
Evaluating and Improving
Neural Program-Smoothing-based Fuzzing

Mingyuan Wu
†

Southern University of Science and

Technology, Shenzhen, China and the

University of Hong Kong, Hong Kong,

China

11849319@mail.sustech.edu.cn

Ling Jiang, Jiahong Xiang,

Yuqun Zhang*

Southern University of Science and

Technology

Shenzhen, China

{11711906,11812613,zhangyq}@mail.sustech.edu.cn

Guowei Yang

The University of Queensland

Brisbane, Australia

guowei.yang@uq.edu.au

Huixin Ma, Sen Nie, Shi Wu

Tencent Security Keen Lab

Shanghai, China

{huixinma,snie,shiwu}@tencent.com

Heming Cui

The University of Hong Kong

Hong Kong, China

heming@cs.hku.hk

Lingming Zhang

University of Illinois

Urbana-Champaign, USA

lingming@illinois.edu

ABSTRACT
Fuzzing nowadays has been commonly modeled as an optimization

problem, e.g., maximizing code coverage under a given time budget

via typical search-based solutions such as evolutionary algorithms.

However, such solutions are widely argued to cause inefficient

computing resource usage, i.e., inefficient mutations. To address

this issue, two neural program-smoothing-based fuzzers, Neuzz
and MTFuzz, have been recently proposed to approximate pro-

gram branching behaviors via neural network models, which input

byte sequences of a seed and output vectors representing program

branching behaviors. Moreover, assuming that mutating the bytes

with larger gradients can better explore branching behaviors, they

develop strategies to mutate such bytes for generating new seeds

as test cases. Meanwhile, although they have been shown to be

effective in the original papers, they were only evaluated upon a

limited dataset. In addition, it is still unclear how their key tech-

nical components and whether other factors can impact fuzzing

performance. To further investigate neural program-smoothing-

based fuzzing, we first construct a large-scale benchmark suite

with a total of 28 popular open-source projects. Then, we exten-

sively evaluate Neuzz and MTFuzz on such benchmarks. The eval-

uation results suggest that their edge coverage performance can

be unstable. Moreover, neither neural network models nor muta-

tion strategies can be consistently effective, and the power of their

gradient-guidance mechanisms have been compromised. Inspired

† Mingyuan Wu is also affiliated with the Research Institute of Trustworthy Au-

tonomous Systems, Shenzhen, China.

* Yuqun Zhang is the corresponding author. He is also affiliated with the Research

Institute of Trustworthy Autonomous Systems, Shenzhen, China and Guangdong

Provincial Key Laboratory of Brain-inspired Intelligent Computation, China.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00

https://doi.org/10.1145/3510003.3510089

by such findings, we propose a simplistic technique, PreFuzz, which
improves neural program-smoothing-based fuzzers with a resource-
efficient edge selection mechanism to enhance their gradient guid-

ance and a probabilistic byte selection mechanism to further boost

mutation effectiveness. Our evaluation results indicate that PreFuzz
can significantly increase the edge coverage of Neuzz/MTFuzz, and
also reveal multiple practical guidelines to advance future research

on neural program-smoothing-based fuzzing.

ACM Reference Format:
Mingyuan Wu

†
, Ling Jiang, Jiahong Xiang, Yuqun Zhang*, Guowei Yang,

Huixin Ma, Sen Nie, Shi Wu, Heming Cui, and Lingming Zhang. 2022.

Evaluating and Improving Neural Program-Smoothing-based Fuzzing. In

44th International Conference on Software Engineering (ICSE ’22), May 21–
29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3510003.3510089

1 INTRODUCTION
Fuzzing [44] nowadays has been widely adopted to detect soft-

ware bugs or vulnerabilities via feeding invalid, unexpected, or

random data as inputs for executing programs under test. To date,

many existing approaches model fuzzing as an optimization prob-

lem and attempt to solve it by augmenting code coverage via

mutating program seed inputs under a given time budget. Such

coverage-guided fuzzing tasks can be typically resolved by applying

search-based optimization algorithms such as evolutionary algo-

rithms [13, 15, 42, 49, 51]. Specifically, test inputs are iteratively fil-

tered, mutated, and executed such that the test results can approach

the optimal solutions to satisfy the fitness functions of the adopted

evolutionary algorithms, which are usually designed to maximize

code coverage. However, evolutionary fuzzers have been argued

that they fail to “leverage the structure (i.e., gradients or higher-

order derivatives) of the underlying optimization problem” [41]. To

address such issue, neural program-smoothing-based techniques,

e.g., Neuzz [41] and MTFuzz [40], have been recently proposed to

exploit the usage of gradients for fuzzing via neural network mod-

els. Specifically, they first adopt a neural network which, given the

byte sequence of a seed as input, outputs a vector representing its

associated program branching behaviors. Next, they compute the

https://doi.org/10.1145/3510003.3510089
https://doi.org/10.1145/3510003.3510089
https://doi.org/10.1145/3510003.3510089

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA M. Wu et al.

gradients of the collected output vectors with respect to the bytes

of the given seed. Accordingly, they sort the resulting gradients and

develop strategies to mutate the bytes with larger gradients more

aggressively. Eventually, all the resulting mutants are used as test

cases for fuzzing. Note thatMTFuzz further attempts to outperform

Neuzz by leveraging the power of multi-task learning and adopts a

dynamic analysis module to augment the mutation strategy. In their

original papers, Neuzz outperforms 10 existing coverage-guided

fuzzers on 10 real-world projects by at least 3X more edge coverage

over 24-hour runs and further detects 31 previously-unknown bugs.

Compared to Neuzz and four other state-of-the-art fuzzers,MTFuzz
achieves 2X to 3X edge coverage upon all the benchmark projects

and exposes 11 previously-unknown bugs which cannot be detected

by the other fuzzers.

