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MLIR is a new way of creating compiler infrastructures that can be easily reused and extended. Current
MLIR fuzzing methods focus primarily on test case generation or mutation using randomly selected passes.
However, they often overlook the hierarchical structure of MLIR, resulting in inefficiencies in bug detection,
especially for issues triggered by downstream dialects. Random testing lacks a focused approach to exploring
the code space, resulting in wasted resources on normal components and overlooking bug-prone areas. To
address these limitations, we introduce MLIRTRACER, a top-down fuzzing approach that targets the highest
level of MLIR programs (i.e., tosa IR) with a directed testing strategy. Our method systematically traverses the
hierarchical code space of MLIR, from tosa IR to the lower levels, while prioritizing tests of bug-prone areas
through directed exploration. MLIRTRACER has successfully detected 73 bugs, with 61 already resolved by
MLIR developers.
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1 Introduction

MLIR [38] (Multi-Layer Intermediate Representation) is an emerging compiler framework that
provides unprecedented extensibility and generality, holding great promise in facilitating the rapid
implementation of domain-specific compilers. With its modular and reusable design, MLIR enables
support for a wide variety of programming languages/models and target hardware using the same
intermediate representation (IR) infrastructure capable of handling various levels of abstraction.
The emergence of MLIR steers the development of compilers toward greater modularity, effi-
ciency, and customizability, benefiting various fields. It has since inspired numerous downstream
projects [20] and become a popular solution for developing deep-learning compilers [7, 13, 18, 34].
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Additionally, MLIR’s versatility is reflected in its growing adoption for addressing domain-specific
problems, such as circuit compilation [4], data processing [19], quantum compilation [3], high-
performance computing [15, 44], and formal verification [2].

A key property of MLIR is its ability to represent programs at multiple levels of abstraction (i.e.,
dialects [6]), which enables the compiler to optimize at various levels. This capability enhances
flexibility, allowing developers to customize the compilation pipeline across these dialects to meet
their specific requirements. However, it also introduces a higher risk of faults. The compilation and
optimization stack within the MLIR framework often involves complex interactions between various
transformation passes operating at different levels of abstraction. This makes MLIR susceptible to
compatibility issues, leading to unexpected and possibly harmful misbehavior. In particular, given
its foundational role, ensuring the correctness and reliability of the MLIR infrastructure is crucial,
as any bug within MLIR could impact domain-specific compilers built on top of it. Hence, it is
essential to investigate effective methods for testing the MLIR infrastructure.

MLIR’s modularization and hierarchical code space present significant challenges to finding bugs.
In contrast, previous deep learning (DL) compilers were relatively easy to test due to their fixed
levels of abstraction and lowering processes (e.g., TVM [25], which lowers from the Relay IR to
the TIR and then to the LLVM IR). Unlike TVM, MLIR provides dozens of dialects and supports
the creation of a hybrid IR that combines operations from different dialects. Recent efforts (i.e.,
MLIRSmith [53] and MLIRod [50]) on MLIR testing focus on generating such hybrid MLIR programs
to detect bugs. Specifically, MLIRSmith directly constructs MLIR programs with 12 dialects based on
the template, while MLIRod further mutates such MLIR programs to serve as test input. However,
designing hybrid IRs manually, based on the semantics of multiple dialects, is highly impractical due
to the diversity and rapid evolution of dialects. Additionally, grammar-based generation methods
are limited in test case structure [45] and fail to cover all possible hybrid IR patterns adequately.
Despite these approaches, bugs still exist in MLIR infrastructure, as we have found in this work.
The primary reason is that both approaches rely on applying random sequences of transformation
passes to MLIR programs, which neglect the exploration of MLIR’s hierarchical structure [11] and
fail to fully exercise the code.

A promising way is to employ a top-down testing strategy that starts with high-level IR and
lowers it to the lowest level along various dialects through MLIR’s existing incremental lowering
capabilities. This process naturally yields a range of hybrid IRs covering multiple dialects, helping
to uncover bugs in dialect-specific transformations. One primary challenge is how to generate test
cases that satisfy the top-down testing requirements of MLIR? At present, the abstraction of the
machine learning graph (i.e., tosa! dialect) is the highest level, which can be progressively lowered
to other lower dialects using various conversions provided by MLIR. Generating such IR is not
a difficult task, as it is solely based on the tosa operations and considers grammar targeting for
only one dialect. However, to ensure extensive test coverage, creating graph-like data structures
requires advanced algorithmic support. If a graph is too simple, it fails to conduct comprehensive
fuzzing due to a lack of diversity [31, 40].

The second challenge in MLIR fuzzing is how to efficiently uncover bugs within MLIR’s hierarchical
structure space? Existing MLIR fuzzing approaches based on random testing are inefficient because
many transformations are simply neglected by the compiler [35, 42], as confirmed in our study
(Section 5.4). In MLIR, dialect-specific passes are designed to operate only on specific types or
operations, making it crucial to consider the dependencies between the IR and the passes [12, 14].
Additionally, phase-ordering of lowering passes [36, 51] is crucial, as the output of the preceding IR
conversion serves as the context for the subsequent conversions, directly influencing the execution

Tensor Operator Set Architecture. https://www.mlplatform.org/tosa
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path. Therefore, the lowering passes must be arranged in an order so that the fuzzer can effectively
explore MLIR’s hierarchical structure space from top to down. Moreover, exposing bugs more quickly
remains challenging without proper guidance. Given that MLIR supports flexible compilation
paths [23, 24, 36, 51], testing MLIR is equivalent to testing innumerable customized compilers, each
with a different compilation stack. Exhaustively enumerating all compilation paths for fuzzing is
impractical. Therefore, a more efficient and effective strategy should direct fuzzing efforts toward
modules that are more likely to contain bugs.

This paper presents MLIRTRACER, a top-down fuzzing approach for MLIR that starts with high-
level MLIR programs (i.e., tosa IR) to explore MLIR’s hierarchical structure, while employing a
directed strategy to enhance fuzzing efficiency. MLIRTRACER first generates a diverse set of tosa
IRs using a tosa IR generator. The compilation stack for tosa IR spans multiple MLIR dialects,
facilitating the application of a wide range of dialect-specific components. The core insight behind
top-down testing lies in MLIR’s design philosophy of progressive lowering [38]. MLIRTRACER
progressively lowers tosa IR in multiple small steps, adhering to the dependency-based lowering
rules of MLIR. This ensures that the lowering process follows the order imposed by the MLIR
framework. Directedness is achieved by lowering tosa IR toward dialects that are more prone to
bugs, thus prioritizing the testing of components specific to these dialects. This targeted approach
helps identify bugs earlier in the conversion and transformation phases by testing areas more likely
to expose potential issues. In short, we propose a top-down directed strategy tailored for MLIR
testing, guiding the fuzzer to focus on the vulnerable areas within the hierarchical code space,
thereby improving the overall efficiency of MLIR fuzzing. We also develop two mutation methods,
mixing IR mutation and similarity operator replacement, which aim to produce interesting patterns
of hybrid IR and improve the coverage of operations, resulting in a more extensive test space.

In summary, our contributions are as follows:

o Idea. We introduce MLIRTRACER, to the best of our knowledge, the first MLIR fuzzing
framework that systematically explores MLIR’s hierarchical code space following its design
philosophy, while achieving directedness to enhance fuzzing efficiency.

e Technique. MLIRTRACER primarily comprises a test case generator designed to create
high-level MLIR programs, along with a top-down directed testing strategy. This approach
facilitates top-down fuzzing across multiple abstraction levels and guides the fuzzer to target
areas prone to bugs.

e Evaluation. We conduct an extensive study to demonstrate the effectiveness of MLIRTRACER.
Our results show that MLIRTRACER detects 2.6X more bugs and achieves 1.4X code coverage
than the state-of-the-art MLIR fuzzing techniques. Additionally, MLIRTRACER successfully
detects 73 previously unknown bugs, 61 of which have already been fixed by the MLIR
developers.

