within �-’s subtree.

Besides updating !#�7 and !##7 pointers, we also need to
update
6� and 3
6� of some nodes (done by code between
indices 4 and 6).
6� is for explicit assignments and, thus,
only �/�
6� needs to be changed. For 3
6� , we first
perform role hierarchy propagation to add
� and its ancestors
to 736
6�. This is done by the code at index 5 and should
be achieved by traversing the role hierarchy up from
� to the
root. The resulting 736
6� should be added to �/ as well as
all descendants of �/ . For descendants of �/ without their

��

�� �=

�< �? �> �C

��

���
6�
 �
��
 ��� 3
6�
 �
��
��

�<�
6�
 �
��
�<� 3
6�
 �
��
��
��

���
6�
 �
��
��� 3
6�
 :

�=� !#�7
 �� ��

�>� !#�7
 �� ��

�

�
�

��� !#�7
 75@
 ��

��� !##7
 ���� �<�
 ��<�

484

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:40:54 UTC from IEEE Xplore. Restrictions apply.

own 6
�, no update is needed. The descendants of �/ with
6
� 9 : can be recursively traversed via the !##7 links and
it is done by function propagate_rwp, which is given as
follows.

 propagate_rwp (�, 736
6�)
 �� 3
6� B �� 3
6� D 736
6�;
 if �� 3
6� 9 736
6� then
 foreach �- � �� !##7 do propagate_rwp (�-, 736
6�);
 endfor;
 endif;

Consider an example for the algorithm. In Figure 1,
consider a new permission assignment +�=�
�,. We perform
permission propagation on the role hierarchy so 736
�6
becomes �
��
��. Originally, �=�
6� is empty. With the new
�=�
6� , “�=� !#�7 ” should point to �� and “��� !##7 ”
should include �=. �C, a descendant of �=, should now move
its “!#�7” to point to �=. The “!##7” link of �� to �< should
be removed and moved to �=� !##7 . Finally, 736
�6 =
�
��
�� should be added to �= and propagated to �<.

5 Experimental Study
We implemented a simulation system to compare the

performance of RBAC and RRBAC. A role hierarchy is
generated for both cases. For resources, we first generate a
resource tree for RRBAC. We then copy the resources in the
resource tree to a hash table for fast references. In RBAC,
each entry �- in the hash table maintains a field �-�
6� to
keep track of all the roles with permission to �-. In RRBAC,
each entry in the hash table maintains a pointer to the resource
tree and the data structure of the resource tree is as discussed
in Section 4.

We generate access requests to access the resources in the
resource tree, including those for permission assignments and
for permission validations. In the experimental study, we
only consider a single operation ! for all the resources.

We consider requests that assign permission(s) to a role for
a single or a group of resources. In RBAC, when assigning a
single-resource permission for +�-� !, to
� , where �- is a
leave node in the resource tree, we add
� to �-�
6� . To
make the comparison fair, we also perform access rights
propagation along the role hierarchy by traversing the role
hierarchy to expand �-�
6�. When assigning permissions to
a group of resources in a subtree rooted at �� to role
�, we
generate multiple permission assignment requests that assign
permissions for +�-� !, to
� , for all �- , �- � 0�12
33+��,.
Then, individual permission assignment requests are handled
as discussed above. In RRBAC, we can directly issue a group
permission assignment request. Thus, we simply implement
the permission assignment algorithm discussed in Section 4.

When a user with role
� accesses resource �� with
operation !, a resource validation request �
�� ��� !� will be
generated. In RBAC, we simply check ���
6� in the hash
table to determine whether to grant the access. In RRBAC,

we access �� in the resource tree from the hash table and then
simply follow the permission validation algorithm.

Generation of the hierarchies. We design a configurable
tree generator for the generation of the resource and role
hierarchies. The parameters for the generator are the expected
height of the tree, E, and the average degree for a node, �3F.
Starting from root, for a node 2, we first decide whether to
expand it following a Poisson distribution with !�%G H +E I
J K @3L3@+2,, as the shape parameter, where @3L3@+2, is the
level (from root) of node 2 (with root being level 1). If a node
is to be expanded, then, the degree for 2 is also generated
following the Poisson distribution with shape parameter
!�%M H �3F. In both cases, !�%N is used for shape sharpness.

Request generation. We consider permission assignment
(PA) and permission validation (PV) requests. A PA request
assigns the rights for accessing a “resource” to a “role”. In a
PV request, we validate a “role” for its access to a “resource”.
Thus, we need to select a role and a resource for each request.

In PA, it is more likely to assign permissions to roles for
resources at the middle and lower levels. Going toward the
higher level of the resource tree, it becomes less likely that
the entire subtree has the same access rights. Thus, we select
a resource from the tree by first deciding which level to select
the node from using the Poisson distribution with shape
parameter !�%OG H P�Q'@3L3@+), , where) is the tree and
@3L3@+), is the actual level of) . We use P�Q'@3L3@+), to
favor the selections at the lower and middle levels. Here,
!�%OG is the shape adjustment parameter for level selection.

We give an equal probability to nodes at the given level of
the tree during node selection. We use a tree traversal
algorithm to select the specific tree node at level @. For each
tree node 2 , we maintain a counter 2� #R�72 , which is
initialized to the number of nodes in the subtree of 2. The
algorithm traverses the resource tree from the root. At a node
2 with child nodes 2� #(5@��� J S 5 S 7, we randomly select
which child node to visit next based on a uniform distribution
and the probability to visit 2� #(5@�� is proportional to
2� #(5@��� #R�72 . When we reach level @ , the node being
visited, say 2@, is selected. Once a node has been selected for
permission assignment, it is unlikely that it will have
permission assignment again. Thus, after node selection, we
reduce 2� #R�72 by 1, for all 2, 2 can be 2@ and 2@’s ancestors.