Despite the effectiveness shown in their original papers, the

evaluation on Neuzz and MTFuzz can be potentially biased due

to their limited benchmark suite with only 10 projects. Moreover,

Neuzz and MTFuzz adopt a different edge coverage metric from

many existing fuzzers [4, 9, 27, 31, 51] that can potentially bias the

performance comparison. Furthermore, the investigation on the

factors that can impact their edge coverage performance is rather

limited, i.e., they only simply presented the overall effectiveness

of the techniques without investigating the contributions made

by individual components, e.g., the model structure, the gradient

guidance mechanism, and the mutation strategy.

In this paper, to enhance the understanding of the effectiveness

and efficiency of program-smoothing-based fuzzing, we first con-

struct a large-scale benchmark by retaining all the projects adopted

in the original Neuzz andMTFuzz papers (except one that we fail to
run) and adding 19 additional open-source projects that were fre-

quently adopted in recent fuzzing research work. We then conduct

an extensive evaluation for Neuzz and MTFuzz accordingly. The
evaluation result suggests while Neuzz andMTFuzz can outperform

AFL on all the studied benchmark projects by 10.5% and 8.9% on

average in terms of edge coverage respectively,MTFuzz does not al-
ways outperform Neuzz and both their edge coverage performances

are highly program-dependent. We also find neither their mutation

strategies nor neural network models can be consistently effective.

Meanwhile, although the gradient guidance mechanisms can be

promising, their strengths have not been fully leveraged.

Inspired by the findings of our study, we propose an improved

technique, namely PreFuzz [38], upon neural program-smoothing-

based fuzzing. In particular, we develop a resource-efficient edge
selection mechanism to facilitate the exploration on unexplored

edges rather than the already covered edges. Moreover, we also

apply a probabilistic byte selection mechanism guided by gradient

information to Neuzz andMTFuzz to further boost edge exploration.
Our evaluation results suggest that PreFuzz can significantly out-

perform Neuzz and MTFuzz, i.e., 43.1% more than Neuzz and 45.2%

more than MTFuzz averagely in terms of edge coverage.

To conclude, this paper makes the following contributions:

• Dataset. A dataset including 28 real-world projects that can

be used as the benchmarks for future research on fuzzing.

• Study. An extensive study of neural program-smoothing-

based fuzzers on the large-scale benchmark suite, with de-

tailed inspection of both their strengths and limitations.

• Technical improvement. A technique improving neural

program-smoothing-based fuzzers by combining a resource-
efficient edge selection mechanism and a probabilistic byte
selection mechanism.

• Practical guidelines.Multiple practical guidelines for ad-

vancing future program-smoothing-based fuzzing research.

2 BACKGROUND
2.1 Coverage-guided Fuzzers
Coverage-guided fuzzers nowadays widely adopt evolutionary al-

gorithms [49] for mutation strategies since they can be advanced in

discovering program vulnerabilities without prior program knowl-

edge. In this section, we first introduce the basic framework for

evolutionary algorithms, and then illustrate how a typical coverage-

guided fuzzer AFL integrates evolutionary algorithms.

2.1.1 Evolutionary Algorithm. To solve an optimization problem,

an evolutionary algorithm (EA) adopts operations such as mutat-

ing the existing solutions to generate new solutions. Among such

generated solutions, an EA applies a fitness function to filter them

based on their quality such that the remaining ones are retained

as one population. Such process is iterated until hitting the preset

time budget with the final population returned as the solutions for

the optimization problem.

2.1.2 Integrating fuzzing with EA. Coverage-guided fuzzers often

use increased code coverage as the fitness functions. Specifically,

they usually adopt edge coverage (where an edge refers to a basic-

block-wise transition, e.g., a conditional jump in programs) to rep-

resent code coverage and retain only the seeds that can trigger

new edge coverage for further mutations. For instance, American

Fuzzy Lop (AFL) [51], a widely-used coverage-guided fuzzer, is

launched by instrumenting programs such that it can acquire and

store the edge coverage of each program seed input at runtime.

Subsequently, AFL iterates and mutates each seed input according

to its adopted evolutionary algorithm. Like most coverage-guided

fuzzers [4, 9, 27, 31], when running a seed increases edge cover-

age, AFL identifies such seed as an “interesting” seed and retains

it for further mutations. Note that the mutations in AFL consist

of two stages: the deterministic stage (AFL𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐) and the

havoc stage (AFL𝐻𝑎𝑣𝑜𝑐). In particular, AFL𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 applies a

fixed set of mutators, e.g., the bitflip, arithmetic, and interesting
value mutators, for respectively mutating the bits of each existing

“interesting” seed deterministically. After AFL𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 , all the

collected “interesting” seeds are used to launch AFL𝐻𝑎𝑣𝑜𝑐 where

random mutations, i.e., randomly chosen mutators, are iteratively

applied to the randomly selected bits of the seed inputs.

2.2 Neural Program-smoothing-based Fuzzers
Program smoothing refers to setting up a smooth (i.e., differentiable)

surrogate function to approximate program branching behaviors

with respect to program inputs [41]. While traditional program

smoothing techniques [7, 8] can incur substantial performance

overheads due to heavyweight symbolic analysis, integrating such

concept with neural network models can be rather powerful since

they can be used to cope with high-dimensional optimization tasks,

Evaluating and Improving
Neural Program-Smoothing-based Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

i.e., to resolve (approximate) complex and structured program be-

haviors. To this end, Neuzz [41] and MTFuzz [40] are proposed to

smooth programs via neural network models and guide mutations

by yielding the power of their gradients. Specifically, to formulate

the optimization problem for fuzzing, the program branching behav-

iors are defined as a function 𝐹 (𝑥), where 𝑥 represents a seed input

in terms of byte sequence and the solution is a vector representing

its associated branching behaviors. For instance, a solution vector

[1, 0, 1, ...] indicates that the first and the third edges have been

accessed/explored while the second one has not. Since 𝐹 (𝑥) is typi-

cally discrete, smoothing programs, i.e., making 𝐹 (𝑥) differentiable,

is essential to cope with the usage of gradients.