2 Background and Motivation
2.1 MLIR Preliminaries

MLIR is a reusable and extensible compiler infrastructure and a subproject of the LLVM project [8],
designed for building domain-specific compilers and bridging compilers for different programming
languages. Like LLVM, MLIR uses traditional three-address SSA (Static Single Assignment) to
encode its multi-level IR. The MLIR framework consists of two key modular components: dialect
and pass system. Dialects are used to define and represent specific operations within IR, i.e., MLIR
program. Passes are employed to implement various transformations or optimizations on these IRs.
Dialects. Each level of abstraction can be represented as a dialect, which is a mechanism to engage
with and extend MLIR ecosystem. MLIR provides a range of built-in dialects to represent different
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7

Fig. 1. Motivation Example. Existing methods, represented by the black arrow, perform random fuzzing with-
out any knowledge of the MLIR compiler infrastructure internals. This results in inadequate guidance for
exploring MLIR’s hierarchical code space. In contrast, the MLIRTRACER testing process, represented by the
blue arrow, provides a more targeted and effective approach to overcome these limitations.

levels of abstraction, ranging from dataflow graphs to target-specific instructions and even hardware
circuitry. Each dialect consists of a set of operations and types, and is given a unique namespace.
For example, the affine dialect contains operations that represent polyhedral structures such as for
and map. Compatibility issues may arise when converting between dialects, as operations in one
dialect may not have direct counterparts in another. Additionally, certain types in one dialect may
not be supported in another due to differences in the set of supported types.

Operations. Operation is the basic unit of semantics. Each operation is identified by a unique
string (e.g. tosa.conv2d, affine.parallel, vector.load, etc.). An operation has a list of SSA operands,
may have attributes that store static information, and has zero or more results. Operations are
defined using a TableGen-based [16] specification for an operation descriptor. For example, the
tosa.matmul operation is defined to take two 3D tensors as inputs and return a 3D tensor of the
same type as the output. The creation of the operation must comply with such constraints imposed
by MLIR.

Passes. MLIR supports a wide range of passes that operate on the IR to enable progressive conversion
and optimization from higher to lower levels of representation. These include conversion passes,
which facilitate seamless transitions between dialects, and transformation passes, which optimize
operations within specific dialects or across the entire IR. MLIR enables the flexible composition of
these passes into compilation pipelines for code generation. In a pass pipeline, each pass iteratively
transforms the IR, producing a new representation at each step.

Hybrid representation. MLIR allows for separate dialects to co-exist together forming a hybrid
program representation. Such hybrid IRs typically emerge during the intermediate stages of the
compilation pipeline, where high-level dialects are progressively lowered into lower-level represen-
tations. For example, a program may begin in a high-level dialect, such as tensor or affine. Through
a series of dialect conversions, certain operations may be lowered to a low-level dialect like [lvm or
spirv, while others remain at a higher level.

MLIR fuzzing. The introduction of new key features in MLIR poses challenges for fuzzing. In
particular, the hybrid representation makes it difficult to achieve comprehensive and valid test
case generation. Additionally, the flexibility and complexity of the multi-level compilation process
create further difficulties, primarily due to the lack of guidance.
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Fig. 2. Overview of MLIRTRACER.

2.2 Motivation

Figure 1 presents a motivating example of a bug in MLIR detected by MLIRTRACER. The input
tosa IR (shown in the top-left corner) exposes a bug under a specific pass sequence. In particular,
this tosa IR itself is a simple IR with only one operation and contains no bug. However, it can be
lowered to the hybrid IR? (shown in the bottom-right corner of the figure), which directly triggers
the bug. The cause of this bug is the inaccurate calculation of lower and upper bounds in the
“-affine-data-copy-generate” pass, which results in empty loop bound maps (line 1 in the hybrid IR).
Hence, the MLIR compiler crashes when the “-lower-affine” pass works on an empty loop bound
(line 5 in the hybrid IR). It is worth noting that, in practical scenarios, lowering IR into the hybrid
IR shown in Figure 1 is common for enabling loop optimizations based on affine representations,
thereby facilitating efficient code generation.

This example illustrates the challenge of detecting such bugs, as it can be difficult to connect
the high-level intent of the code with the low-level issues that may arise during compilation.
When using fuzzing techniques to test the MLIR infrastructure, the main challenge is how to
effectively explore MLIR’s hierarchical code space to uncover complex bugs. Current methods
typically perform random fuzzing that expends too much energy revolving around the initial MLIR
program and is unable to find bugs triggered by its downstream dialects. Furthermore, random
testing lacks direction in exploring the code space. This can result in the fuzzer not being able to
dive deep into critical areas of code that are more likely to contain bugs. This motivates us to design
an effective strategy in our fuzzing technique to 1) systematically explore MLIR’s hierarchical code
space from top to down, and 2) implement the directedness, enabling the fuzzer to prioritize and
focus on the critical code areas that are most prone to bugs.

3 MLIRTRACER Design
3.1 Overview

Figure 2 presents an overview of MLIRTRACER, which generates high-level MLIR programs (i.e.,
tosa IR), and applies a top-down directed testing strategy starting from the tosa IR, to prioritize
testing bug-prone areas. MLIRTRACER constructs a tosa IR generator (Sec. 3.2) to generate the
tosa IRs for initializing the seed pool. During the progressive lowering of tosa IR down to the
lowest level, all dialects lower than tosa are covered. MLIRTRACER introduces a directed testing
strategy (Sec. 3.3), enabling lowering tosa IR towards bug-prone dialects (called directed lowering).
These bug-prone dialects are identified by evaluating the bug proneness of MLIR source code
using an offline machine learning model. Furthermore, specialized lowering rules are built that
take into account the dependency between dialect and conversion pass. This enables targeted seed

2For brevity, we omit constant declarations and memory allocation IRs. The full example can be found in our repository [21].
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selection for bug-prone dialects while ensuring normal directed lowering. For each selected seed,
MLIRTRACER schedules mutator (Sec. 3.4) and then performs a two-step test on the mutant: lowering
it following the directed lowering rule and performing general or dialect-specific transformations.
During this process, if the compiler hangs or crashes, it indicates a potential bug that will then be
reported to the developers; the resulting intermediates, i.e., transformed IRs and lowered IR, will be
stored as optional seeds in the seed pool.

3.2 Tosa IR Generation

Considering the tosa dialect as the highest-level dialect, we take tosa IR as the initial seed and
leverage MLIR’s existing conversion infrastructure to progressively lower it. This enables the tests
to cover dialects that are at a lower level of abstraction than tosa dialect. To this end, we implement
a generator for tosa dialect, generating initial seeds to support top-down testing for MLIR. This
approach eliminates the need to develop individual test generators for each dialect, which would
be time-consuming and labor-intensive given the existence of over 40 dialects.

Tosa IR contains a sequence of tosa operations that operate on high-dimensional tensors. Since
MLIR’s verifiers automatically perform strict static checks during compile time, the operation’s
inputs, attributes, and results must adhere to the restrictions imposed by MLIR [5]. To ensure the
operation can be created correctly, we extract the operation specification. In particular, we create
“invalid” operations by breaking operation constraints to test the robustness of MLIR. Moreover, we
propose an incremental graph generation strategy based on model structures that are widely used in
the real world, which is inspired by the prior generators in DL libraries or compiler testing [31, 40].
These commonly used model structures (i.e., the chain structure with skips and multi-branch
structure [28, 48]) provide flexibility in accommodating various graph topologies and generate a
more realistic graph-level representation. Additionally, incremental graph generation, i.e., creating
random tosa operations one by one, allows for a greater diversity of tosa IRs than the method of
constructing a structure and then expanding the skeleton.

For tosa IR generation, MLIRTRACER randomly selects an operator every time to create a cor-
responding operation and incrementally introduces it into the graph following commonly used
model structure topologies. The details are provided below:

Extracting Operation Specification. We extract the specifications for each tosa operation, i.e.,
a tuple of constraints on operands, attributes, and results, such as their shapes and types. This is
done by parsing the TableGen file of tosa operations [17], which defines the operation set for the
tosa dialect. Furthermore, the tensor type and shape of the operation’s result need to be explicitly
specified. Therefore, we implement a result inference function for each operator that derives the
tensor format of the result based on its inputs and attributes.

