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ABSTRACT
While the Java Virtual Machine (JVM) plays a vital role in ensuring
correct executions of Java applications, testing JVMs via generating
and running class files on them can be rather challenging. The exist-
ing techniques, e.g., ClassFuzz and Classming, attempt to leverage
the power of fuzzing and differential testing to cope with JVM in-
tricacies by exposing discrepant execution results among different
JVMs, i.e., inter-JVM discrepancies, for testing analytics. However,
their adopted fuzzers are insufficiently guided since they include no
well-designed seed and mutator scheduling mechanisms, leading to
inefficient differential testing. To address such issues, in this paper,
we propose SJFuzz, the first JVM fuzzing framework with seed and
mutator scheduling mechanisms for automated JVM differential
testing. Overall, SJFuzz aims to mutate class files via control flow
mutators to facilitate the exposure of inter-JVM discrepancies. To
this end, SJFuzz schedules seeds (class files) for mutations based on
the discrepancy and diversity guidance. SJFuzz also schedules mu-
tators for diversifying class file generation. To evaluate SJFuzz, we
conduct an extensive study on multiple representative real-world
JVMs, and the experimental results show that SJFuzz significantly
outperforms the SOTA mutation-based and generation-based JVM
fuzzers in terms of the inter-JVM discrepancy exposure. Moreover,
SJFuzz successfully reported 46 potential JVM issues where 20 were
confirmed as bugs and 16 have been fixed by the JVM developers.
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1 INTRODUCTION
The Java Virtual Machine (JVM) refers to the virtual machine which
interprets and executes Java bytecode compiled from various high-
level programming languages, e.g., Java, Scala, and Clojure [20].
Typically, after source code files are compiled to bytecode class files,
JVM first leverages class loaders to load such class files, in terms
of the strict order of loading, linking, and initialization. Then, JVM
directly executes the bytecode, or transforms the loaded bytecode
into machine code for actual execution via Just-in-Time (JIT) or
Ahead-of-Time (AOT) compilers for optimization purposes.

Multiple JVM implementations, such as Oracle’s HotSpot [15],
Alibaba’s DragonWell [11, 12], IBM’s OpenJ9 [16], Azul’s Zulu [23],
and GNU’s GIJ [14], have been widely applied in support of a
variety of Java-bytecode-based applications. While ideally they are
expected to implement the same JVM specification and conform to
consistent cross-platform robustness, they are usually implemented
by different groups for different platforms and thus may cause de
facto inconsistencies which are likely to indicate JVM defects, e.g.,
the same class file may run smoothly on one JVM but trigger verifier
errors on another JVM.

Testing JVMs via manually designing tests based on analyzing
JVM semantics can be extremely challenging due to their intricacies,
i.e., it is hard to generate sufficient high-quality inputs based on
complicated JVM semantic rules to thoroughly test the program

1062

https://doi.org/10.1145/3611643.3616277
https://doi.org/10.1145/3611643.3616277
https://doi.org/10.1145/3611643.3616277
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616277&domain=pdf&date_stamp=2023-11-30


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA M. Wu, Y. Ouyang, M. Lu, J. Chen, Y. Zhao, H. Cui, G. Yang, and Y. Zhang.

states of JVM executions. To address such a challenge, prior research
work attempts to integrate fuzzing [47] and differential testing [43]
for automated JVM testing, i.e., designing fuzzers to generate class
files as tests for executing different JVMs such that their discrepant
execution results (defined as inter-JVM discrepancies in this paper)
can be used for testing analytics. For instance, ClassFuzz [39] fuzzes
Java class files by mutating their modifiers or variable types to
test the loading, linking, and initialization phases in JVMs. More
recently, Classming [38] fuzzes live bytecode to mutate the con-
trol flows in class files to test deeper JVM execution phases (e.g.,
bytecode verifiers and execution engines) across multiple JVMs.

However, the power of the existing JVM fuzzers may not be
fully leveraged since they fail to apply seed scheduling and mutator
scheduling mechanisms which have become vital in enhancing
fuzzing effectiveness. In particular, seed scheduling refers to aggres-
sively selecting andmutating seeds to facilitate program bug/vulner-
ability exposure. Many coverage-guided fuzzers [7, 29, 53, 56, 61, 62]
schedule seeds for mutation simply when executing them can in-
crease code coverage. The existing JVM fuzzers, on the contrary, fail
to leverage code coverage as seed scheduling guidance because they
can hardly exploit the runtime coverage information for fuzzing
since JVMs are likely to cause non-deterministic coverage at run-
time due to their adopted mechanisms, e.g., parallel compilation
and on-demand garbage collection [39]. Specifically, ClassFuzz only
collects coverage information for initializing JVMs and Classming
even exploits no coverage for fuzzing. Similarly, while scheduling
mutators guided by code coverage has been proven effective re-
cently [56, 69], the existing JVM fuzzers are restrained by selecting
mutators uniformly under no guidance.

In this paper, we present SJFuzz (Scheduling for JVM Fuzzing,
in our GitHub repository [21]), a JVM fuzzing framework which
applies seed and mutator scheduling mechanisms to facilitate the
exposure of discrepant execution results among different JVMs, i.e.,
inter-JVM discrepancies, for JVM differential testing. Specifically,
SJFuzz schedules seeding class files under two types of guidance—
discrepancy and diversity. On one hand, SJFuzz retains the class
files that can be executed to directly incur inter-JVM discrepan-
cies or used to generate mutants for sufficiently testing JVMs, i.e.,
avoiding early termination on JVM testing process, as seeds for
further mutations. On the other hand, assuming that increasing
code coverage can be reflected by diversifying test case (class file)
generation, SJFuzz applies a coevolutionary algorithm [9] to filter
the remaining class files to augment class file diversity for further
mutations. Moreover, SJFuzz also iteratively schedules mutators
to augment the overall distances between seed and mutant class
files. In particular, for a given seeding class file, SJFuzz estimates
the diversity expectation of each mutator and selects a mutator to
optimize the class file diversity.

To evaluate SJFuzz, we conduct a set of experiments upon various
popular real-world JVMs, e.g., OpenJDK, OpenJ9, DragonWell, and
OracleJDK. In particular, we apply SJFuzz and Classming, the state-
of-the-art mutation-based JVM fuzzer, to generate class files via
seeding class files selected from popular open-source Java projects,
which are then executed in the studied JVMs to expose their dis-
crepancies. Moreover, to further demonstrate the power of SJFuzz,
we also include JavaTailor [82], a generation-based JVM fuzzer
that utilizes existing JVM historical bug-revealing test programs to

1 protected Enumeration<URL> findResources(...){

2 + i0 = 5

3 ...

4 r4 = r1.parent

5 ...

6 + i0 = i0 + -1

7 + if i0 <= 0 goto line 9

8 + lookupswitch(i0) { case 4: goto line 4; default: goto line 13; }

9 r3 = $r5

10 ...

11 $z0 = r1.ignoreBase // r1.ignoreBase is always 0

12 if $z0 == 0 goto line 19

13 $r7 = specialinvoke r1.getRootLoader()

14 if $r7 != null goto line 16

15 ...

16 $r8 = specialinvoke r1.getRootLoader()

17 $r9 = virtualinvoke $r8.getResources(r2)

18 ...

19 $r6 = staticinvoke CollectionUtils.append(r3, r14)

20 return $r6

21 }

Figure 1: A class file generated under diversification guide.

expose JVM discrepancies, as our baseline. The results suggest that
SJFuzz significantly outperforms Classming in terms of inter-JVM
discrepancy exposure, e.g., exposing 3.5×/6.3× more total/unique
discrepancies on average. Meanwhile, SJFuzz also outperforms the
JavaTailor by 5.2%/14.3% in terms of total/unique inter-JVM dis-
crepancy exposure. Moreover, we have reported 46 potential issues
to their corresponding developers after analyzing the inter-JVM
discrepancies incurred by SJFuzz. As of submission time, 20 bugs
have already been confirmed by the developers.