We then illustrate the rationale behind Neuzz and MTFuzz. Note
that a program execution path, i.e., a sequence of edges, can be

determined by the byte sequence of a seed input. Accordingly, an

edge can be accessed/explored when the value of its corresponding

bytes satisfies its access condition. Otherwise, one of its “sibling”

edges (i.e., edges under one shared prefix edge) can be alternatively

accessed. For instance, in Figure 1, edge 𝑒0 can be accessed when the

value of 𝑠𝑒𝑒𝑑 [𝑖] satisfies the access condition for 𝑒0, i.e., 𝑠𝑒𝑒𝑑 [𝑖] < 1.

Hence, mutating such 𝑠𝑒𝑒𝑑 [𝑖] can lead to exploring a new branching

behavior, i.e., accessing 𝑒0’s “sibling” edge 𝑒1 instead of 𝑒0.

1. x = 1;
2. z = x + y;

4. if(x > seed[i]){
5. y = z - x;
6. x++;

8. }else{
9. x = y;
10. y--;
11.}

13.x = y - z;

x = 1;
z = x + y;
if(x > seed[i]){

y = z - x;
x++;

 x = y;
 y--;

x = y - z;

e0 e1

seed i + 1i … - 1i

Figure 1: An example of neural program-smoothing rationale

Neuzz andMTFuzz assume that neural network models can iden-

tify the “promising” byte(s) (i.e., the byte(s) corresponding to the ac-

cess condition) for a previously explored edge. Specifically, the gra-

dient of such byte(s) (e.g., 𝑠𝑒𝑒𝑑 [𝑖] in Figure 1) to the explored edge

is supposed to be larger than other bytes after training (illustrated

in Section 2.2.1). Accordingly, mutating such byte(s) can indicate

that the access condition of the corresponding edge may not be sat-

isfied, i.e., potentially exploring new “sibling” edges. To summarize,

Neuzz and MTFuzz learn to extract the existing branching behav-

iors to explore new edges rather than predicting “promising” bytes

for unseen edges. In particular, their mechanisms commonly con-

sist of two steps: neural program smoothing and gradient-guided

mutations as shown in Figure 2.

2.2.1 Neural Program Smoothing. Neuzz and MTFuzz adopt an it-

erative training-and-mutation process. Under each iteration, they

train neural network models using “interesting” seed inputs col-

lected in real-time (out of the “Seed Corpus” in Figure 2). Note that

Figure 2 also shows that Neuzz and MTFuzz adopt different neural
network models which will be further illustrated in Section 2.2.3.

… …

∂e0
∂b0

⋯ ∂e0
∂bm

⋮ ⋱ ⋮
∂en

∂b0
⋯ ∂en

∂bm

Gradient
Calculation &. Sorting

Gradient-Guided
Mutation Crack

Context Sensitive

Edge Cov.

Approch Sensitive
Seed Corpus

Mutants

Neuzz &. MTFuzz

MTFuzz

MTFuzz

MTFuzzNeuzz &. MTFuzz

Stage I: Neural program smoothing

Stage II: Gradient-guided mutation

Update Seed Corpus

Figure 2: Framework of Neuzz andMTFuzz

2.2.2 Gradient-guided Mutations. After obtaining the neural net-
work models, Neuzz and MTFuzz randomly select a deterministic

number of the “interesting” seeds and the explored edges. For each

selected seed, they calculate the gradients of the selected edges

vectors with respect to all the bytes. Furthermore, all such bytes

are sorted according to their corresponding gradient rankings and

then aggregated as one vector for further mutations. In particular,

Neuzz and MTFuzz segment each selected seed such that the bytes

in the front segments have larger gradients than the bytes in the

back segments and the front segments include fewer bytes than the

back segments. Accordingly, the “promising” bytes are expected to

be located in the front segments. For any segment 𝑠𝑒𝑔, all its bytes

are simultaneously mutated for 255 times. As a result, Neuzz and
MTFuzz can explore more mutation space of the front segments

than the back ones, i.e., mutating the more “promising” bytes more

aggressively, for exploring new branching behaviors. Eventually, all

the resulting seeds after the iterative training-and-mutation process

are used as test cases for fuzzing.

2.2.3 MTFuzz vs. Neuzz. Figure 2 also demonstrates that MTFuzz
differs from Neuzz by adopting multi-task learning technique and

a dynamic analysis module to augment its mutation strategy.

In addition to the widely-used edge coverage,MTFuzz adopts two
additional tasks—the approach-sensitive edge coverage, i.e., how far

off an unexplored edge is from getting triggered, and the context-

sensitive edge coverage, i.e., the context for an explored edge, to

construct the multi-task neural network model for smoothing pro-

grams and further guiding fuzzing. Moreover, MTFuzz adopts an
independent module, namely Crack in its implementation, which

uses dynamic program analysis to explore new edges without gra-

dient information. Specifically, Crack iterates each byte of the seed

input and mutates it to observe whether the variables associated

with an unexplored branch can be also changed. If so, such byte is

identified as a “promising” byte to be mutated for 255 times.

3 EXTENSIVE STUDY
3.1 Benchmarks
Although Neuzz and MTFuzz have been shown to outperform the

existing fuzzers in terms of the edge coverage in the original pa-

pers [40, 41], such results can be possibly biased by the used subject

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA M. Wu et al.