Creating Operation. By utilizing the operation specification, each operation is created strictly
following the pre-defined type and shape constraints, thereby avoiding failures during tosa IR
generation. Additionally, to test MLIR’s exception-handling capabilities, MLIRTRACER deliberately
selects dimensions, types, or attribute values that fall outside the operation specification to create
operations (e.g., providing a 2D tensor to an operator that only accepts 4D tensors).
Constructing the Tosa IR. We formulate a tosa IR as a Directed Acyclic Graph (DAG) and describe
its construction process using graph theory, which is in line with prior work [31, 43]. Specifically, the
nodes in the tosa IR represent a collection of tosa operations (i.e., an instance of the tosa operator),
and the edges are the connections between these operations, representing the data dependency.
In constructing a tosa IR, MLIRTRACER incrementally inserts random operators through three
different methods: creating a new branch, tail insertion, and random insertion. Among these ways,
the first two are used to widen and deepen the graph, resulting in either a single chain or a more
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Algorithm 1: Tosa IR Generation

Input: OpPool: set of tosa operators
ODS: operation definition specification
OpNum: number of nodes in a TG

1 TG « {} > tosa graph
2 T« {} > set of tail nodes in TG
3 while TG.size < OpNum do

4 op « randomSelect(OpPool)

5 CompatibleNode — typeMatch(TG, ODS|[op].input)

6 if CompatibleNode does not exist then

7 node « createNewBranch(TG, op) > Creating new branch
8 ‘ updateTail(node)

9 else

10 T« CompatibleNode UT

11 if T isnot empty then

12 Ve randomSelect(T/)

13 node «NodeInsert(op, v, CompatibleNode) > Tail insertion
14 updateTail (node)

15 else

16 v « randomSelect(CompatibleNode)

17 node « NodeInsert(op, v, CompatibleNode) > Random insertion
18 end

19 end
20 end
21 Function NodeInsert(op, v, C):

22 addConnection(op, v)

23 if ODS[op].input_num > 1 then

24 Vo getCompatibleInputs(v,C)

25 addConnection(op, v')

26 end

complex multi-branch architecture to simulate typical DL models in the real world. The last way
increases the complexity of the graph to provide additional testing opportunities.

Algorithm 1 presents our tosa graph generation algorithm. The generator maintains a pool of
all tosa operators. When constructing a tosa IR, the generator randomly selects an operator op
from the operator pool (line 4) and inserts it into the graph until the number of nodes reaches the
preset value of OpNum. To insert op compatibly, the generator first identifies a compatible node (i.e.,
operation) in the graph whose result satisfies the input constraints of op. To do this, the generator
uses a simple type match to pick out all feasible nodes CompatibleNode (line 5). For example, when
inserting the tosa.matmul operator, all nodes whose result is a rank-3 tensor are considered as
candidates.

If no CompatibleNode is found, it indicates that no node can serve as the producer for op due to
the violation of op’s input constraint. In such cases, op is inserted without being connected to any
existing node, which lets it be an initial node of a new branch (lines 7-8). If CompatibleNode includes
a tail node, one of the tail nodes is randomly selected as the producer for op; subsequently, the
newly inserted node is updated as the tail node in the current branch (lines 12-14). If no tail node is
available, the generator inserts op by selecting a randomly compatible node as its input (lines 16-17).
Note that both tail insertion and random insertion rely on an existing node in the graph. For op
that only requires a single input (e.g., tosa.cast(a)), one input edge from node v suffices. However,
for op with multiple operands (e.g., tosa.matmul(a,b)), additional input edges are required to satisfy
constraints on the number of inputs. To do this, we randomly choose a compatible node (or a
placeholder referring to the passed parameter of the FuncOp) as op’s additional input (lines 24-25).
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Table 1. Features used to represent functions

‘ Feature Definition
CountLine The total lines of code
CountStmt The number of statements
Code static features | CommentRatio  Lines of comments / total lines of code
Cyclomatic The cyclomatic complexity of a function
NestDepth The nested block depth
Numfixes The cumulated number of bug fixed

Project evolution NumChanged  The cumulated number of change

feat
cature NumDevelopers The number of developers
Table 2. Bug-prone dialects
ID  Dialect Abstraction || ID  Dialect Abstraction
1 affine polyhedral structures 7 memref memref creation and manipulation
2 tosa tensor operator set architecture 8 bufferization converting tensor to memref
3 async asynchronous programming 9 vector vector creation and manipulate
4 scf structured control flow 10 spirv SPIR-V IR
5 linalg linear algebra operation 11 tensor tensor creation and manipulation
6 gpu GPU kernel invocations

3.3 Top-down Directed Testing

Our goal is to perform a top-down fuzzing approach to improve random testing on MLIR. To make
this process more efficient, we propose a directed testing strategy that enhances the directedness of
reaching bug-prone dialects. In particular, we employ bug prediction technology for bug proneness
evaluation to identify bug-prone dialects. Then, we guide the fuzzer to focus tests on these bug-prone
dialects and related components.

3.3.1 Bug-prone Dialects Identification. Our methodology involves assessing the bug proneness of
MLIR source code using bug prediction technology [29, 33, 46], followed by determining the bug
proneness at the dialect level.

Bug Proneness Evaluation. We utilize a machine learning model trained on historical defect
data for bug-proneness evaluation. Specifically, our approach begins with automated crawling and
retrieval of code commits via GitHub APIs over the past six months. We extract modified code
segments, i.e., functions or methods, and label them as buggy or non-buggy based on keywords in
the commit messages related to bug fixes, as done in previous studies [30, 32, 37]. Note that the
extracted code segments are exclusively derived from the official MLIR project repository [10] and
do not include any other LLVM subprojects. We represent these code segments using two types of
features (see Table 1): static code features and project evolution features, which together form a
feature vector. Static code features capture the complexity of the MLIR implementation, while the
inclusion of project evolution features is motivated by two observations: frequent bug fixes often
introduce new bugs [39], and the fragmented contributions from a large number of developers
(over 350 in MLIR project) can negatively impact software quality [22, 47].

For the bug proneness evaluation task, we built a machine-learning model using a random forest

algorithm. The model is trained offline using 15,490 labeled training samples. The trained model is
subsequently applied to predict the bug proneness of each function in the new version, producing
a probability ranging from 0 to 1, which indicates the likelihood of containing a bug. Finally, we
obtain the bug-proneness score for all functions.
Identifying Bug-prone Dialects. MLIR employs a pass-driven architecture to optimize and
transform code. Each pass is implemented by multiple functions, where subtle errors in a function
can cause the pass that invokes it to fail. Moreover, most transformations are dialect-specific,
operating on operations within a particular dialect. As a result, we further assess dialect proneness
to identify bug-prone dialects.
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o Dialect

—— Lowering

1 { "
2 "dialect": "tosa", tensor lmfl\g
3  "dependency":[
4 {"OPS":["tosa.const", "tosa.applyscale"], alfine
5 "PASS":["-tosa-to-arith"]},
6 {"OPS":["tosa.conv2d","tosa.matmul", ...], bufferization [\ _Yector
7 "PASS":["tosa-to-linalg-named"]},
8 {"OPS":["tosa.add","tosa.sub","tosa.mul", ...], gpu
9 "PASS":["tosa-to-linalg"1} T asyne
10 ]
11 3}
spirv
Fig. 3. An excerpt of lowering rule. Fig. 4. lllustration of directed lowering.

We first analyze the function call chain and trace it to identify the passes that can trigger a given
function. Since obtaining a complete set of function callers through dynamic analysis is challenging,
we instead perform static call chain analysis. In this step, we parse all files in MLIR projects using
ANTLR 4 [1] and construct an abstract syntax tree (AST) containing all function nodes. We then
use a graph traversal algorithm to trace the call sequence of target nodes (i.e., bug-prone functions)
in the AST. The traversal starts at the target node and moves up to its parent node (i.e., the caller)
until the root node (i.e., the pass that can trigger it) is found.