In summary, this paper makes the following main contributions:

• Technique.We introduce SJFuzz, which to the best of our knowl-
edge is the first JVM fuzzing framework that applies seed and
mutator scheduling mechanisms to test JVMs.
• Implementation.We implement our JVM testing approach as
a practical system based on Jimple-level mutation via the Soot
analysis framework [66].
• Evaluation.We conduct an extensive evaluation upon four popu-
lar JVMs and various real-world benchmark projects. The experi-
mental results demonstrate that SJFuzz significantly outperforms
the SOTA mutation-based and generation-based JVM fuzzers.
Notably, we reported 46 potential issues found by SJFuzz, out of
which 20 were confirmed and 16 were fixed by the developers.

2 MOTIVATING EXAMPLE
In this section, we introduce a real-world JVM bug exposed by

applying differential testing via mutating program control flows
to illustrate the potential issues of state-of-the-art Classming and
motivate SJFuzz. Specifically, Figure 1 shows a simplified Jimple
code snippet of a mutated method findResources() in AntClass-
Loader.class from project Ant, where the Jimple code represen-
tation refers to a Soot-based intermediate representation of Java
programs for simplifying Java bytecode analysis [67]. Running
such a class file exposes an execution discrepancy between Open-
JDK (1.8.0_232) and OpenJ9 (1.8.0_232). Specifically, in the original
seeding class file, after z0 is assigned with the value of member ig-
noreBase of r1, i.e., 0 (line 11), line 12 is immediately executed, fol-
lowed by line 19. However, inserting the lookupSwitch instruction
changes the control flow to be from line 8 to line 13. Next, method
getResources() of the root class loader is invoked (line 17). As
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Figure 2: The framework of SJFuzz.

a result, by passing parameter META-INF/MANIFEST.MF to getRe-
sources(), OpenJDK8 (1.8.0_232) returns nothing while OpenJ9
(1.8.0_232) returns the paths of the MANIFEST.MF files in its lib JARs.
We further found such a discrepancy was triggered as OpenJDK8
failed to find the existing resources.

Although this discrepancy can be exposed by simply inserting
a lookupSwitch instruction to the seeding class file, Classming
failed to expose such a discrepancy under multiple runs in practice.
Specifically, we found that for the example class file, Classming
updated new seeding class files after iteratively generating mu-
tants via uniformly selected mutators, and failed to reproduce the
discrepancy-inducing execution path under a fair time limit. This
fact suggests that adopting similar seeding class files via only uni-
formly selected mutators may hinder the effective exploration of
discrepancy-inducing mutants. Furthermore, we also observe that
while Classming typically adopted similar seeding class files mu-
tated from one root throughout causing inefficient usage of comput-
ing resources, which can be leveraged to explore other promising
seeding class files, e.g., the ones that can expose multiple discrep-
ancies [5, 6] simultaneously. This fact also leads to a demand of
scheduling multiple seeding class files other than only one in one
run based on their discrepancy-guided potentials.

To conclude, inspired by previous works [29, 34, 56, 77], all these
insights motivate our proposed approach SJFuzz, which effectively
schedules seeding class files and diversifies their mutations to in-
crease the chances of exposing discrepancies for JVM testing.

3 THE APPROACH OF SJFUZZ
The framework of SJFuzz is demonstrated in Figure 2. Overall,
SJFuzz enables iterative mutation-based class file generation. In
particular, given a seeding class file, SJFuzz adopts the control flow
mutation strategy to generate its mutant class file (Section 3.1).
Accordingly, for each iteration, SJFuzz schedules seeding class files
(Section 3.2) under the diversity and discrepancy guidance. SJFuzz
also schedules mutators deterministically or randomly to augment
class file diversity (Section 3.3) for further iterations.

Algorithm 1 shows the details of SJFuzz, which is initialized by
adding one seedClass into the queue and assigning the seedClass
to be optional (defined in Section 3.2). Under each iterative execution
(line 6), SJFuzz schedules control-flow mutators for each class file
in the queue to facilitate class file diversity (lines 7 to 8). Note that
a newly generated class file is initialized as an optional seed (line
9). Such a seed and its parent (i.e., mutantClass and class) can
be identified whether to be primary (defined in Section 3.2) after
running on the adopted JVMs (lines 10 to 14). For any valid mutant
class file, SJFuzz updates its distance to its seeding class file to guide

Algorithm 1 The framework of SJFuzz
Input: seedClass, budget, bound
Output: queue

1: function SJFUZZ_FRAMEWORK
2: queue← list()
3: queue.add(seedClass)
4: setClassToOptional(seedClass)
5: while total budget has not exceeded do
6: for class in queue do
7: method← randomlySelectMethod()
8: mutantClass← scheduleMutator(class, method)
9: setClassToOptional(mutantClass)
10: runJVMs(mutantClass)
11: if mutantClass incurs new DISCREPANCIES then
12: setClassToPrimary(class)
13: if mutantClass is VALID then
14: setClassToPrimary(mutantClass)

15: if mutantClass is VALID then
16: distance← Levenshtein(class, mutantClass)
17: updateMutatorDistance(class, distance)
18: else
19: updateMutatorDistance(class, -1)

20: primary← retainPrimarySeeds(queue, bound) ⊲ Discrepancy guidance

21: option← scheduleOptionalSeeds(queue, bound) ⊲ Diversity guidance

22: queue← merge(primary, option) ⊲ Retain seeds for next iteration

23: return queue

further mutator scheduling (lines 16 to 17), and the distance for
each invalid mutant class file is updated to -1 (line 19). At last, all
the primary class files and filtered optional class files are retained
for future mutations (as the output of the discrepancy guidance
and the diversity guidance, lines 20 to 22). After each iteration, the
updated seeding class files are used for JVM differential testing.
Such iterations are terminated when hitting the budget. Note that
SJFuzz only enables valid class files for mutations because mutating
an invalid class file tends to cause exceptional program behaviors
rather than unexplored inter-JVM discrepancies.

3.1 Control Flow Mutation
Prior research work on fuzzing compilers including JVMs tend to
mutate program control flows via a set of corresponding mutators
for exposing bugs in their “deep” execution stages [31, 38, 41, 50].
Following such prior works (and also for a fair comparison with
them), SJFuzz also adopts such control flowmutation with represen-
tative mutators. Specifically in source code level, SJFuzz randomly
selects two original instructions, and creates a directed transition
between them. If such a transition is a loop, the corresponding
iteration will be limited to 5 times. Correspondingly, SJFuzz imple-
ments themutators with the Jimple-level instructions goto, lookup-
switch, and return provided in Soot [66].

SJFuzz iteratively selects random positions from randomly se-
lected methods to apply the control-flow mutators. Specifically,
SJFuzz establishes an instruction list which contains the instruc-
tions executed by the adopted JVMs under their execution order.
Next, SJFuzz selects and inserts a control flow mutator into a ran-
dom spot of the instruction list under each iteration.
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3.2 Seed Scheduling
Since it is difficult to directly apply coverage guidance for fuzzing
JVMs, we adopt two alternative types of guidance for our seed sched-
uler. In particular, we develop a discrepancy-guided seed scheduler
which retains discrepancy-inducing class files for further muta-
tions. We also develop a diversity-guided seed scheduler which
filters other class files to augment the overall class file diversity via
a coevolutionary algorithm [9].