Table 1: Statistics of the studied benchmarks
Benchmark Class LOC Package

bison LEX & YACC 18,701 3.7

xmlwf XML 6,871 expat-2.2.9

mupdf PDF 123,562 1.12.0

pngimage PNG 11,373 libpng-1.6.36

pngfix PNG 12,173 libpng-1.6.36

pngtest PNG 11,323 libpng-1.6.36

tcpdump PCAP 46,892 4.99.0

nasm ASM 18,941 nasm-2.15.05

tiff2pdf TIFF 17,272 libtiff-4.2.0

tiff2ps TIFF 16,177 libtiff-4.2.0

tiffdump TIFF 15,113 libtiff-4.2.0

tiffinfo TIFF 15,014 libtiff-4.2.0

libxml XML 73,239 2.9.7

listaction SWF 6,278 libming-0.4.8

listaction_d SWF 6,272 libming-0.4.8

libsass SCSS 14,638 libsass-3.6.5

jhead JPEG 1,886 3.04

readelf ELF 72,111 Binutils 2.30

nm ELF 55,212 Binutils 2.30

strip ELF 65,683 Binutils 2.30

size ELF 54,463 Binutils 2.30

objdump ELF 74,710 Binutils 2.30

libjpeg JPEG 8,856 9c

harfbuzz TTF 9,853 1.7.6

base64 FILE 40,332 LAVA-M

md5sum FILE 40,350 LAVA-M

uniq FILE 40,286 LAVA-M

who FILE 45,257 LAVA-M

projects. For example, 10 popular real-world projects are the main

experimental subjects for both Neuzz and MTFuzz; however, it is
not clear how such 10 projects are selected and whether the experi-

mental findings can generalize to other real-world projects.

To reduce such threat, we extend the benchmark for evaluat-

ing Neuzz and MTFuzz. In particular, in addition to retaining the

adopted 9 projects in the original papers (we could not successfully

run project Zlib out of the 10 original projects), we also adopt addi-
tional 19 projects for our extended evaluations. More specifically, to

extend our benchmark projects, we first investigate all the fuzzing

papers published in ICSE, ISSTA, FSE, ASE, S&P, CCS, USENIX

Security, and NDSS in year 2020 and collect all their benchmark

projects. Next, we sort the collected benchmark projects in terms of

their usage in all the collected papers (presented in [38]). We then

collect the top 30 most used benchmark projects and successfully

run 19 of themwhich are eventually included in our extended bench-

marks (the failed executions are mainly caused by environmental

inconsistencies and unavailable dependencies). Table 1 presents

the statistics of our adopted benchmarks. Specifically, we consider

our benchmark to be sufficient and representative due to following

reasons: (1) to the best of our knowledge, this is a rather large-scale

benchmark suite compared with prior work; (2) the 28 collected

benchmarks cover 12 different file formats for seed inputs, e.g., ELF,

XML, and JPEG; and (3) the LoC of each program, ranging from

1,886 to over 120K, represents a wide range of program sizes.

3.2 Evaluation Setups
We conduct all our evaluations on Linux version 4.15.0-76-generic

Ubuntu18.04 with RTX 2080ti. Following the evaluation setups of

Neuzz and MTFuzz, for each selected benchmark project, we first

run AFL-2.57b on a single CPU core for 1 hour to initialize our

seed collection and then run Neuzz, MTFuzz and all their variants

(introduced in later sections) upon the collected seeds with a time

budget of 24 hours. Note that all the edges within the 1-hour initial

seed collection are excluded from the evaluation results in the re-

maining sessions. Moreover, we run our experiments for 5 times for

each fuzzer and present the average results with close performance

under different runs. Note that we instrument all the benchmark

projects with afl-gcc to acquire runtime edge coverage.

In addition to studying Neuzz and MTFuzz, we also include AFL

as a baseline technique throughout our extensive evaluations be-

cause (1) AFL is widely adopted as baseline by many fuzzing ap-

proaches [3, 4, 28, 31, 50] and frequently upgraded for improving

its performance; and (2) Neuzz adopts multiple concepts originated

from AFL for its implementation [39].

3.3 Research Questions
We investigate the following research questions to extensively study

neural program-smoothing-based fuzzing.

• RQ1: How do Neuzz and MTFuzz perform on a large-scale

dataset? For this RQ, we investigate their effectiveness and

efficiency of edge exploration under our large-scale bench-

mark suite.

• RQ2: How do the key components of Neuzz and MTFuzz af-
fect edge exploration? For this RQ, we attempt to investigate

how exactly their adopted gradient guidance mechanisms,

neural network models, and mutation strategies can affect

edge exploration.

3.4 Results and Analysis
3.4.1 RQ1: performance of Neuzz and MTFuzz on a large-scale
dataset. We first investigate the edge coverage performance of all

the studied fuzzers. In this paper, following many existing coverage-

guided fuzzers [4, 9, 27, 31, 51], we determine to adopt the number

of the edges via afl-showmap as our default edge metric. Moreover,

note that the edge metric of the original Neuzz and MTFuzz papers
can be potentially biased since it counts the byte number of the

trace_bits structure implemented by AFL and thus is inconsistent

with the results provided by the guidance function (i.e., defining

“interesting” seeds mentioned in Section 2.1.2) in their implemen-

tations. Nevertheless, as a comprehensive study, we also evaluate

all the studied fuzzers in terms of the edge metric of the original

Neuzz and MTFuzz papers.
Table 2 presents the edge coverage results of our extensive study

for Neuzz and MTFuzz under both adopted metrics. For instance,

for AFL under bison, 10,374 corresponds to our default edge metric

and 308 corresponds to the original metric in the Neuzz/MTFuzz
papers. For our default edge metric, we can observe that Neuzz
significantly outperforms AFL by 10.5% (22,395 vs. 20,265 explored