For role selection in PA, access permissions for less
critical resources are assigned to some lower level roles and
the rights can be propagated to the higher level roles. More
critical resources are assigned directly to higher level roles.
Thus, we consider equal probability for all roles to be the
parameter in a PA request.

In PV, accesses to resources are more likely to be at the
lower levels. Thus, we use the same level selection method
but with a modified shape parameter !�%OG H P�T'@3L3@+),.
Generally, resource accesses follow the zipf law. Thus, we
use zipf distribution for selecting a resource at a given level.
The resources at the same level are randomly ranked. We first
compute the total number of nodes in each level of the tree,

485

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:40:54 UTC from IEEE Xplore. Restrictions apply.

denoted as U4 for level @. Then, we traverse the tree and select
a number in [1,U4] without duplication for each node 2 visited,
where 2 is at level @. After rank assignment for 2, we compute
the access probability for 2 in level @ using zipf distribution.
Let 2� �
R1 denote the probability of a node 2 at level @ being
accessed. Correspondingly, 2� #R�72 is the sum of 2�� �
R1
for all 2�, 2� � 0�12
33+2,. During PV request generation,
we use the same tree traversal algorithm to select the specific
resource at the given level.

For PV, we consider that lower level roles are more likely
to access more resources. Thus, we use the resource selection
algorithm for PA for role selection in PV. For level selection,
we use !�%OG H P�T'@3L3@+), to favor lower levels. Then, the
same tree traversal algorithm with equal probability for all
nodes is used to select the role for the PV request.

 Experimental Results
We build a resource tree and role tree. The resource tree

has approximately 10,000,000 nodes, with expected level of
10 and average degree 200. The role hierarchy has
approximately 2000 nodes with expected tree level of 10 and
average degree of 5. For both cases, !�%G
 !�%M
 J.

Figure 2. RRBAC vs RBAC for Permission Assignments

Once resource tree and role tree are generated, we apply
RRBAC and RBAC mechanism for request generation of
permission assignment (PA) and permission validation (PV).

Figure 3. RRBAC vs RBAC for Permission Validation

For PA and PV, we generate 10k to 100k requests and
compare performance between RRBAC and RBAC. Figure 2
clearly indicates that RRBAC has better performance for
permission assignment than RBAC.

Similarly, from analysis, RRBAC has much better
performance than RBAC for permission validation. This is
because in RRBAC, the roles with permissions are
maintained with the resource and, hence, validation decision
making procedures are very efficient.

6 Conclusion
In this paper, we have extended RBAC and developed an

RRBAC model to better model access control policies and to
improve the convenience and efficiency for permission
assignment and management in RBAC. Based on the model,
we have designed a resource tree based solution to maintain
the assigned permissions and developed the corresponding
algorithms for permission assignment, validation, and
revocation. Preliminary experimental results show that
RRBAC can outperform RBAC in permission assignment.

7 Acknowledgement
This research is supported by the NSF IUCRC on Net-

Centric Systems and its industrial membership, the NSF
Program under Award No. IIP-1128270.

8 References

[1] J. Hamilton, "Internet Scale Service Efficiency (invited
talk)," in LADIS, Sep. 2008.

[2] S. Zhang, I.-L. Yen and F. Bastani, "Toward semantic
enhancement of monitoring data repository," in International
Conference on Semantic Computing, Feb. 2016.

[3] N. Solanki, W. Zhu, I.-L. Yen, F. Bastani and E. Rezvani,
"Multi-tenant access and information flow control for SaaS,"
in ICWS, 2016.

[4] W. She, W. Zhu, I.-L. Yen, F. Bastani and B. Thuraisingham,
"Role-based integrated access control and data provenance
for SOA based net-centric systems," IEEE TSC, vol. 9, no. 6,
pp. 940-953, Nov.-Dec. 2016.

[5] C. Hu, D. Ferraiolo, D. Kuhn, A. Schnitzer, K. Sandlin, R.
Miller and K. Scarfone, "Guide to attribute based access
control (abac) definition and considerations," in NIST Special
Publication 800-162, 2014.

[6] X. Jin, R. Sandhu and R. Krishnan, "RABAC: role-centric
attribute-based access control," in Computer Network
Security, Springer, 2012.

[7] D. E. Bell and L. J. LaPadula, Secure Computer Systems:
Mathematical Foundations, MITRE Corporation, 1973.

[8] P. Bonatti, M. Sapino and V. Subrahmanian, "Merging
heterogeneous security orderings," in European Symposium
on Research in Computer Security, 1996.

[9] M. Shehab, E. Bertino and A. Ghafoor, "Secure collaboration
in mediator-free environments," in ACM Conference on
Computer and Communications Security, Alexandria, VA,
USA, 2005.

0

500

1000

1500

2000

1 3 5 7 9 20 40 60 80 100

Ti
m

e
(m

s)

10k

RRBAC RBAC

0

2

4

6

1 3 5 7 9 20 40 60 80 100

Ti
m

e
(m

s)

10k

RRBAC RBAC

486

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:40:54 UTC from IEEE Xplore. Restrictions apply.