Discrepancy-guided seed scheduling. Intuitively, if running a
mutant of a class file can cause inter-JVM discrepancies, such a class
file is likely to generate more discrepancy-inducing mutants than
other class files as it implies a potential connection with program
bugs [5, 6]. Therefore, such a class file and its mutant (if valid,
i.e., successfully running in at least one JVM under test without
unexpected behaviors such as verifier errors or crashes) are defined
as primary class files and are retained for future iterative executions.
This seed scheduler is essentially similar to many coverage-guided
seed schedulers [7, 29, 53, 61, 62], which tend to retain seeds when
running them can increase code coverage.

Diversity-guided seed scheduling.When running a mutant
of a class file does not instantly cause inter-JVM discrepancies, it
does not necessarily suggest that no discrepancy-inducing mutants
can be generated in future iterative executions. In other words,
leveraging such class files can also possibly advance the inter-JVM
discrepancy exposure. In this paper, such class files are character-
ized as optional. Note that differential testing usually enables vast
space for generating test cases, which indicates that the total num-
ber of class files that cause discrepancies between sophisticated
JVMs can be rather limited. We can then infer that the optional class
files may significantly outnumber the primary class files. There-
fore, SJFuzz should filter the optional class files to ensure fuzzing
efficiency.

We consider that increasing code coverage can be essentially
reflected as diversifying execution paths on the same JVMs and
thus demands diverse test cases (i.e., class files). Therefore, our seed
scheduler for optional class files is guided by class file diversity,
so that the optional class files are filtered to augment class file di-
versity. In particular, how to measure class file diversity should be
resolved in the first place. To accurately reflect the fine-grained
differences between class files, an ideal metric is expected to reflect
their instruction-by-instruction comparisons. Therefore, we adopt
the executed instruction list of a given class file, namely EntryIn-
struction, as the representative instructions to efficiently measure
the diversity between JVM class files. Note that EntryInstruction
reflects the instruction-level execution order and retains only the
unique executed instructions to reduce the ambiguity of diversity
measurement caused by repeated instructions, e.g., in loops. Even-
tually, we measure the diversity between a pair of class files by
deriving differences between their associated EntryInstructions.

In this paper, SJFuzz applies edit distance, i.e., Levenshtein Dis-
tance [52], a metric widely used to derive the “minimum number of
single-character edits (insertions, deletions, or substitutions)” be-
tween two strings, to measure the difference between EntryInstruc-
tions because the mutation-based class file generation can analogize
the single-character string edits as demonstrated in [35]. To be spe-
cific, SJFuzz generates class files by mutating the selected seeding

class files, i.e., inserting the instructions with the adopted control
flow mutators. The resulting iterative single-point mutations be-
tween the seed and mutant class files can be modeled as inputs
for Levenshtein-Distance-based computation when such class files
are all modeled as “strings”. For instance, assume two EntryInstruc-
tions of their corresponding class files 𝐶1 : [𝑖1, 𝑖2, 𝑖3, 𝑖4, ..., 𝑖𝑛] and
𝐶2 : [𝑖1, 𝑖3, 𝑖4, ..., 𝑖𝑛]. We can observe that 𝐶1 can be transformed
from 𝐶2 by only inserting one instruction 𝑖2 between 𝑖1 and 𝑖3.
Therefore, their Levenshtein Distance is computed as 1.

Accordingly, SJFuzz adopts a coevolutionary algorithm [9] to
efficiently evaluate the individual optional class files out of their
group by constructing its fitness function to reflect their average dis-
tances with other optional class files. Specifically, for each optional
class file, SJFuzz calculates its total Levenshtein Distance with other
optional class files. Subsequently, the average Levenshtein Distance
is calculated as the fitness score of the given class file. By sorting all
the derived fitness scores, SJFuzz retains the top-N corresponding
optional class files for further mutation-based class file generation,
where N is predefined as the bound variable in Algorithm 1.

To illustrate, we incorporate the discrepancy- and diversity-
guided seed schedulers to facilitate code coverage and inter-JVM
discrepancies when differentially testing JVMs.

3.3 Mutator Scheduling
Since it is computationally expensive to derive the exact diversity
of the overall class files on the fly, SJFuzz schedules mutators to
diversify the seed and mutant class files under each iteration to
approximate the overall class file diversity instead. In particular,
SJFuzz first applies the edit distance, i.e., Levenshtein Distance [52]
in this paper, to delineate the diversity between a pair of class files.
Accordingly, SJFuzz establishes a deterministic mutator scheduling
mechanism for estimating the mutator that can optimize the seed-
mutant distance.Meanwhile, SJFuzz also develops a randommutator
scheduling mechanism to prevent the potential local optimization
that can derive local optimal mutators caused by the deterministic
mutator scheduling mechanism. As a result, SJFuzz derives a mutator
for a given class/method by combining the two mechanisms.

Deterministic mutator scheduling. Note that any mutator
selected from one iteration can incur cumulative impact on the
mutations of the subsequent iterations. To capture such cumula-
tive impact from the previous mutations, SJFuzz adopts the Monte
Carlo method [22] to develop the deterministic mutator scheduling
mechanism, where given a selected method𝑚𝑝 , SJFuzz develops
a value function, represented as 𝑉 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 ), to determine the
mutation opportunity of class file 𝑐𝑖 by applying a mutator 𝑎 𝑗 as
demonstrated in Equation 1. Such a value function can reflect the
resulting diversity of the overall class files under the mutation, i.e.,
the cumulative diversity expectation between the seed and mutant
class files under all the iterations.

𝑉 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 ) = E[
1
𝑁

𝑁∑︁
𝑘=0

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 )] (1)

Here 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 refers to the Levenshtein Distance between the
seeding class file 𝑐𝑖 and its mutant class file by applying mutator 𝑎 𝑗
upon method𝑚𝑝 . 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 ) refers to their Levenshtein
Distance in the 𝑘𝑡ℎ iteration which can be dynamically updated
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Algorithm 2Mutator Scheduling
Input : class, method, explorationRate
Output: mutantClass

1: function SCHEDULE_MUTATOR
2: rand← Random()
3: if rand < explorationRate then
4: mutator← selectRandomMutator(class, method)
5: mutatedClass←mutate(mutator, class) ⊲ Generate a mutant by a mutator

6: else
7: bestMutator← selectDeterministicMutator(method)
8: mutatedClass← mutate(bestMutator, class)
9: return mutatedClass

since the mutation spot is randomly selected in 𝑚𝑝 under each
iteration. E refers to the mathematical expectation of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒s. It
can be derived that𝑉 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 ) for 𝑐𝑖 is incrementally updated and
inefficient to be directly computed. Therefore, we further enable
dynamic updates on 𝑉𝑘 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 ) as presented in Equation 2 to
approximate its value, where 𝛼 is a constant. Note when one class
file 𝑐𝑖 fails to generate a valid class, its 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is set to −1.

𝑉𝑘 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 ) = 𝑉𝑘−1 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 ) + 𝛼 (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 −𝑉𝑘−1 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 ))
(2)

As a result, we select a mutator 𝑎 𝑗 corresponding to the largest
𝑉 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 ) for 𝑐𝑖 . Typically, SJFuzz allows computing𝑉 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 )
after running the mutant class files on JVMs such that it can be
used for mutator selection of the subsequent iteration when needed
(as in line 17 of Algorithm 1).

Random mutator scheduling. Only maximizing 𝑉 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 )
tends to cause local optimization, i.e., 𝑉 (𝑐𝑖 , 𝑎 𝑗 ,𝑚𝑝 ) is likely to con-
verge to one mutator after iteratively selecting it, while the actual
optimal mutator cannot be derived until later iterations. To address
such an issue, SJFuzz further leverages a randommutator scheduling
mechanism to reduce its possibility to select a sub-optimal mutator
under early-terminated executions by randomly selecting one muta-
tor for class file generation for the ongoing iteration. As a result, by
properly combining such a mechanism with the deterministic muta-
tor scheduling mechanism, it can potentially extend theMonte Carlo
process until convergence for enhancing the selection probability
of the optimal mutator, i.e., preventing the local optimization.