edges) in terms of edge coverage on average. Compared with the

performance advantage claimed in its original paper (i.e., 2.7X), it

is clearly degraded. We then investigate the performance difference

among benchmark projects. Interestingly, we can observe that their

performance advantage is rather inconsistent, i.e., ranging from

-31.2% to 180.5%. Moreover, Neuzz only outperforms AFL upon 10

out of 19 extended projects. Such results suggest that Neuzz cannot

Evaluating and Improving
Neural Program-Smoothing-based Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Edge coverage results of all the studied approaches
Benchmarks AFL Neuzz Neuzz𝑅𝑒𝑣 MTFuzz MTFuzz𝑅𝑒𝑣 MTFuzz𝑂𝑓 𝑓 Neuzz𝐶𝑁𝑁 Neuzz𝑅𝑁𝑁 Neuzz𝐵𝑅𝑁𝑁

bison 10,374 (308) 12,260 (432) 12,218 (264) 13,812 (599) 12,799 (470) 12,801 (524) 12,375 (475) 12,592 (429) 12,444 (499)

xmlwf 13,729 (3,272) 10,499 (2,200) 9,192 (1,644) 10,853 (509) 10,532 (457) 10,752 (476) 10,872 (2,794) 11,465 (2,891) 11,469 (2,831)

mupdf 13,665 (361) 16,705 (795) 17,664 (654) 16,603 (328) 16,348 (237) 16,522 (334) 16,853 (796) 16,921 (792) 16,889 (804)

pngimage 4,077 (201) 3,369 (324) 2,522 (199) 2,347 (200) 2,172 (198) 2,373 (194) 2,946 (241) 2,553 (197) 3,011 (323)

pngfix 7,134 (135) 5,181 (85) 4,564 (71) 5,767 (80) 5,350 (71) 5,737 (73) 5,157 (74) 5,194 (74) 5,247 (76)

pngtest 3,185 (68) 2,828 (29) 2,933 (8) 3,166 (56) 2,719 (45) 3,016 (81) 3,074 (46) 3,271 (58) 3,103 (42)

tcpdump 12,434 (3,525) 18,293 (4,310) 18,566 (5,005) 17,026 (5,512) 15,097 (3,715) 17,463 (4,621) 18,091 (4,495) 18,910 (4,635) 19,411 (4,581)

nasm 33,633 (1,768) 34,788 (1,654) 33,838 (1,652) 34,958 (1,754) 34,451 (1,722) 33,907 (1,786) 35,375 (1,791) 34,528 (1,695) 35,009 (1,899)

tiff2pdf 45,183 (4,844) 47,109 (4,365) 42,519 (3,993) 44,765 (4,355) 38,449 (3,676) 44,230 (4,044) 46,934 (3,971) 44,617 (3,765) 50,347 (4,580)

tiff2ps 20,862 (3,621) 23,705 (3,634) 21,063 (3,420) 22,671 (3,131) 16,700 (2,535) 21,817 (3,194) 23,931 (3,743) 21,322 (3,841) 23,160 (3,791)

tiffdump 2,416 (8) 3,239 (52) 3,117 (52) 2,617 (64) 2,262 (38) 2,509 (61) 3,124 (46) 2,962 (47) 3,052 (43)

tiffinfo 11,964 (2,440) 15,853 (2,618) 15,742 (2,407) 13,785 (2,799) 10,249 (1,431) 12,394 (1,904) 14,698 (2,788) 13,239 (2,649) 15,569 (2,379)

libxml 20,064 (541) 31,340 (1,553) 32,075 (1,765) 29,236 (1,635) 29,162 (1,553) 27,902 (1,205) 31,421 (1,687) 31,774 (1,695) 31,731 (1,649)

listaction 21,340 (3,151) 17,945 (2,893) 14,969 (2,328) 13,382 (622) 12,257 (559) 12,356 (591) 17,743 (2,791) 17,562 (2,822) 17,073 (2,770)

listaction_d 31,617 (2,728) 25,006 (4,604) 18,643 (3,460) 26,629 (3,376) 21,644 (2,554) 23,619 (2,780) 25,869 (5,036) 28,436 (5,271) 23,622 (4,784)

libsass 198,976 (10,385) 162,717 (8,492) 158,800 (8,438) 132,972 (7,373) 132,491 (7,232) 132,644 (7,106) 154,793 (8,742) 160,318 (8,902) 163,492 (8,527)

jhead 2,082 (28) 1,433 (24) 1,566 (27) 1,268 (18) 1,215 (16) 1,273 (16) 1,327 (22) 1,560 (22) 1,502 (23)

readelf 14,329 (898) 40,186 (6,059) 34,994 (4,868) 42,173 (6,684) 35,178 (5,799) 40,005 (6,161) 42,889 (6,257) 44,389 (6,159) 32,796 (5,314)

nm 11,154 (1,351) 16,159 (2,226) 13,505 (2,015) 31,402 (3,707) 28,027 (3,128) 22,149 (3,045) 18,070 (2,312) 20,724 (3,132) 16,007 (4,099)

strip 20,536 (1,409) 32,791 (3,254) 31,604 (3,348) 41,520 (5,172) 35,649 (5,699) 32,072 (3,674) 33,549 (3,649) 33,816 (3,916) 33,348 (3,753)

size 10,730 (1,188) 14,197 (2,450) 12,414 (2,036) 18,675 (3,872) 16,525 (3,397) 12,623 (2,087) 14,488 (2,606) 14,254 (2,540) 12,284 (2,480)

objdump 15,492 (247) 31,808 (2,358) 28,617 (1,850) 31,507 (2,007) 27,227 (2,117) 30,074 (2,270) 31,176 (2,954) 33,165 (2,639) 33,486 (3,062)