Next, we calculate the dialect’s bug-proneness score based on scores on function-level scores
using the following formula:

N-1(M;-1
Pd:Z Zfl-iff,->o 1)
j=0 \ i=0

Given a dialect d, we assume that there are N passes specific to it, with each pass consisting
of M; functions. The threshold o is used to identify which functions are considered bug-prone.
The scores of these bug-prone functions contribute to the bug-proneness score of their associated
passes, and ultimately to the bug-prone dialect. Dialects with a bug-proneness score greater than
0 are identified as bug-prone, as shown in Table 2. In this paper, we set the ¢ to 0.7 (discussed in
Section 6). Note that o is a configurable threshold based on available resources. A higher value of o
prioritizes a narrow set of high-risk targets, thereby maximizing bug detection efficiency within a
limited time. In contrast, reducing the threshold allows for the inclusion of components, even with
moderate risks.

3.3.2  Top-down Directed Strategy. From tosa IR down to the lowest level, progressive lowering is
performed along multiple abstraction levels, allowing various dialects to be covered. MLIR provides
a set of available passes used for dialect conversion (i.e., lowering). The input IR and conversion
pass accepted by the MLIR compiler must have dependencies between them; otherwise, the passes
will be ignored by the MLIR compiler. This is because the conversion pass is driven by a set of
specific operations within a particular dialect. However, such dependencies are ignored by the
existing works, which apply randomly selected passes to the input IR.

Dependency-guided Lowering. To ensure the orderly lowering of tosa IR, we extract these depen-
dencies, which can guide the selection of relevant conversion passes to execute dialect conversion,
rather than applying random passes. We observe that the conversion pass is implemented by com-
posing multiple match and rewrite patterns, each of which defines how to convert one operation
or sequence of operations into another. Therefore, by automatically parsing these patterns in the
source code to identify which operations they are responsible for, we can extract lowering rules
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Fig. 5. The foundation of MLIRTRACER is based on a top-down dependency strategy that systematically
explores the hierarchical code space. Building on this, a directed strategy enhances test directionality, enabling
rapid coverage of bug-prone dialects and related components.

with dependencies, called general lowering rules (GLR). Figure 3 shows part of the dependency
lowering rules for operations in the tosa dialect in JSON format. Each dependency rule consists
of a pass and a set of operations for which that pass is responsible. For example, if tosa.const or
tosa.applyscale appear in a given IR, they can be lowered to arith dialect using tosa-to-arith pass,
while other operations remain.

Directed Lowering. Based on these above general lowering rules, it can ensure “top-down” testing
of MLIR, but it still involves a random exploration for all dialects due to a lack of directionality in
reaching bug-prone dialects. In particular, a dialect has several different conversion passes that
convert it to various downstream dialects. For a given IR, there are numerous compilation paths,
making it difficult to enumerate all for fuzzing. Hence, we construct a set of directed lowering
rules (DLR), which enable lowering tosa IR to cover all bug-prone dialects. We construct directed
lowering rules for all bug-prone dialects (see Table 2). We first pick up dependency rules that are
used to produce bug-prone dialects by examining whether the target of the conversion pass is
a bug-prone dialect. In total, we extracted 59 general lowering rules, with 17 used to construct
the directed lowering rules. These rules are then arranged in descending order of the dialect’s
abstraction level. Figure 4 shows the directed lowering along 11 bug-prone dialects. Tosa IR will be
lowered towards these bug-prone dialects, enabling MLIRTRACER to test specific transformations
on them. In summary, with the directed lowering rules, MLIRTRACER can focus on the code areas
that are most likely to expose bugs, offering higher efficiency compared to random exploration.

3.3.3  Fuzzing Process. Figure 5 illustrates the basic idea of MLIRTRACER. To address the multi-
layered structure of the MLIR framework, we propose a top-down directed strategy. This approach
systematically explores MLIR’s code space by guiding the test path to comprehensively cover
the entire transformation process, from tosa IR to the lowest levels. With the directed strategy
(highlighted in gray boxes), MLIRTRACER efficiently covers bug-prone dialects to test high-risk
components, enabling earlier detection of conversion and transformation bugs.

We formally describe MLIRTRACER’s fuzzing process in Algorithm 2. Within a time budget
T, MLIRTRACER iteratively performs directed testing (lines 2-5) and top-down random testing
(lines 6-7). The directed testing strategy guides the fuzzer to focus on these high-risk areas, while
random testing explores edge cases, ensuring comprehensive testing. The seed pool is initialized by
creating a diverse set of tosa IRs (see Sec 3.2). During each iteration of directed testing, MLIRTRACER
first performs operation-aware seed selection by choosing a set of seeds containing the specific
operations r.ops from the seed pool (line 4). For each selected seed s, MLIRTRACER schedules mutation
(line 11) to facilitate the diversity of the MLIR program (see Sec 3.4). The mutated seed s is then
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Algorithm 2: The Workflow of MLIRTRACER

Input: Sy: the seed pool
DLR: directed lowering rules
GLR: general lowering rules
T: time budget

1 while within time budget T do

2 foreach r € DLR do

3 S « selectSeeds(Sy, r.ops)

4 Execute(S,r)

5 end

6 S « randomSeeds(Sy)

7 dependentTest (S, GLR)

s end

9 Function Execute(S,r):

10 foreach s € S do

11 s e Mutator(s)

12 IR; «— directedLowering(s’, r)
13 IR; « Transformation(s/)

14 if Jerr then

15 | bugReport()

16 else

17 | updateSeedPool(IRy,IR;)
18 end

19 end

processed through the conversion pass in rule r (line 12), producing lowered IR;. Concurrently,
MLIRTRACER applies a randomized combination of general and dialect-specific transformation
passestos (line 13). If either process causes the compiler to crash, it indicates a potential bug, which
will then be reported to the developers (line 15). The newly generated IR; and IR, will be stored as
optional seeds in the seed pool (line 17). After a round of directed testing, MLIRTRACER performs
an additional round of testing based on the dependency lowering strategy (lines 6-7), where it
randomly selects seeds, lowers them using only general lowering rules without bug-proneness
guidance, and then applies random transformations.

3.4 Seed Mutation

Existing mutation strategies [42, 43, 55, 57] are often designed for certain specific IRs and do
not benefit multi-level IRs in MLIR together. We argue that mutation strategies should consider
MLIR’s unique hierarchical design. During the lowering tosa IR in step @ of Figure 6, We find
that certain operations may fail to achieve coverage, as they cannot be produced from upstream
dialects due to missing corresponding conversion patterns in MLIR’s built-in lowering facility. Since
transformations in MLIR are implemented as a matching rewrite at the operational granularity, the
comprehensiveness of operations is crucial for MLIR testing. Furthermore, the diverse combinations
of operations in hybrid representations can be further enhanced by mutation to yield interesting
hybrid patterns. Hence, we propose two mutation strategies for hybrid IRs in step @ of Figure 6:
similar operation replacement, designed to establish sufficient testing opportunities for uncovered
operations, and mixing IR mutation, which aims to explore more hybrid patterns.