The overall mutator scheduling mechanism is presented in Algo-
rithm 2. We first set an explorationRate and generate a random
value for comparison (line 2). Next, if such a random value is less
than the explorationRate, SJFuzz chooses the random mutator
scheduling mechanism to return a random mutator for the ongoing
iteration (lines 3 to 5). Otherwise, SJFuzz derives the mutator via
the deterministic mutator scheduling mechanism (lines 6 to 8).

4 EVALUATION
We conduct a set of experiments on various popular JVMs. Note
that we include two state-of-the-art JVM fuzzers—the mutation-
based fuzzer Classming [38] and the generation-based fuzzer Ja-
vaTailor [82] in our evaluation for performance comparison. In
particular, Classming fuzzes live bytecode to mutate the control
flows in class files as mentioned, and JavaTailor generates class
files from JVM historical bug-revealing test programs (provided
by the authors). Overall, we aim to compare SJFuzz with them in

terms of their resulting inter-JVM discrepancies, the class file gener-
ation efficiency, and the reported bugs by answering the following
research questions:
• RQ1: Is SJFuzz effective in exposing inter-JVM discrepancies?
• RQ2: Are the seed and mutator schedulers effective?
• RQ3: Is the diversity guidance effective?

Moreover, we report and analyze the bugs detected by SJFuzz
with all the evaluation details presented in our GitHub page [21].

4.1 Benchmark Construction
We adopt multiple widely-used real-world JVMs, i.e., OpenJDK,
OpenJ9, DragonWell, and OracleJDK, for running SJFuzz to ex-
pose their execution discrepancies. Note that their detailed ver-
sions are available on our GitHub page [21] since multiple versions
of each JVM are used in our evaluation. We also adopt state-of-
the-art mutation-based approach Classming and generation-based
approach JavaTailor as the baselines for comparison as they outper-
formed other existing JVM differential testing approaches [38, 82].
Specifically, for a fair comparison with SJFuzz which integrates
differential testing and test generation, we also run Classming and
JavaTailor on all studied JVMs in parallel.

To launch SJFuzz, we adopt 26 class files via randomly sam-
pling from 7 well-established open-source projects as the seeding
class files for mutation-based class file generation. To construct
such benchmarks, we first attempt to collect all available class
files originally adopted for evaluating Classming, for approach-
ing a fair performance comparison. As a result, Eclipse, Jython,
Fop, and Sunflow are selected due to their availability while oth-
ers incur stale configurations, JAR incompatibility, mismatched
main declarations, etc. Moreover, we also adopt Ant and Ivy (two
popular command-line applications from Apache Projects [8]) and
JUnit [19] (a widely used unit testing framework) to expand our
benchmark diversity.

Note that while the existing approaches, e.g., Classming and
ClassFuzz, are designed to only launch mutations for the entry
methods corresponding to the main methods, in this paper, we
attempt to adopt diverse “entry” modes, i.e., diverse method types
(entries) for mutation. Particularly, we adopt two such modes:main-
entry and JUnit-entry. More specifically, in addition to main-entry
adopted by [38, 39], the new JUnit-entry mode, on the other hand,
refers to mutating other entry methods associated with JUnit tests
of the seeding class files. To our best knowledge, we are the first to
execute the unit tests of the seeds in compiler testing.

JUnit-entry can benefit the class file generation for the following
reasons. First, JUnit-entry supplementsmain-entry on the mutation
space for a class file which cannot be explored by main-entry only,
since a large amount of JUnit test classes are designed for non-main
methods in practice. Next, the execution discrepancies between
JVMs are likely to be better presented in JUnit-entry, since asser-
tions examine different JVM executions upon class files and thus
enable smaller scope in exposing discrepancies and easier analytics
than main-entry.

In this paper, for main-entry, we select seeding class files as the
class files containing the main methods. For JUnit-entry, since each
project contains various test classes, we randomly adopt 4 class
files under test for each project with more than 5 corresponding
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test methods from the projects Fop, Jython, Ant, Ivy, and JUnit
which all use the JUnit framework with available test source files
on the corresponding GitHub repositories. Note that Fop, Jython,
Ant, and Ivy are chosen as both the main-entry and JUnit-entry
benchmarks for straightforward performance comparison between
the two modes within one project.

4.2 Environmental Setups
We perform our evaluation on a desktop machine, with Intel(R)
Xeon(R) CPU E5-4610 and 320 GB memory. The operating system
is Ubuntu 16.04. The exploreRate for Algorithm 2 is set to 0.1 and
the bound for Algorithm 1 is set to 20 by default.

Similar as prior work [28, 29, 39, 61, 62], all benchmarks are
executed by all the studied approaches for 24 hours to generate
class files to reflect a large enough testing budget. Note that we
run each experiment 20 times [49] for obtaining the average results
to reduce the impact of randomness.

4.3 Result Analysis
Table 1: Discrepancies exposed by SJFuzz, Classming and
JavaTailor.
Project Benchmark(.class) SJFuzz Classming JavaTailor

Total Unique Total Unique Total Unique
Eclipse EclipseStarter 2776.4 9.8 248.2 1.0 2487.2 8.3
Fop Fop 22.3 1.9 1.0 1.0 21.1 1.4
Jython Jython 800.5 7.0 14.1 1.0 874.3 7.4
Sunflow Benchmark 1764.9 8.7 348.8 1.0 1574.2 6.0
Ant Launcher 2514.6 11.8 486.1 1.0 2587.9 12.8
Ivy Main 5042.9 19.1 1557.9 2.8 4679.9 14.9

Fop
(JUnit)

FopConfParser 1612.1 9.9 84.3 0.8 1417.2 7.8
FopFactoryBuilder 1651.2 9.3 382.9 3.0 1844.2 9.7
ResourceResolverFactory 214.2 3.0 22.2 1.0 203.9 2.5
FontFileReader 796.3 5.8 111.9 1.0 791.4 5.3

Jython
(JUnit)

PyByteArray 2142.7 10.1 932.4 1.9 2209.2 10.3
PyFloat 928.7 4.2 260.9 1.0 897.1 3.1
PySystemState 232.4 3.8 56.5 1.0 222.3 3.0
PyTuple 1661.8 7.2 312.6 1.1 1434.9 5.0

Ant
(JUnit)

AntClassLoader 298.1 10.7 6.2 1.0 290.9 9.8
DirectoryScanner 71.5 8.9 1.8 1.0 67.0 7.8
Project 53.1 1.8 0.0 0.0 49.9 1.4
Locator 1573.7 8.9 447.1 1.0 1485.4 7.8

Ivy
(JUnit)

ResolveReport 211.7 4.7 0.0 0.0 197.7 4.0
ApacheURLLister 645.9 7.2 213.4 1.0 605.2 6.2
Configurator 509.0 7.1 57.5 1.0 470.9 6.0
IvyEventFilter 1218.6 8.6 386.2 2.0 1109.7 7.7

JUnit
(JUnit)

RuleChain 972.3 14.3 264.9 1.0 763.3 9.5
TestWatcher 817.9 2.2 228.6 1.0 786.6 1.6
ErrorReportingRunner 1986.6 10.6 506.9 1.0 1872.2 9.3
Money 914.3 11.2 88.3 1.0 914.4 13.0

Average 1208.0 8.0 270.0 1.1 1148.4 7.0
p-value N/A 2.35e-84 0.039

4.3.1 RQ1: the Inter-JVM Discrepancy Exposure Effectiveness of SJ-
Fuzz. Note that in this paper, to identify unique discrepancies, we
first summarize the symptoms of the discrepant JVM behaviors, in-
cluding assertions in JUnit tests, exceptions, and the results printed
in standard output. Then we compare such symptoms with the
previously recorded unique discrepancies to distinguish whether
they are unique or not. More specifically, we first divide the overall
output results into two categories—non-exception output (e.g., as-
sertions in JUnit tests and results printed in standard output) and
exception. Typically, an exception can be respectively presented for
different JVMs. We then represent an exception as a tuple of its
type and location from the output result. Furthermore, given one
exception on all tested JVMs, one discrepancy is formed by collect-
ing, analyzing, and combining all their exception information. If

no such a discrepancy was collected before, it is considered unique.
The implementation code for this process can be found at [10].