libjpeg 8,197 (266) 16,037 (1,600) 13,460 (1,566) 9,038 (876) 8,446 (797) 8,255 (487) 16,576 (1,729) 16,859 (1,713) 17,566 (1,892)

harfbuzz 26,420 (3,107) 35,502 (5,982) 28,037 (5,606) 44,342 (6,268) 37,821 (4,930) 44,364 (6,155) 45,179 (7,542) 48,959 (7,656) 50,911 (7,764)

base64 1,344 (12) 1,202 (0) 987 (0) 935 (0) 912 (0) 819 (0) 1,247 (0) 1,226 (0) 1,243 (0)

md5sum 2,871 (33) 3,168 (131) 3,004 (37) 3,101 (35) 3,036 (35) 3,044 (35) 3,097 (33) 3,241 (33) 3,163 (35)

uniq 713 (2) 756 (2) 750 (2) 725 (0) 728 (0) 716 (0) 755 (2) 754 (2) 752 (2)

who 2,917 (14) 2,973 (17) 2,919 (17) 2,680 (15) 2,753 (17) 2,720 (17) 2,997 (17) 3,031 (17) 3,026 (17)

Average 20,265 (1,640) 22,395 (2,219) 20,724 (2,026) 22,070 (2,180) 20,007 (1,872) 20,648 (1,890) 22,665 (2,380) 23,130 (2,414) 22,883 (2,429)

(a) Neuzz/AFL (b) MTFuzz/AFL
Figure 3: Edge coverage advantage of the fuzzers over AFL

always outperform AFL and the performance advantage of Neuzz
over AFL can be program-dependent.

We also observe that Neuzz outperformsMTFuzz by 1.5% (22,395

vs. 22,070 explored edges) averagely in terms of edge coverage on

all benchmark projects. While on 11 of 28 total projects, MTFuzz
outperforms Neuzz by 20.8% averagely, Neuzz outperforms MT-
Fuzz by 17.7% on the other 17 projects. Furthermore, even AFL

outperforms MTFuzz by 33.6% averagely on a total of 11 projects.

Such results indicate that similar to Neuzz,MTFuzz cannot perform
consistently either.

We then attempt to reveal the characteristics of how the edge

coverage performance varies among the studied projects. To this

end, we delineate the correlation between the edge coverage ad-

vantage of the studied fuzzers compared with AFL and the size

of their studied projects via the Pearson Correlation Coefficient

analysis [1]. Figure 3 presents such results of Neuzz andMTFuzz. In
each subfigure, the horizontal axis denotes the LoC of each project

and the vertical axis denotes the ratio as dividing the edge coverage

result of each studied approach by the edge coverage result of AFL.

We can observe that overall, the correlation is rather strong (at the

significance level of 0.05), i.e., all the studied approaches can result

in larger edge coverage improvement over AFL upon larger projects

than smaller ones. Such results clearly demonstrate that program

size can significantly impact the edge coverage performance of

neural program-smoothing-based fuzzers.

We observe similar data trends in terms of the edge metric in the

original Neuzz/MTFuzz papers. In particular, Neuzz can outperform

AFL by 35.3% (2,219 vs. 1,640 explored edges) and can outperform

MTFuzz by 1.8% (2,219 vs. 2,180 explored edges). Note that under

such measure, for certain projects, e.g., base64, Neuzz and MTFuzz
explore zero edges after excluding the edges from 1-hour initial

seed collection. Such results could be misleading that the studied

fuzzers perform equally poor in base64, while such performance

gaps can be clearly presented by our default edge metric.

Finding 1: The performance of Neuzz and MTFuzz can
be largely program-dependent. Interestingly, such program-
smoothing-based fuzzers tend to perform better on larger pro-
grams.

Note that randomness is injected to many existing fuzzers [4, 27,

31, 50] for selecting bytes to guide mutations, e.g., AFL𝐻𝑎𝑣𝑜𝑐 . How-

ever, Neuzz and MTFuzz utilize only deterministic mutation strate-

gies, i.e., adopting no randomness for selecting bytes which can be

deterministically identified based on their corresponding gradient

ranking. Therefore, we further investigate the edge exploration

efficiency of random byte selection to infer whether including them

in Neuzz and MTFuzz can be potentially beneficial. Specifically, we

involve AFL in a fine-grained manner, i.e., its deterministic stage

AFL𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 and the havoc stage AFL𝐻𝑎𝑣𝑜𝑐 (i.e., essentially

the random byte selection mechanism) both of which enable non-

deterministic execution time, for performance comparison with

Neuzz and MTFuzz.
Figure 4 presents our evaluation results in terms of the explored

edge number per second, namely Edge Discovery Rate (EDR) in this

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA M. Wu et al.

paper, of Neuzz,MTFuzz, AFL, AFL𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 and AFL𝐻𝑎𝑣𝑜𝑐 . We

can observe that overall, Neuzz andMTFuzz can outperform AFL by

10.2% and 8.5% respectively. Interestingly, AFL𝐻𝑎𝑣𝑜𝑐 achieves the

highest EDR, i.e., 21.8X larger than AFL𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 , 7.7X larger

thanNeuzz, and 7.8X larger thanMTFuzz averagely on all the bench-
marks. Accordingly, we can derive that AFL𝐻𝑎𝑣𝑜𝑐 can significantly

augment edge exploration, i.e., it promptly explores edges upon

the limited seed inputs provided by AFL𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 . Such result

is enlightening that applying random byte selection mechanism

to neural program-smoothing fuzzers can potentially boost edge

exploration.

Finding 2: AFL𝐻𝑎𝑣𝑜𝑐 dominates the efficiency of edge ex-
ploration, indicating that it is promising to augment edge
exploration by adopting random byte selection mechanism.