Similar Operation Replacement (SOR). This mutation is implemented by replacing an existing
API with a new one with similar functions or the same types of return values. For example, in
Figure 6, the linalg.pooling_nhwc_max is replaced by a similar operation linalg.pooling_nhwc_min
after mutation. Such mutations allow for the incorporation of operations that were initially over-
looked into the test cases. Additionally, there are many similar operations from different dialects
that can be interchangeable to yield interesting IR patterns. For example, replacing affine.load with
memeref.load in an affine loop body-such an IR pattern cannot be naturally generated during the
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func.func @main(%argd: tensor<ix6x34x62xf32>) -> () {

%0 = "tosa.max_pool2d"(%arg@) {...} : (tensor<lx6x34x62xf32>)

-> (tensor<1x4x32x62xf32>)

-

E? func.func @main(%arg@: tensor<1x6x34x62xf32>) -> () {
D %cst = arith.constant -3.40282347E+38 : 32

2 %0 = tensor.empty() : tensor<ix4x32x62xf32>

13 %1 = linalg.fill ins(%cst : £32) outs(%@ :

° tensor<1x4x32x62xf32>) -> tensor<1x4x32x62xf32>

%2 = tensor.empty() : tensor<3x3xf32>
%3 = linalg.pooling_nhwc_max {...} ins(%arge, %2 :
tensor<1x6x34x62xf32>, tensor<3x3xf32>) outs(%l :

Weiyuan Tong, Zixu Wang, Zhanyong Tang, Jianbin Fang, Yuqun Zhang, and Guixin Ye

@ Mutation

func.func @main(%argd: tensor<ix6x34x62xf32>) -> () {

%cst = arith.constant -3.40282347E+38 : 32

%0 = tensor.empty() : tensor<1x4x32x62xf32>

%1 = linalg.fill ins(%cst : £32) outs(%0 :
tensor<1x4x32x62xf32>) -> tensor<1x4x32x62xf32>

// Mixing IR Mutation

%2 = "tosa.exp"(%1) : (tensor<1x4x32x62xf32>) ->

=) tensor<1lx4x32x62xf32>

%3 = "tosa.add"(%0,%2) -> tensor<1x4x32x62xf32>

%4 = tensor.empty() : tensor<3x3xf32>

// Similar Operation Replacement

%5 = linalg.pooling_nhwc_min {...} ins(%arge, %4 :
tensor<1x6x34x62xf32>, tensor<3x3xf32>) outs(%3 :

tensor<1x4x32x62xf32>) -> tensor<1x4x32x62xf32> tensor<1x4x32x62xf32>) -> tensor<1x4x32x62xf32>

} }

Fig. 6. Example of mutation on hybrid IR, which is derived from lowering tosa IR.

lowering process. In our work, all similar operations are automatically collected using a script that
parses operation definition specification documents.
Mixing IR Mutation (MIM). Mixing mutation aims to enhance the complexity of the lower-level
IR by introducing the features provided by the higher-level abstractions. In this paper, mixed
mutation is implemented by inserting operations of higher-level dialects into the lower-level IR.
Then, a series of operations are inserted into IR by reusing the aforementioned tosa IR generator,
while maintaining valid connectivity with the original IR. As shown in Figure 6, MLIRTRACER
inserts two new tosa operations (i.e., tosa.exp and tosa.add) into the original IR, altering the original
dataflow and enhancing the dialect diversity of the hybrid representation.

In SOR, each similar operation pair is validated for effectiveness through pre-executed replace-
ment, ensuring the compatibility of the replacement mutations during fuzzing. In MIM, we develop
an analyzer to identify feasible insertion points, and the operations to be inserted are created based
on operation specifications, which minimizes the likelihood of producing invalid IR. Furthermore,
each mutated IR undergoes validation by the MLIR’s built-in verifier before progressing to the next
stage. The verifier rigorously checks the IR, rejecting any that do not meet MLIR’s requirements,
ensuring that MLIRTRACER can explore edge cases while maintaining syntactic validity.

4 Experimental Setup

4.1 Research Questions

We evaluate the effectiveness of MLIRTRACER by addressing the following research questions:

RQ1: Can MLIRTRACER detect previously unknown bugs? (Sec. 5.1)

RQ2: How does the effectiveness of MLIRTRACER compare with state-of-the-art fuzzing tech-
niques in testing the MLIR infrastructure? (Sec. 5.2)

RQ3: Are all components of MLIRTRACER contributing positive improvements to its final effec-
tiveness? (Sec. 5.3)

RQ4: How effective is MLIRTRACER’s directed testing compared to random testing? (Sec. 5.4)

4.2 Implementation

We implement MLIRTRACER with the following main components:

Generator. Our test case generator is implemented as an MLIR pass, following Algorithm 1 to
construct the tosa graph. MLIRTRACER initializes the seed pool with the generated tosa graph- its
superiority has been confirmed in our study. Note that the seed pool can be initialized using any
MLIR program.

IR analyzer. We implement an IR analyzer that extracts all dialects and operations from the input
MLIR program. With the IR analyzer, we conduct our directed testing strategy, which includes
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selecting bug-prone dialects, applying specific lowering and transformation passes, and performing
mutation on specific operations.

Mutator. We apply two mutation methods to increase seed space, with each method being randomly
applied during the mutation process.

Directed testing. We implement the top-down testing strategy based on Algorithm 2. The directed
testing focuses on bug-prone dialects, progressively lowering the Tosa IR along these dialects, and
testing specific optimizations and transformations on them. MLIRTRACER also performs extensive
testing without specifying the lowering direction, covering a broader range of dialects.
Executor. Once MLIRTRACER selects a seed file and specifies the corresponding pass sequence,
they are sent to a sub-process for running transformation and conversion on the MLIR program. If
a crash occurs during this process, it indicates that the specific pass sequence in the MLIR program
triggers a bug. Additionally, once executed successfully, the newly transformed or lowered IRs will
be added to the seed pool for future runs.

Bug Reporter. MLIRTRACER automatically filters duplicate bugs by checking error messages to
identify unique bugs. Ultimately, we report minimized test cases and steps to reproduce the bugs to
the MLIR compiler infrastructure developers.

4.3 Compared Work

To answer RQ2, we compared MLIRTRACER with the existing fuzzers specifically targeting MLIR
compiler infrastructure, as well as high-level source program generators that can be adapted for
indirect fuzzing MLIR.

e MLIRSmith [53]: This is the first fuzzing technique specifically targeting MLIR. It follows a
pure generation-based approach, which randomly constructs MLIR programs according to their
grammar.

e MLIRod [50]: This is the state-of-the-art fuzzing technique for fuzzing MLIR. The random
generation approach of MLIRSmith restricts the exploration of the input space. To resolve this
limitation, MLIRod designs a set of dependency-targeted mutation rules to drive the fuzzing
process toward increasing operation dependency coverage.

e NNSmith [40]: This is one of the state-of-the-art test generators for fuzzing deep learning
compilers by generating ONNX computation graphs. Its generated graph-level model can be
transformed into a format acceptable to MLIR through the available front-end and then utilized
as seeds for fuzzing MLIR. In this work, we run a MLIRTRACER variant of NNSmith’s model seeds
(transformed into MLIR programs).

4.4 Evaluation Metrics

We use the following metrics for evaluation:

Number of Detected Bugs. We count the actual bugs detected by MLIRTRACER based on fixes
and developers’ confirmation. We also present the unique bugs revealed by dialect-specific passes.
This can help identify components that may require additional attention.

Dialect and Operation Coverage. Given the large number of dialects, we measure the covered
dialect to examine the scope of the test across the entire MLIR infrastructure. Following existing
work on testing DL library or compiler [27, 56], we also use operation coverage (i.e., API coverage)
as an important metric for evaluating testing adequacy.

Code Coverage. For comparison, we measure branch coverage over MLIR’s source code, which is
collected using the llvm-cov [9] tool.