The inter-JVM discrepancy results (both the total and the unique
discrepancies) after executing the generated class files are presented
in Table 1. For instance, for benchmark Jython.class, SJFuzz ex-
posed a total of 800.5 discrepancies and 7.0 unique discrepancies
averagely. We can observe that overall, SJFuzz can significantly out-
perform Classming in terms of the inter-JVM discrepancy exposure.
To be specific, SJFuzz can expose 1208.0 total discrepancies and
8.0 unique discrepancies on average, while Classming can expose
270.0 total discrepancies and 1.1 unique discrepancies on average,
i.e., SJFuzz exposes over 3.5×/6.3× more total/unique discrepan-
cies than Classming. Moreover, we can further find that for all the
adopted benchmark projects, SJFuzz can significantly outperform
Classming in terms of both the total and unique discrepancy ex-
posure. Note that SJFuzz also exposes all the discrepancies found
by Classming in our evaluation. Meanwhile, we can observe that
SJFuzz can also outperform JavaTailor by 5.2% more total discrep-
ancies (1208.0 vs. 1148.4) and 14.3% more unique discrepancies (8.0
vs. 7.0) respectively.

Furthermore, we apply theMann-Whitney U test [57] to illustrate
the significance of SJFuzz. It can be seen in Table 1 that the 𝑝-value
of SJFuzz comparing with Classming in terms of the average unique
discrepancies is far below 0.05 in each benchmark, which indicates
that SJFuzz outperforms Classming significantly (𝑝 < 0.05). We can
also observe that the 𝑝-value of SJFuzz comparing with JavaTailor
in terms of the average unique discrepancies is also below 0.05
(0.039). Such results can reflect that SJFuzz can be quite effective.

Interestingly, we can observe that the advantage of SJFuzz over
JavaTailor is not quite obvious as over Classming, i.e., JavaTailor is
a more powerful baseline. We infer it is mainly because JavaTai-
lor adopts a database containing a variety of historical JVM-bug-
revealing test programs which can be quite enlightening for testing
tasks. Nevertheless, as a typical data-driven approach, it can be
naturally prone to common issues, e.g., data dependency and extra
effort on maintaining the database. Surprisingly, SJFuzz, a light-
weight end-to-end approach, can still outperform JavaTailor in
exposing both total and unique discrepancies, indicating the power
of our adopted mechanism of seed and mutator scheduling.

Finding 1: SJFuzz is effective by exposing 6.3× more unique
discrepancies averagely than Classming (8.0 vs. 1.1), and
14.3% more unique discrepancies averagely than JavaTailor
(8.0 vs. 7.0) under the same evaluation setups.

Figure 3: SJFuzz/Classming/JavaTailor efficiency in 24 hours.
We further investigate the impact of the execution time on dis-

crepancy exposure by SJFuzz, Classming, and JavaTailor . Figure
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(a) Exploration Rate. (b) Bound.
Figure 4: The impact of the parameter settings on SJFuzz in
all benchmarks.

3 shows how the exposed unique discrepancies on all the bench-
marks by the three approaches vary over time. We can observe that
although we enhanced the differential testing efficiency by running
JVMs in parallel for Classming and JavaTailor (as in Section 4.1),
we can also observe that SJFuzz can in general consistently out-
performs Classming and JavaTailor in finding JVM discrepancies
all the time before terminating the executions. Such results can
further indicate the power of the discrepancy guidance mechanism
of SJFuzz.

We also investigate the discrepancies exposed by our adopted
entry modes for class file mutations: main-entry and JUnit-entry.
Specifically, SJFuzz can significantly outperform Classming under
both the entry modes, i.e., SJFuzz can expose 58.3 unique discrep-
ancies in 6 main-entry benchmarks and 149.5 unique discrepancies
in 20 JUnit-entry benchmarks, while Classming can only expose
7.8 and 21.6 unique discrepancies under such two entry modes re-
spectively. JavaTailor also exposes 50.8 unique discrepancies in 6
main-entry benchmarks and 130.8 unique discrepancies in 20 JUnit-
entry benchmarks. Additionally, for the projects which enable both
main-entry and JUnit-entry (i.e., Fop, Jython, Ant, and Ivy), SJ-
Fuzz exposes 111.2 unique discrepancies in total under JUnit-entry
and 39.8 under main-entry. Such a result indicates the effective-
ness of our newly proposed JUnit-entry mode for JVM testing. We
highly encourage future researchers/practitioners to look into the
JUnit-entry mode for advancing JVM testing.

Finding 2: JUnit-entry is more effective than main-entry in
exposing inter-JVM discrepancies.

We have also observed that SJFuzz has rather stable performance
across different configurations. To evaluate the impact of the pa-
rameter settings on SJFuzz, we evaluate the unique discrepancies
in terms of different explorationRate (in Algorithm 2) and bound
(in Algorithm 1) values on our benchmark suite, as presented in
Figure 4. In particular, we set bound to the default 20 and investigate
the impact of different explorationRate, i.e., 0.05, 0.1, 0.3 and 0.5
(Figure 4a). We also set explorationRate to the default 0.1 and
investigate the impact of different bound (Figure 4b). Each box plot
presents the distribution of exposed unique discrepancies for one
configuration across all our studied subjects. We can observe that
different configurations exert limited impact on the performance,
indicating the effectiveness and stability of SJFuzz.

4.3.2 RQ2: Effectiveness of the Seed and Mutator Schedulers. In this
section, we investigate the effectiveness of the seed and mutator
schedulers respectively.

Effectiveness of the seed scheduler. To investigate the effec-
tiveness of the adopted seed scheduler of SJFuzz, we record the
number of discrepancies exposed by the primary and optional class
files of the original SJFuzz approach, denoted as SJFuzz(primary)
and SJFuzz(optional), respectively. Furthermore, we also build the
two variant techniques of SJFuzz: (1) SJFuzz𝑝𝑔 , which only activates
discrepancy-guided seed scheduling for SJFuzz, and (2) SJFuzz𝑒 𝑓 ,
which equally filters the class files regardless whether they are
primary or optional. Note that SJFuzz𝑝𝑔 retains the initial class file
for further mutations until it explores a primary class file given
that the initial class file is not primary.

In general, we can observe from Table 2 that SJFuzz𝑝𝑔 can be
effective by exposing 252.3 total discrepancies and 1.2 unique dis-
crepancies on average. Interestingly, only SJFuzz𝑝𝑔 itself can enable
quite close performance with Classming (270.0 total discrepancies
and 1.1 unique discrepancies on average as in Table 1). Such results
can indicate the effectiveness of our “discrepancy-guided” intuition,
i.e., exploiting the power of discrepancy-inducing class files can
advance JVM differential testing.

Interestingly, Table 2 demonstrates that by integrating SJFuzz𝑝𝑔
and SJFuzz𝑒 𝑓 , i.e., applying the original SJFuzz, mutating primary
class files can incur significantly more inter-JVM discrepancies, i.e.,
381.3 vs. 252.3 total discrepancies with 2.9 vs. 1.2 unique discrepan-
cies between SJFuzz(primary) and SJFuzz𝑝𝑔 . Such results indicate
that injecting optional class files for test case generation can ad-
vance the primary class files to generate more discrepancy-inducing
class files. To illustrate, when mutating optional class files generate
discrepancy-inducing mutant class files, they are all converted to
be primary. Thus, primary class files are increasingly adopted for
further mutations such that their chances to expose discrepancies
can be augmented. Furthermore, the fact that SJFuzz(optional) out-
performs SJFuzz𝑒 𝑓 suggests that directly retaining primary class
files for further mutations can also advance the optional class files to
expose inter-JVM discrepancies. We can infer that by independently
mutating primary class files via revoking their filtering process,
more optional class files can be retained for further mutations be-
cause the primary class files no longer compete against them for
being selected. To summarize, SJFuzz𝑝𝑔 and SJFuzz𝑒 𝑓 can mutually
advance each other to optimize the performance of SJFuzz.