0

0.8

1.6

2.4

3.2

EDR EDR EDR EDR EDR

0.2550.259

2.256

0.099
0.235

AFL AFLDeterministic AFLHavoc Neuzz

Ed
ge

 D
is

co
ve

r
Ra

te

MTFuzz

Figure 4: EDR of the studied approaches

3.4.2 RQ2: Effectiveness of the key components.
Gradient guidance. The inconsistencies between our finding

and the declared results in the original papers (i.e., finding 1) inspire

us to further investigate the performance impact of the adopted

mechanisms of Neuzz and MTFuzz. To this end, we determine to

first investigate the effectiveness of their dominating factor, i.e., the

gradient guidance mechanism. In particular, since such mechanism

is proposed to facilitate the mutations on the “promising” bytes for

edge exploration via gradient computation, our purpose is to inves-

tigate whether their derived gradients can locate such bytes. More

specifically, we propose an intuitive gradient guidance mechanism—

instead of aggressively mutating the bytes with larger gradients in

the original Neuzz and MTFuzz, we aggressively mutate the bytes

with smaller gradients. Such mechanism is injected to Neuzz and
MTFuzz to form their variants Neuzz𝑅𝑒𝑣 and MTFuzz𝑅𝑒𝑣 . We thus

evaluate Neuzz𝑅𝑒𝑣 and MTFuzz𝑅𝑒𝑣 to observe their performance

difference from the original Neuzz and MTFuzz to investigate the

effect of the gradient guidance mechanisms.

We can observe from Table 2 that Neuzz can explore 8.1% (1,671)

more edges than Neuzz𝑅𝑒𝑣 and MTFuzz can explore 10.3% (2,063)

more edges than MTFuzz𝑅𝑒𝑣 on average. Such consistent results

suggest that larger gradients can be a better indicator to promising

bytes, i.e., the derived gradients can reflect promising bytes.

Interestingly, Neuzz𝑅𝑒𝑣 can outperform Neuzz on 5 out of 28

projects, i.e., libxml, mupdf, jhead, tcpdump and pngtest. Mean-

while, MTFuzz𝑅𝑒𝑣 can outperform MTFuzz under uniq and who.
Such results also indicate that the power of the gradient guidance

in Neuzz and MTFuzz has not been completely leveraged.

Finding 3: Although the gradient guidance mechanisms
adopted by Neuzz and MTFuzz are overall effective for iden-
tifying the promising bytes, their performance can be rather
unstable on some programs.

DNNmodels. Now that the gradients derived by Neuzz andMT-
Fuzz can be proven to be effective in reflecting promising bytes for

mutations, we further investigate how their corresponding neural

network models impact edge exploration. Specifically, since com-

pared to Neuzz, MTFuzz enables the independent dynamic analysis

module Crack to augment their mutation strategy, we turn it off

and form its variant MTFuzz𝑂𝑓 𝑓 , i.e., applying the mutation strat-

egy of Neuzz in MTFuzz, such that they only differ in the adopted

neural network models. Moreover, we also include the Convolu-

tional Neural Network (CNN) [26] model and two commonly-used

Recursive Neural Network (RNN) [14] models, i.e., LSTM [24] and

Bi-LSTM [22], and adopt them in the original Neuzz to form its

variants Neuzz𝐶𝑁𝑁 , Neuzz𝑅𝑁𝑁 , and Neuzz𝐵𝑅𝑁𝑁 . Note that we

investigate more RNN-based models since they are typically used

in learning the distribution over a sequence to predict the future

symbol sequence [10] (e.g., for speech recognition) and expected to

better match the program input features than CNN-based models.

Eventually, we determine to evaluate Neuzz and all the variant

techniques to detect how multiple neural network models impact

the edge exploration of program-smoothing-based fuzzers. Note

that their hyper-parameter setups are introduced in our GitHub

page [38].

We can observe from Table 2 that overall, all our studied ap-

proaches perform similarly in terms of edge coverage. Specifically,

Neuzz slightly outperformsMTFuzz𝑂𝑓 𝑓 by 8.5% (22,395 vs 20,648 ex-

plored edges), underperforms Neuzz𝐶𝑁𝑁 by 1.2% (22,395 vs. 22,665

explored edges), Neuzz𝑅𝑁𝑁 by 3.3% (22,395 vs. 23,130 explored

edges) and Neuzz𝐵𝑅𝑁𝑁 by 2.2% (22,395 vs. 22,883 explored edges).

Meanwhile, we can also observe that none of the studied approaches

can dominate on top of all the studied projects, i.e.,Neuzz dominates

7, MTFuzz𝑂𝑓 𝑓 dominates 2, Neuzz𝐶𝑁𝑁 dominates 4, Neuzz𝑅𝑁𝑁

dominates 9, and Neuzz𝐵𝑅𝑁𝑁 dominates 6. Therefore, we derive

that upgrading neural network models cannot significantly impact

the performance of edge exploration.

Finding 4: Different neural network models have limited im-
pact on the effectiveness of program-smoothing-based fuzzing.

Mutation Strategies. We then investigate the impact from the

mutation strategy of the neural program-smoothing-based fuzzers.

Specifically, since MTFuzz differs from Neuzz mainly by enabling

Crack for mutations and their respective neural network models do

not significantly impact the edge exploration (reflected by Finding

4), we concentrate our investigation on the impact from Crack. To
this end, we evaluate MTFuzz and MTFuzz𝑂𝑓 𝑓 . Table 2 demon-

strates that overall, MTFuzz can outperform MTFuzz𝑂𝑓 𝑓 by 6.9%

(22,070 vs. 20,648 explored edges). However, such advantage can be

rather inconsistent, ranging from -2.5% to 47.9% upon individual

projects. On the other hand, applying Crack can be potentially cost-

ineffective since it is quite heavyweight. Therefore, it is essential

Evaluating and Improving
Neural Program-Smoothing-based Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

to consider whether it is worthwhile in applying such technique

for neural program-smoothing-based fuzzing.