Valid Testing Rate. To compare our directed testing strategy with random testing, we also present
the percentage of valid tests compared to the total number of tests conducted. Valid testing refers to
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Table 3. Summary of Detected Bugs

BudID | Status | Root Cause | Pass Category || BudID | Status | Root Cause | Pass Category
#58643 *Fixed - Transformation (affine) #58649 Fixed ICL Conversion (affine)
#58658 *Fixed - Transformation (affine) #58664 *Fixed - Transformation (affine)
#59929 | Reported - Conversion (affine) #59932 Fixed 1A Transformation (scf)
#60579 *Fixed - Transformation (affine) #60922 *Fixed UD Conversion (async)
#61085 *Fixed ICL Conversion (linalg) #61088 *Fixed - Transformation (Bufferization)
#61107 Fixed v Conversion (scf) #61154 *Fixed ICL Conversion (memref)
#61155 *Fixed ICL Conversion (memref) #61167 Fixed ICL Transformation (affine)
#61282 Reported IMA Transformation (affine) #61288 | Reported - Transformation (affine)
#61292 *Fixed IMA Transformation (affine) #61304 Fixed ICL Conversion (tosa)
#61306 *Fixed - Conversion (vector) #61308 Fixed ICL Transformation (affine)
#61309 Fixed ICL Conversion (affine) #61310 Fixed ICL Transformation (affine)
#61311 Fixed 1A Transformation (Bufferization) #61342 | Reported 1A Conversion (scf)
#61343 *Fixed 1A Conversion (vector) #61344 Fixed v Conversion (tosa)
#61345 Fixed ICL Transformation (memref) #61367 Fixed ICL Transformation (memref)
#61371 Fixed ICL Transformation (affine) #61372 fixed ICL Conversion (vector)
#61375 Reported - Transformation (Bufferization) #61376 *Fixed UD Conversion (vector)
#61377 *Fixed - Transformation (spirv) #61378 Fixed v Conversion (tosa)
#61383 Reported - Conversion (tosa) #61385 *Fixed ICL Conversion (tosa)
#61526 Reported IMA General Transformation #61527 *Fixed - Transformation (func)
#61528 Fixed 1A Transformation (affine) #61529 *Fixed ICL Transformation (affine)
#61530 Fixed ICL Transformation (linalg) #61534 Fixed ICL Transformation (affine)
#61578 Fixed 1A General Transformation #61707 Fixed 1A Transformation (sparse)
#61709 *Fixed - Transformation (linalg) #61710 Fixed IMA Transformation (spirv)
#61715 | Confirmed - Others #61716 | Reported - Others

#61717 Fixed 1A Conversion (func) #61734 *Fixed - Transformation (memref)
#61735 | Confirmed ICL Others #61793 *Fixed ICL Transformation (sparse_tensor)
#61795 *Fixed - Transformation (arith) #61844 *Fixed - Others

#61845 Fixed ICL Transformation (linalg) #61858 Fixed ICL Others

#61863 | Confirmed UD Conversion (tosa) #61867 | Reported UD Others

#61870 | Reported - Others #61871 Fixed 1A Others

#61872 Fixed 1A Conversion (func) #61842 Fixed ICL Conversion (affine)
#61832 Fixed 1A Others #62315 Fixed 1A Transformation (linalg)
#62317 Fixed UD Others #62318 Fixed ICL Transformation (spirv)
#62319 *Fixed ICL Conversion (linalg) #62323 | Reported - Transformation (affine)
#62352 *Fixed - Conversion (affine) #62367 Fixed 1A Conversion (linalg)
#62368 Fixed IMA Transformation (spirv) #62369 Fixed 1A Transformation (Bufferization)
#62375 Reported - Conversion (vector)

" Fixed = The developer silently fixed a bug after we reported it.
cases where the input IR can be successfully transformed, triggering the compiler’s actual processing
logic rather than being disregarded. This metric is essential for measuring the effectiveness of the
testing process.

4.5 Experimental Configurations

To answer RQ1, we applied MLIRTRACER to fuzz MLIR compiler infrastructure (from revision e6¢23f4
to revision da0730b) for 4 months to detect previously unknown bugs. To answer RQs 2-4, we
selected the revision eb6014 (aligned with the released implementations of MLIRSmith and MLIRod)
to perform fair comparisons. We adopted the released implementation of the compared works
and used the recommended parameter settings. MLIRod initializes the seed pool using the state-
of-the-art MLIR program generator (i.e., MLIRSmith). The DL models generated by NNsmith are
transformed into a format acceptable to MLIR by the front-end tool onnx-mlir [13]. For MLIRTRACER
and its variants in the comparison experiment, the initial seed pool size was set to 500. In terms
of tosa IR generation, we set the maximum number of operators (i.e., OpNum) to 30. For directed
fuzzing, the seed size was set to 50 for each round of seed selection. During the experiments,
directed fuzzing was enabled by default, except for the directed fuzzing evaluation experiment. To
ensure sufficient testing, each experiment was conducted with a default time budget of 24 hours.
Additionally, we repeated each experiment five times to reduce the influence of randomness. All
experiments were conducted on a machine with 62 cores (Intel(R) Xeon(R) Gold 6238R CPU @
2.20GHz), 376GB RAM, and Ubuntu 20.04.6 LTS.
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1 #map = affine_map<(d0)[s0] -> (2, -dO + s0)>
2 func.func @main(%arg0: memref<i64>) {
3 %cl = arith.constant 1 : index 1 #map = affine_map<() -> (0)>
4 %c2 = arith.constant 2 : index 2 func.func @main(%arg0: tensor<f32>) —> vector<1xf32> {
5 %c4 = arith.constant 4 : index 3 %0 = llvm.mlir.constant (0.000000e+00 : f32) : {32
6 scf.for %argl = %cl to %c4 step %c2 { 4 %1 = vector.transfer_read %arg0[], %0
7 %0 = affine.min #map(%arg1)[%c4] {permutation_map = #map} : tensor<f32>, vector
8 } <1xf32>
9 return 5 return %1 : vector<1xf32>
10 } 6 }
(a) Bug #61832: Incorrect Assertion. (b) Bug #61376: Unregistered Dialects.

1 func.func @main(%arg0: tensor<?xf32>) —> tensor<?xi32> {

2 %0 = "tosa.argmax"(%arg0) faxis =1 : i64} : (tensor<?xf32>) -> tensor<?xi32>
3  return %0 : tensor<?xi32>
4

}

(c) Bug #61344: Incomplete Verifier.

1 spirv.module Logical GLSL450 requires # spirv.vce <v1.0, [Shader], []> {

2 spirv.func @main(%arg0: ! spirv.ptr <! spirv.struct <(! spirv.array <1 x £32, stride =4> [0])>, StorageBuffer>) "None" {

3 %0 = spirv.Constant 0 : i32

4 %1 = spirv.AccessChain %arg0[%0, %0] : ! spirv.ptr <! spirv.struct <(! spirv.array <1 x {32, stride =4> [0])>,
StorageBuffer >, i32, i32

5 spirv.Return

6 }

7}

(d) Bug #62368: Invalid Memory Access.

Fig. 7. Example bugs detected by MLIRTRACER.
5 Experimental Results

5.1 Previously Unknown Bugs Detected by MLIRTRACER

Bug Statistics. To date, we have reported 73 crash bugs detected by MLIRTRACER, where 61 bugs
have been fixed or confirmed by developers. Of these 61 bugs, 22 are conversion bugs, which occur
during the dialect conversion, and 32 are transformation bugs, which crash on invoke transformation
pass. The remaining 7 bugs do not fall into either of these two categories and are labeled as ’others’.
The detailed results are shown in Table 3. Notably, most of the transformation bugs were specific
to dialect, with only 2 being related to general transformation.
Case Study. According to the developers’ discussion and corresponding patches, we further
summarized the root causes of these bugs, categorized as including Incorrect Assertion (IA),
Unregistered Dialects (UD), Incomplete Verifier (IV), Invalid Memory Access (IMA), and Incorrect
Code Logic (ICL). Moreover, for each root cause, we selected one bug as the illustrative example.
Incorrect Assertion. There are numerous assertions in MLIR compiler infrastructure designed to
verify internal states. However, incorrect assertions can lead to crashes during the transformation or
optimization process. For example, Bug#61832 (Figure 7a) was caused due to an incorrect assertion
in the “-test-loop-unrolling” pass. In this pass, there is an assertion upperBoundUnrolledCst <= ubCst
which ensures that after the loop is unrolled, the upper bound computed upperBoundUnrolledCst
does not exceed the upper bound ubCst of the original loop. This assertion is incorrect in some
cases, such as when the step size is greater than 1, to keep the number of iterations in the unrolled
loop the same as in the original loop, the upperBoundUnrolledCst may be greater than the ubCst.
This bug has been fixed by removing this incorrect assertion in loop unrolled.
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Table 4. Comparison with Existing Work

Tools ‘ #Bug # Dialects # Operations
MLIRSmith 16 12 172
MLIRod 19 20 350
MLIRTRACER 51 28 404

MLIRTRACER (NNSmith seeds) 41 23 278

Unregistered Dialects. To convert an operation from one dialect to another, the target dialect
must be registered in the pass. Without this registration, the transformation process will crash. For
example, Bug#61376 (Figure 7b) was triggered by the failure to register the tensor dialect for the
“-convert-vector-to-scf” pass. During the lowering of the vector dialect, tensor.extract operation
would be created, but since it was not registered in this MLIRContext, this led to a crash.