Finding 3: As different components of the seed scheduling
mechanism, SJFuzz𝑝𝑔 and SJFuzz𝑒 𝑓 are both effective and
integrating them can further advance each other in terms of
exposing inter-JVM discrepancies.

Effectiveness of the mutator scheduler. To investigate the
effectiveness of the mutator scheduler of SJFuzz, we build a vari-
ant technique SJFuzz𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 of the original SJFuzz by selecting
mutators uniformly. Overall, we can observe from Table 2 that
SJFuzz𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 can expose 819.6 total discrepancies and 5.4 unique
discrepancies averagely. Although SJFuzz𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 still outperforms
Classming 2.0×/3.9× averagely in exposing total/unique discrepan-
cies, the exposed discrepancies decrease significantly after disabling
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Table 2: Average number of discrepancies found by the stud-
ied techniques upon all benchmark projects.

Studied Subjects All Discrepancies Unique Discrepancies
SJFuzz(primary) 381.3 2.9
SJFuzz(optional) 826.7 5.1

SJFuzz𝑝𝑔 252.3 1.2
SJFuzz𝑒 𝑓 764.7 4.8
JavaTailor 1148.4 7.0

SJFuzz𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 819.6 5.4
Classming 270.0 1.1
SJFuzz 1208.0 8.0

mutator scheduling, i.e., 32.2%/32.5% averagely in exposing total/u-
nique discrepancies compared to SJFuzz. Moreover, JavaTailor can
outperform this variant by 40.1%/29.6% averagely in exposing to-
tal/unique discrepancies. Such results indicate that applying the
mutator scheduler in SJFuzz can make significant contributions in
terms of inter-JVM discrepancies.

Finding 4: Applying the mutator scheduling mechanism can
significantly improve the power of exposing discrepancies
for JVM fuzzers.

4.3.3 RQ3: Effectiveness of the Diversity Guidance. The previous
findings of the effectiveness of different SJFuzz components can
imply their underlying mechanism of diversifying class file genera-
tion can be potentially effective. However, accurately measuring
data diversity can be rather challenging. In this paper, we delineate
class file diversity in terms of the average seed-mutant Levenshtein
Distance of the collected class files. Note that since JavaTailor is
a generation-based approach (i.e., generating new class files with
a variety of JVM-bug-revealing test programs can naturally result
in significantly large Levenshtein Distances), we thus only include
Classming in this discussion.

The diversity results of the class file generation are presented in
Figure 5. We can observe that SJFuzz incurs much larger average
seed-mutant Levenshtein Distance compared with Classming, i.e.,
overall 23.7× larger and 32.3×/22.5× larger undermain-entry/JUnit-
entry. It can be inferred that Classming tends to generate similar
mutants, which also indicates the effectiveness of SJFuzz’s diversity-
guided class file generation mechanism.

We further attempt to infer the possible reasons behind the di-
versity performance difference between SJFuzz and Classming in
terms of the seed-mutant Levenshtein Distance. Assume a mutated
class file (simplified version) in Figure 6 with only one executed
instruction (line 4). Initially, Classming would select and insert the
return mutator (line 5) because other mutators can result in the
potential def-use violation of the r0-exclusive variables and thus
the verification error. Such an error can hinder the detection of
“deep” bugs, e.g., bugs incurred in execution engine. However, under
this circumstance, the class file in Figure 6 is likely to be retained
as the seed to repeatedly select the return mutator under each
iterative execution for further class file generation. As a result, all
the mutant class files realize single-mutation difference with their
respective seeds, i.e., leading to potential short seed-mutant Leven-
shtein Distance. In contrast, SJFuzz is free from such constraints
because it can diversify seed optional class files with best effort.

Figure 5: Average seed-mutant Levenshtein Distance.
1 class A {

2 ...

3 public void someFunction() {

4 r0=<java.lang.System: java.io.PrintStream out>;

5 return; // inserted by return mutator

6 ......

7 }

8 }

Figure 6: An example of mutating paradox for Classming.

Figure 7: Average unique discrepancies exposed by different
distance metrics in all benchmarks.

Moreover, even when a seed optional class file generates a simi-
lar mutant class file, they together are hardly retained for further
mutations under the diversity-guided class file filtering mechanism.

Finding 5: Diversifying class file generation is advanced
in testing the “deep” bugs in execution engine by retaining
sufficient valid class files.

At last, we study the effectiveness of our adopted distance metric,
i.e., the Levenshtein Distance, which is used to measure class file
diversity. To this end, we adopt more distance metrics [13, 17, 27]
for discussing their impact on SJFuzz. Specifically, we adopted
Gestalt Pattern Matching Distance [13], Bag Distance [27], and
Jaro Distance [17] in our evaluation. In particular, Gestalt Pattern
Matching Distance adopts the number of matching characters and
the length of strings to measure the similarity for two given strings.
Bag Distance utilizes the maximum length between the relative
complements [24] of two given strings’ character sets with respect
to each other to measure their distance. Jaro Distance is also a
type of edit distance to calculate the similarity of two strings. As
shown in Figure 7, distance metrics exert limited impact on the
effectiveness of SJFuzz in terms of exposing unique discrepancies.
Interestingly, we can observe that adopting edit distances, i.e., Jaro
Distance and Levenshtein Distance, can achieve slightly better
performance than other distance metrics.

4.4 Bug Report and Discussion
We manually analyze all the collected discrepancies to derive po-
tential issues. Note that in this paper, we define a bug as an error or
an unexpected behavior for a specific JVM version. As a result, we
report 46 potential issues from the discrepancies found by SJFuzz
(Classming fails to expose any of these issues while JavaTailor can
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Table 3: Issues found by SJFuzz.
JVMs # Reported # Confirmed

Loading
Phase

Linking
Phase Run-time Crash Loading

Phase
Linking
Phase Run-time Crash

OracleJDK 0 0 3 0 0 0 2 0
OpenJDK 2 3 3 3 0 0 2 0
Dragonwell 1 2 2 0 0 0 0 0
OpenJ9 6 7 12 2 0 4 10 2
TOTAL 9 12 20 5 0 4 14 2

expose 25 of them), as in Table 3, to their corresponding developers.
As of today, 20 were confirmed while 16 were fixed by the develop-
ers. The remaining 4 confirmed bugs are marked as “won’t fix”. We
present some example bug reports as follows.

4.4.1 Resource Retrieval Bug. We reported an OpenJDK bug on re-
trieving JAR information which was confirmed by the OpenJDK de-
velopers with a bug ID JDK-8244083. This bug was exposed by the
execution discrepancy between OpenJ9 and OpenJDK. Specifically,
they both executed one class file from AntClassLoader.class,
where OpenJDK failed to retrieve the JAR information from given
resources while OpenJ9 succeeded. The developers inferred that
certain side effect changed the behaviors of the original method.

4.4.2 Runtime Inconsistency Bug. We have reported an OpenJ9 bug
on issuing a runtime erroneous return under the mutated classes
from Money.class, as shown in Figure 8. We applied its original
JUnit tests on all the class files mutated from Money.class which
resulted in multiple errors/discrepancies. In particular, OpenJ9 re-
ported an AssertionError while OpenJDK passed the test. How-
ever, when we further removed one JUnit test which caused Stack-
OverflowError, both OpenJ9 and OpenJDK passed the test. Ac-
cordingly, we summarized that such a discrepancy may be caused
by the unresolved dependency between JUnit tests and reported it
to the corresponding developers [1].

To tackle such an issue, developers applied option optlevel
at the warm level and inferred this as a JIT issue. After checking
the tree simplification (an optimization feature in OpenJ9),
developers found that OpenJ9 made a wrong assumption to the
nodeIsNonZero flag set. As a result, the instruction ificmpne was
changed to goto by OpenJ9 and it caused the associated branch to
be always executed, even when the value of the associated variable
did not meet the branch conditions. Eventually, they fixed this issue
as follows:

...the nodeIsNonZero flag was set because IL gen assumed
that slot 0 was still being used to store the receiver and thus the
flag did not need to be reset. There is a method that is supposed
to check if slot 0 was re-used so that flags can be reset. This
problem can be fixed by adding cases to handle other types of
stores to slot 0... I will open a pull request to make this change.

4.4.3 Verifier Bug. A verifier bug usually is derived by analyzing
the discrepancies about throwing a verifyError or not. In partic-
ular, verifier bugs are perceived typical “deep” bugs, i.e., bugs that
are tricky to be detected and debugged.

By executing the mutated ErrorReportingRunner.class from
project JUnit, we discovered that OpenJDK (1.8.0_232), OpenJDK
(9.0.4), and OpenJDK (11.0.5) threw VerifyError, while OpenJ9
(1.8.0_232) and OpenJ9 (11.0.5) wrongly took it as a valid class file

1 class A {

2 ...

3 public boolean isZero() {

4 int var1 = this.amount();

5 // OpenJ9 and OpenJDK get var1 = 0 here

6 boolean var2;

7 if (var1 == 0) {

8 var2 = true; // OpenJDK executed here

9 } else {

10 var2 = false; // OpenJ9 executed here

11 }

12 return var2;

13 }

14 }

Figure 8: Runtime inconsistency bug in OpenJ9.

for execution. Moreover, there even incurred a discrepancy among
multiple OpenJ9 versions, i.e., OpenJ9 (9.0.4) threw a VerifyError.
Accordingly, we inferred that OpenJ9 (1.8.0_232) and OpenJ9 (11.0.5)
were buggy and reported them to developers.

Interestingly, it took the developers quite a while to understand
the cause of such bugs. At first, they speculated this issue as an
“out of sync” problem:

It seems the code in verifier is likely out of sync or some new
changes related to verifier were only merged for OpenJDK8
& OpenJDK11 given that only OpenJDK9/OpenJ9 captured
VerifyError. Need to further analyze to see what changes in
verifier caused the issue.

When they attempted to locate the issue by checking the excep-
tion table, they found no exception table for the associated method
of the mutated class file. Next, they divided the issue into two differ-
ent checking branches: one was investigating the simulateStacks
for how it propagated the uninitalizedThis (a variable to mark
the status of simulateStacks) which may or may not be launched
in the mergeStacks code; the other was comparing the differences
in rtverify.c for different JVM releases. Finally, by comparing dif-
ferent versions of rtverify.c, the developers have identified that
a checking mechanism on uninitializedThis was disabled in
matchStack() when creating the stackmap. Accordingly, OpenJ9
(1.8.0_232) and OpenJ9 (11.0.5) were confirmed to fail to capture
the VerifyError.

The buggy instructions of rtverify.c are demonstrated in Fig-
ure 9. OpenJ9 (1.8.0_232)/OpenJ9 (11.0.5) were allowed to correctly
throw VerifyError when enabling the checking mechanism on
uninitializedThis by removing line 1 in Figure 9. However, since
such a checking mechanism was designed to prevent a Spring ver-
ifier issue [2], it could not be removed simply. Meanwhile, even
though the VerifyError could be correctly captured on OpenJ9
(9.0.4), its associated VerifyError message was rather out-dated.
Such issues together deliver a potential demand on upgrading the
verification logic of OpenJ9. At last, the developers have stated that
they intend to generate a patch to fix all of the exposed issues [4].

4.4.4 Controversy-Arousing Issue. In addition to assisting devel-
opers in exploring the “deep” bugs, we even triggered an in-depth
discussion and revisit to the validity of well-established JVM mech-
anisms via a potential issue reported by SJFuzz.

We have found an issue that OpenJ9 could break the struc-
tured locking. In particular, when executing the corresponding
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1 if (!verifyData->createdStackMap) { // enable to fix another issue

2 if (liveStack->uninitializedThis

3 && !targetStack->uninitializedThis) {

4 rc = BCV_FAIL;

5 goto _finished;

6 }

7 }

Figure 9: OpenJ9 buggy code in rtverify.c.
...

66 return0 // return without exitmonitor

...

265 monitorenter // enter the monitor

...

709 invokestatic 911 Print.logPrint

712 iload 5

714 iconstm1

715 iadd

716 istore 5

718 iload 5

720 ifle 66 // go to line 66

...

Figure 10: The IllegalMonitorStateException issue of OpenJ9.

mutated class DirectoryScanner.class, OpenJDK threw an Il-
legalMonitorStateException because the executing thread ac-
cessed a method and executed entermonitor, but simply returned
without executing exitmonitor. However, OpenJ9 did not throw
IllegalMonitorStateException. Accordingly, we inferred that
OpenJ9 allowed returning a method under mismatching entermon-
itor and exitmonitor (which broke structured locking) and have
reported it to the OpenJ9 developers [3]. Figure 10 refers to the
partial class file that exposed this issue.

At first, the developers denied the potential violation of struc-
tured locking, i.e., they analyzed our submitted class file and claimed
no violation of structured locking. However, during our further in-
vestigation, we discovered that while exitmonitor has not been ex-
ecuted from line 265 to line 720 in Figure 10, line 720 was executed
followed by a return instruction (line 66) where IllegalMoni-
torStateException should have been thrown. Correspondingly,
the developers reconsidered this issue and finally agreed on the
violation of structured locking.

Since the developers still insisted on the legitimacy of their devel-
opment schemes, they further questioned and inspected the validity
of the structured lock mechanism.

We may end up with cleaner locking code if we enforced
structured locking. This also came up recently in a discussion
on how to handle OSR points for inlined synchronized methods.
We should investigate the benefits/costs of adopting Structured
Locking.

By tracing back to the JVM specification [18] on the structured
locking mechanism, the developers argued that structured locking
could be allowed, yet not required. As a result, they considered
revoking structured locking to be more as an domain-specific adap-
tation, rather than a bug, controversially.

In summary, SJFuzz is capable of detecting multiple types of
“deep” bugs via exposing inter-JVM discrepancies for testing an-
alytics. Furthermore, the bugs detected by SJFuzz can be rather

tricky to be explored by the existing approaches, e.g., the bug in-
curred by unresolved JUnit test dependency and the bug that urged
developers to trace back to JVM specifications.

5 THREATS TO VALIDITY
The threats to external validity mainly lie in the subjects and faults
used in our benchmark. To reduce the threats, we determine to
select all the possible projects from Classming. Moreover, we extend
our selections of seeding class files to complicated and popular Java
projects such as 𝐴𝑛𝑡 , for evaluating the scalability of our approach.

The threats to internal validity mainly lie in the potential faults
in our implementation (including dependent libraries). To reduce
such a threat, we apply mature libraries, such as Soot, to implement
SJFuzz. We also carefully review and test our implemented code
and the library code. As a result, we even detected a defect in our
adopted Soot version which injected unexpected string into the
output class files such that a valid class file was presented as invalid.
Correspondingly, we hacked Soot’s source code and fixed this issue.

The threats to construct validity mainly lie in the metrics used.
To reduce the threats, we leverage various widely used metrics for
JVM testing, including the number of discrepancies, as well as the
class file diversity and unique bugs found.