Incomplete Verifier. MLIR infrastructure uses a verifier to assess the validity of the operation. This
root cause is the absence or incompleteness of a necessary verifier, leading to a crash when the pass
activates on incompatible operations. Bug#61344 (Figure 7c) exposes an incomplete verifier issue
caused by “tosa-to-linalg” pass working on the wrong axis. This test case is “invalid”, generated by
MLIRTRACER to deliberately violate the attribute constraint defined in the operation specification.
The input tensor is one-dimensional and requires reduction along axis 0, not axis 1. The issue was
resolved by adding a verifier that ensures the operation is valid by checking if the axis falls within
the rank of the input tensor.

Invalid Memory Access. Invalid memory access typically occurs due to out-of-bound access or
NULL pointer dereference. Bug #62368 (Figure 7d) triggers this bug when using “-spirv-unify-
aliased-resource” work on function arguments. This bug has been fixed by adding a check to ensure
that the operation is not a nullptr.

Incorrect Code Logic. Code logic refers to the implementation of an algorithm (e.g., an optimization
of loop tiling). Bugs in code logic often arise due to the complexity of compiler design. We have
introduced such a bug (#58649) in Section 2.2.

5.2 Comparison with Existing Work

Table 4 shows the number of detected bugs and the number of covered dialects (and operations),
respectively. The reported results are the average values from five experiments. From this table,
MLIRTRACER detected more bugs than other compared techniques during the 24-hour fuzzing
process, suggesting better bug-exposing capability. MLIRTRACER detected 3.19% and 2.68X more
bugs than MLIRSmith and MLIRod. Moreover, MLIRTRACER outperforms both techniques in terms
of covered dialects and operations. Specifically, MLIRTRACER covered 1.4X and 2.33X more dialects
and 1.15% and 2.35X more operations than MLIRod and MLIRSmith, respectively. Further, we can
see that with tosa graph generator, MLIRTRACER discovered 1.24X more bugs, 1.22Xx more dialects,
and 1.45X more operations than MLIRTRACER with NNsmith seeds. Notably, the MLIRTRACER with
NNSmith seeds beats the best state-of-the-art technique (i.e., MLIRod) by exposing 2.16X more
bugs.

Further, we investigated the reason for the superiority of MLIRTRACER by measuring the covered
branches in MLIR compiler infrastructure. Figure 8 presents the branch coverage trends for both
MLIRTRACER and the compared existing work within the default 24-hour budget. From this figure,
the existing techniques tend to saturate very quickly, while MLIRTRACER is able to keep coverage
growth within the fuzzing time. To show the unique coverage for each studied technique, In total,
MLIRTRACER can at best achieve 43,273 branch coverage, which is 1.4X higher than MLIRod and
MLIRSmith, and 1.3x higher than MLIRTRACER with NNSmith seeds. In particular, 6,384 branches
covered by MLIRTRACER could not be covered by the compared techniques, demonstrating the
effectiveness of MLIRTRACER.
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coverage over time on different
fuzzers. Fig. 9. Ablation study of MLIRTRACER’s components.

Overall, utilizing the MLIR programs transformed from high-level source programs generated
by NNSmith is not effective enough to fuzz MLIR. These programs are constructed based on the
characteristics of the target high-level programming languages rather than MLIR. As a result,
the diversity of such MLIR programs is limited, leading to fewer dialects and operation coverage,
code coverage, and fewer detected bugs compared to MLIRTRACER. Furthermore, MLIRTRACER
outperforms the existing techniques MLIRSmith and MLIRod across all metrics. This is mainly
because they focus on test case generation or mutation, which lacks the necessary guidance for
exploring a large code base of MLIR and does not consider the dependency of IR and passes. In
contrast, MLIRTRACER considers the mutual effect of IR and pass, directs the fuzzer to bug-prone
modules, and thus significantly improves the fuzzing effectiveness.

5.3 Ablation Study of MLIRTRACER

Recall that MLIRTRACER consists of three components: 1) a tosa graph generator that produced the
highest-level MLIR programs (Sec. 3.2), 2) directed fuzzing strategy that guides exploration towards
areas likely to expose bug (Sec. 3.3), and 3) mutators that mutate hybrid multi-level IR (Sec. 3.4).
We evaluate the impact of tosa IR diversity for MLIR testing by variant TRACER-A. TRACER-A
uses an API-level tosa IR generator that generates IR with only one tosa operator as initial seeds.
We evaluate the effectiveness of the proposed directed fuzzing scheme using three MLIRTRACER
variants, TRACER-R, TRACER-D, and TRACER-D*. TRACER-R randomly selects a seed from the seed
pool and randomly selects passes in MLIR compiler infrastructure to transform or optimize it, as
done in MLIRSmith and MLIRod. In TRACER-D, the dependency between IR and pass is considered,
but seed selection and directed lowering are disabled. TRACER-D* implements the whole directed
testing strategy. In all of the above variants, the mutation strategy is disabled to avoid the test
bias caused by the randomness of the test case mutation. We compared MLIRTRACER with all five
variants with a test time budget of 24 hours.

The experimental results for all variants are also shown in Figure 9, which presents the coverage
trends and the number of bugs detected by each variant. TRACER-A can expose 39 bugs in MLIR,
indicating the effectiveness of our top-down testing. By augmenting the diversity of tosa IR,
TRACER-D* improves TRACER-A by exposing 6 more bugs. In terms of code coverage, TRACER-D*
also outperforms TRACER-A. The main reason is that only generating one-operator tosa IR fails to
test transformations working on the multiple-operator pattern. Comparing TRACER-D with TRACER-
R, we observe that TRACER-D achieves 1.4X code coverage and detects 1.6X bugs than TRACER-R.
Likewise, comparing TRACER-D* with TRACER-D, we can see that with our directed testing strategy,
TRACER-D* discovered 1.55% bugs, suggesting a better bug-exposing capability. In terms of code
coverage, the improvement of TRACER-D* over TRACER-D is 1.12X. Even if the bug-proneness of
dialects becomes unavailable (as discussed in Section 6), MLIRTRACER’s top-down testing strategy,
based on dependency-guided lowering, remains effective. Although its bug detection performance is
inferior to that of directed testing, it still outperforms random testing. As a result, this confirms that
both our dependency-guided strategy and bug-proneness guidance are effective, and together they
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Fig. 10. Directed Testing vs. Random Testing.
can fuzz the MLIR’s hierarchical structure space in a top-down way, ensuring directed exploration
of bug-prone areas. Lastly, the default MLIRTRACER outperforms TRACER-D* in both bug detection
and code coverage, as mutating hybrid IR helps generate more interesting IR patterns and improve
test coverage.

5.4 Directed Testing vs. Random Testing

The directed testing strategy is the main contribution of MLIRTRACER, and thus we further investi-
gate why this strategy outperforms the random testing method for MLIR fuzzing. Figure 10a shows
the growth of bugs across 24 hours. TRACER-D* outperforms the other two variants in terms of
both bug count and detection efficiency. With directed fuzzing, TRACER-D* can quickly expose bugs
early in the testing process. Specifically, in the first 4-hour window, TRACER-D* and TRACER-D
detected 33 and 24 bugs, respectively, while TRACER-R, using random testing, exposed only 13 bugs.
Although random testing can also detect these bugs, it takes more time.