6 RELATEDWORK
JVM and Compiler Testing. In addition to the aforementioned
ClassFuzz, JavaTailor and Classming, Sirer and Bershad [64] first
proposed a grammar-based approach to generate class files by ran-
domly changing a single byte in a seed input which can be hardly
applied for deeply testing JVMs. Yoshikawa et al. [75] developed
a type system that generates Java class files, which are random,
executable, and finite, and then tested them on selected JIT com-
piler or other Java runtime environments. Freund and Mitchell [45]
developed a type system specification for a subset of the bytecode
language with type checking and prototype bytecode verifier im-
plementation. Savary et al. [60] derived an abstract model from
formal specifications to test the Java byte code verifier. Calvagna
and Tramontana [30] proposed an automated conformance test-
ing approach to model JVM as a finite state machine and derive
test suites to expose their unexpected behaviors. More recently,
Padhye et al. [58] automatically guided QuickCheck-like random
input generators to semantically analyze test programs for gener-
ating test-oriented Java bytecode. Since the coverage data in Java
Just-in-Time compilers (JITs) is deterministic, Wu et al. proposed
JITfuzz [71] which leverages the power of coverage guidance and
optimization-activation mutators to test JVM JITs. On the other
hand, since the coverage is non-deterministic in the whole JVM
as mentioned, SJFuzz adopts discrepancy and diversity to guide
the fuzzing campaign for JVM. Gao et al. [46] incorporated code
representation learning and clustering to improve the performance
of program-synthesis-based JVM testing (such as JavaTailor).

There are some work on compiler testing [32, 33, 81]. For exam-
ple, Yang et al. [74] proposed a random mutation-based compiler
testing tool for open-source C compilers, which crashed every com-
piler they tested and found 325 previously unknown bugs in three
years. More recently, Cummins et al. [40] developed DeepSmith
for accelerating compiler validation via deep learning to model the
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real-world code structures and generate vast realistic programs to
expose compiler bugs. Similarly, Liu et al. [55] automatically gen-
erated well-formed C programs to fuzz off-the-shelf C compilers
based on generative models.

Compared to the existing JVM and compiler testing approaches
either performing worse or requiring extra knowledge in addition
to a single seeding class file, SJFuzz adopts seed and mutator sched-
ulers based on easy-to-catch runtime discrepancy/diversity infor-
mation, i.e., acquiring no extra knowledge of bytecode constraints
or JVM specifications.

Seed Scheduling in Fuzzing.Many coverage-guided fuzzers
adopt seed scheduling mechanisms to enhance their effectiveness.
AFL [7] typically schedules seeds whenever executing them can
increase code coverage. Bohme et al. [29] developed AFLFast to
construct a Markov chain model by utilizing coverage feedback,
and then scheduled the seeds according to the probability gener-
ated from the model for further exploration. They also proposed
AFLGo [28] to reach a given program location by scheduling the
most related seeds (i.e., the seeds closer to the target location) for
mutation. She et al. [63] proposed K-scheduler to schedule the seeds
based on all reachable and feasible edges by using the graph analy-
sis of control flow graph. Li et al. [54] proposed Cerebro to schedule
seeds based on the code complexity, execution time, and coverage
information balanced by an online multi-objective-based algorithm.
Chen et al. [36] leveraged the power of different fuzzers by merg-
ing seeds generated from them into one corpus and scheduling
seeds among various fuzzers. Li et al. [53] proposed Steelix, which
utilizes comparison progress information and coverage feedback
for scheduling seeds to facilitate the fuzzing efficacy. To bias input
generation towards rare branches, Lemieux and Sen [51] proposed
FairFuzz to schedule the seeds that hit rare branches for mutation.
To facilitate the hybrid fuzzing efficiency, Chen et al. [34] proposed
MEUZZ to schedule the seeds between a coverage-guided fuzzer
and a concolic execution engine via machine learning. Chen et
al. [37] proposed SAVIOR, which schedules the seeds that can reach
more sanitizer instrumentation (i.e., a potential buggy point) to
expose vulnerabilities of the target program. Zhao et al. [80] pro-
posed DigFuzz to schedule seeds based on the difficulty of their
corresponding paths and prioritize them for concolic execution via
a Monte-Carlo-based probabilistic path prioritization model. Zhang
et al. [78] developed TRUZZ, which schedules the seeds based on
the coverage feedback in a newly discovered execution path, i.e.,
a seed increasing more code coverage has a higher priority to be
selected. However, Such existing seed scheduling mechanisms can
hardly be used for JVM fuzzing because they are widely guided by
code coverage. In this paper, SJFuzz adopts diversity and discrep-
ancy as alternative guidance to alleviate the impact of lacking code
coverage information for seed scheduling.

Mutator Scheduling in Fuzzing. Similar to the above-mentioned
seed scheduling mechanisms, many mutator scheduling mecha-
nisms [48, 59, 68, 70, 72, 76, 79, 83] tend to select mutators to in-
crease code coverage during fuzzing. Stephens et al. [65] developed
Driller, which selects the symbolic executor to mutate a seed if it
fails to increase code coverage under a given time budget. Lyu et
al. [56] proposed MOPT, which utilizes Particle Swarm Optimiza-
tion (PSO) algorithm [42] to find the optimal scheduling probability

distribution of mutators via historical code coverage for enhanc-
ing fuzzing effectiveness. Fioraldi et al. [44] proposed AFL++ to
facilitate fuzzing efficacy by scheduling different mutators from
different fuzzers, e.g., mutators from AFL [7] and RedQueen [25].
Wu et al. [69] conducted a study on the havoc fuzzing strategy
widely adopted by many coverage-guided fuzzers, and found that
applying different mutators leads to different code coverage among
various projects. Next, they proposed an improved mutator sched-
uling mechanism based on a multi-armed bandit algorithm [26]
according to the real-time coverage feedback. Xie et al. [73] pro-
posed DeepHunter by scheduling Affine Transformation mutator
and Pixel Value Transformation mutator to a given seed via their
reference images.

Although failing to exploit code coverage as the existing mutator
schedulers, SJFuzz still schedules mutators in a lightweight manner
by diversifying class file generation via Monte Carlo method.

7 CONCLUSION
In this paper, we proposed SJFuzz, the first fuzzing framework us-
ing seed and mutator scheduling for automated JVM differential
testing. Specifically, SJFuzz employs a discrepancy-guided seed
scheduler which retains discrepancy-inducing class files and class
files that generate discrepancy-inducing mutants. It also employs a
diversity-guided seed scheduler which filters other class files via a
coevolutionary mechanism to augment class file diversity for fur-
ther mutations. Moreover, SJFuzz applies a mutator scheduler based
on the Monte Carlo method to diversify the class file generation. To
evaluate the efficacy of SJFuzz, we performed an extensive study
to compare SJFuzz with Classming, the state-of-the-art mutation-
based JVM fuzzer, on various real-world benchmarks. The results
show that overall, SJFuzz significantly outperforms Classming in
terms of exposing inter-JVM discrepancies for JVM differential test-
ing, e.g., SJFuzz exposes 8.0 unique discrepancies while Classming
only exposes 1.1 unique discrepancies averagely on all the studied
benchmarks. We also compare SJFuzz with the generation-based
approach JavaTailor in terms of exposing JVM discrepancies. The
results also suggest SJFuzz outperforms JavaTailor, e.g., SJFuzz ex-
poses 14.3% more unique discrepancies than JavaTailor. To date, we
have reported 46 previously unknown potential issues discovered
by SJFuzz to the JVM developers where 20 were confirmed as bugs
and 16 were fixed.

8 DATA AVAILABILITY
All the source code, the evaluation details, and the bug reports of
this paper are available on our GitHub page [21].
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