Figure 10b further illustrates the proportion of valid tests (i.e., tests in which the compiler passes
are actually executed) throughout the fuzzing process. The valid testing rate of TRACER-R is only
9.1%, indicating that random testing is very inefficient for fuzzing MLIR. Random testing lacks
knowledge of compiler internals, leading to most passes being simply neglected by the MLIR
compiler. In contrast, TRACER-D implements dependency-based testing, achieving a higher valid
testing rate of 56.4%, with a 47.3% improvement over random testing. The superiority of dependency-
based testing lies in its significantly improved efficiency, as it performs dialect conversion with
the guidance of lowering rules. Compared TRACER-D* with TRACER-D, we observe that TRACER-D*
achieves 9.1% higher valid testing rates. The reason behind this could be that directed testing
specifies the direction of IR lowering, while arbitrary lowering for a hybrid IR could lead to more
conversion failures due to possible implicit constraints in the order of dialect conversion.

Further, we extracted the shortest bug-triggering sequences and conducted a statistical analysis
on the bugs detected by MLIRTRACER. On average, the length of the bug-triggering paths (i.e., the
number of enabled passes) is approximately 11, while the length of the lowering paths (considering
only the lowering passes) is around 5. The longest bug-triggering path length is 24. This highlights
the importance of systematically exploring the code space, as bugs in MLIR are distributed in
components of different dialects, and bugs in lower-level dialects often require specific, longer
sequences to be triggered. MLIRTRACER’s dependency-guided strategy facilitates top-down explo-
ration of the code space, while the directed strategy further focuses on vulnerable areas to improve
the efficiency of bug discovery.

6 Threats to validity

The threats to internal validity mainly lie in the potential faults in the implementation of MLIR-
TRACER. To reduce this kind of threat, we carefully checked all our code via code review and
designing test cases.
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The threats to external validity mainly lie in the evolution of MLIR. The MLIR framework is
rapidly evolving, with an increasing diversity of domain-specific and custom IR in MLIR ecosystems.
This issue can be mitigated due to the MLIRTRACER is easy to extend. To maintain MLIRTRACER’s
effectiveness on new MLIR versions, it is necessary to update the tosa operation specifications
(if tosa operators get changed), construct lowering rules for emerging or custom dialects, and
introduce new transformation passes. In addition, MLIRTRACER relies on bug proneness within
dialect implementations to guide testing. This necessitates regularly collecting recent git commits
and retraining the model, although the training process can largely be automated. If git history
becomes unavailable as MLIR evolves and matures, static code features from source code (see
Table 1 could still serve as a metric for indicating bug proneness.

The threats to construct validity mainly lie in threshold settings in MLIRTRACER. The threshold o,
as discussed in Section 3.3, controls the number of bug-prone dialects. A threshold that is too high
results in identifying too few dialects due to excessive function filtering. On the other hand, a low
threshold may lead to low confidence scores, which can cause resources to be wasted on testing
non-critical components. In this paper, we set ¢ to 0.7, achieving a balance between reliability in
bug-proneness identification and the number of dialects identified as bug-prone.

7 Related work

MLIR Fuzzing. Recently, two MLIR fuzzing techniques have been proposed, i.e., MLIRSmith [53]
and MLIRod [50]. These techniques focus on generating hybrid MLIR programs to detect bugs.
MLIRSmith directly constructs MLIR programs containing 12 dialects according to the template,
while MLIRod further mutates these MLIR programs as test inputs. However, these methods are
inefficient because they perform random testing without leveraging any knowledge of MLIR
compiler internals.

Generation-based Fuzzing. There has been much research on generation-based fuzzing for DL
libraries or compilers [26, 49, 54, 56, 58]. FreeFuzz [56] performs API-level fuzzing by mining API
inputs from open source. Similarly, DocTer [58] extracts specific input constraints to generate valid
API input. However, these API-based fuzzers cannot detect bugs triggered by a specific sequence of
APIs, leading to an inefficient bug-revealing ability. Subsequent studies have proposed by generating
diverse computation graphs to improve test effectiveness [31, 40, 41, 55]. LEMON [55] presents a
mutation-based approach. Muffin [31] generates a multi-operator model layer by layer for testing
DL libraries. NNSmith [40] generates graphs and operator attributes using an SMT solver to meet
connection constraints between operators. Nerui [41] improves model generation by inferring
operator rules automatically. These approaches focus on finding bugs in traditional DL libraries or
DL compilers, but they are not tailored for MLIR testing.

Directed Fuzzing. Recent coverage-guided fuzzers have been proposed in the field of deep learn-
ing [42, 59-61]. The state-of-the-art Tzer [42] presents a coverage-guided fuzzing framework to
detect potential bugs in tensor compilers. However, this approach is not suitable for MLIR testing
because it cannot capture complex code paths and provide effective guidance for covering deep
code paths. Our directed fuzzing approach differs from previous work and is motivated by new
features of the MLIR compiler framework, which provide targeted guidance for fuzzing MLIRs
more effectively.

8 Discussion

Scalability. Since MLIR serves as an upstream extension of LLVM, MLIRTRACER can be extended to
support LLVM testing by lowering the generated MLIR programs into LLVM IR. Although our top-
down testing strategy cannot be directly applied to LLVM due to its single-level structure, the key
idea of directed testing strategy—prioritizing testing components with higher bug-proneness—can
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still be effectively adapted and utilized for LLVM testing. Moreover, while MLIRTRACER approach
may not be directly applicable to some existing compilers at present, multi-level IR architectures are
emerging as a new trend in compilers, e.g., CIRCT [4] and Tensor Comprehensions [52], indicating
that MLIRTRACER will have broader generalizability in the future.

Significance of MLIRTRACER. Many compilers are built on top of MLIR compiler infrastructure,
and fuzzing it can contribute to ensuring the quality and robustness of all MLIR-based compil-
ers. Now, MLIR’s growing use in fields like machine learning and high-performance computing,
demands robust tools for testing. MLIRTRACER highlights the importance of knowledge of MLIR
infrastructure internals and the critical need for guidance from top to down in exploring the hierar-
chical space of MLIR. By overcoming the limitations of random fuzzing methodology, MLIRTRACER
represents a significant advancement in the fuzzing of MLIR compiler infrastructures. We believe
that MLIRTRACER will inspire future work in this promising direction.

Future Work. Following MLIR’s design philosophy of progressive lowering, MLIRTRACER currently
focuses on exploring the hierarchical, modular structure of MLIR through multiple steps, rather
than employing an end-to-end code generation path. In addition, under the guidance of dependency
lower rules, while MLIRTRACER achieves 65.5% valid testing rate, it was still not enough to build
the entire end-to-end code generation path. Our future work is to excavate possible implicit
constraints between passes and expand MLIRTRACER to achieve end-to-end inference, which will
reveal inconsistencies and detect more crashes. This enhancement will involve the development of
algorithms and techniques to identify and resolve discrepancies, irregularities, or conflicts in the
code, culminating in a more comprehensive and robust testing framework.

9 Conclusion

This paper presents MLIRTRACER, a top-down directed testing methodology that effectively explores
MLIR’s hierarchical code space. It begins at the highest abstraction level, progressively lowers
through various levels of abstraction, and tests the transformation functionalities at each level.
MLIRTRACER builds a test case generator based on the highest dialect to create diverse and valid
tosa IRs. We consider dialect conversion dependencies to progressively lower Tosa IRs in the
correct order. To handle the large test space of MLIR, we incorporate directed testing, which
guides the fuzzer toward specific bug-prone areas to improve testing efficiency. In addition, we
propose mutation strategies that mutate the hybrid IR to enhance test coverage. By now, we have
successfully detected 73 newly found bugs, with 61 fixed. This demonstrates the effectiveness of
MLIRTRACER in improving the quality and reliability of MLIR-based systems.

10 Data Availability
Our data and tool are publicly available at [21].
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