Finding 5: The dynamic analysis module Crack adopted by
MTFuzz can be cost-ineffective.

3.5 Discussion
We first discuss why neural network models do not significantly

impact the edge coverage performance. To this end, we ought to

understand the effect of the adopted neural network models of

Neuzz and MTFuzz. In particular, note that neural networks are

usually used for data prediction, i.e., learning and generalizing

historical data to predict unseen data. Accordingly, researchers

have developed many neural network models to strengthen their

generalization and prediction capabilities. Therefore, one may mis-

understand that Neuzz and MTFuzz attempt to use neural network

models to predict the bytes corresponding to unexplored edges.

Instead, as a matter of fact, Neuzz and MTFuzz leverage neural net-
work models which compute the gradients to reflect the relations

between explored edges and seed inputs, i.e., mutating the byte

corresponding to a larger gradient can be more likely to explore a

new edge other than the existing edge under one shared prefix edge.

As a result, any neural network model can be applied as long as it

can successfully deliver gradients to reflect such explored edge—seed
input relations, i.e., how its generalization or prediction capability

does not quite matter under such scenarios. Therefore, it is quite

likely that a simplistic model (e.g., feed-forwarded network model

adopted by Neuzz) can perform similarly as fine-grained models

(e.g., multi-task learning model adopted by MTFuzz and the RNN

models adopted by the studied Neuzz variants).
We then attempt to illustrate why Neuzz and MTFuzz cannot al-

ways be effective. Note that even though Neuzz andMTFuzz enable
gradient guidance mechanisms to explore new edges, their iterative

training-and-mutation strategy via randomly selecting edges and

seeds in the beginning can nevertheless select existing edges other

than unexplored edges to compute gradients (illustrated in Section

2.2.2), i.e., they still allow inefficient mutations. Specifically for the

smaller programs where Neuzz and MTFuzz cannot outperform

AFL, their edge exploration converges faster than larger programs

due to the limited number of edges, i.e., they have a higher chance

to select an existing edge whose “sibling” edges have already been

explored by other seeds for gradient computation. Thus, it can be

difficult to mutate its “promising” bytes for exploring new edges.

4 PREFUZZ
Our findings reveal that we can possibly leverage the power of the

gradient guidance mechanism to enhance the edge exploration of

neural program-smoothing-based fuzzers. To this end, we propose

PreFuzz (Probabilistic resource-efficient program-smoothing-based

Fuzzing). Figure 5 presents the workflow of PreFuzz. PreFuzz first
trains a neural network model by applying all the existing seeds

as the training set. Next, PreFuzz adopts a resource-efficient edge
selection mechanism to select edges for gradient computation. Then,

the gradient information is utilized to generate mutants for fuzzing.

Note that a mutant which explores new edges can be used as a seed

… …
Gradient

Calculation &. Sorting

Seed Corpus

Mutants

Gradient-Guided
Mutation PBS

PreFuzzNeuzz &. MTFuzz

Stage I: Neural program smoothing

Stage II: Gradient-guided mutation

Update
 Seed Corpus

∂e0
∂b0

⋯ ∂e0
∂bm

⋮ ⋱ ⋮
∂en

∂b0
⋯ ∂en

∂bm

Resource-Efficient
Edge Selection Mechanism NN Training

Figure 5: Framework of PreFuzz

for further edge exploration. Meanwhile, PreFuzz adopts probabilis-
tic byte selection mechanism (PBS in Figure 5) to facilitate mutations.

4.1 The Details
4.1.1 Resource-Efficient Edge Selection Mechanism. The purpose of
the resource-efficient edge selection mechanism is to prevent explor-

ing the existing branching behaviors (i.e., edges). To this end, our

mechanism is designed to identify the edge worthy being explored

for later selecting and mutating its corresponding byte. Intuitively,

when one edge can identify the number of its “sibling” edges (as

defined in Section 2.2), such edge number can be a potential indica-

tor whether the given edge should be included for further gradient

computation. More specifically, the more “sibling” edges have been

explored, the less likely new “sibling” edges can be explored via the

gradient computation for the given edge.

Algorithm 1 presents the details of the resource-efficient edge
selection mechanism. First, it is quite essential to acquire the run-

time edge exploration states, e.g., the number of “sibling” edges of

a given edge and how many have been explored (lines 2 to 3). To

this end, we decompile the assembly-level programs, parse them

to the instructions via AFL-specific instrumentation, and construct

the edge exploration states via statically analyzing the parsed in-

structions. Next, given one edge, we derive the ratio of its explored

“sibling” edge number over its total “sibling” number (lines 5 to 9).

If such ratio is lower than a preset threshold, we retain the given

edge and stores it in a Candidate Edge Set where we later randomly

select such edges for further gradient computation (lines 10 to 12).

We use Figure 1 to further illustrate such algorithm. Assuming

that 𝑒0 can be explored given the “seed” in Figure 1, mutating the

byte of the given seed corresponding to the access condition of

𝑒0 can explore its “sibling” edge 𝑒1. While Neuzz and MTFuzz are
designed to perform such mutation for edge exploration, 𝑒1 could

have nevertheless been explored already due to the randomness

injected to their mechanisms (illustrated in Section 2.2.2). Thus,

the effectiveness of the gradient guidance mechanism may be com-

promised. However, our resource-efficient edge selection mechanism
can collect the exploration information of the “sibling” edge of 𝑒0,

i.e., 𝑒1, before computing the gradient for 𝑒0. If it finds out that

𝑒1 has already been explored, it would not select 𝑒0 for gradient

computation in the first place to save the computing resource.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA M. Wu et al.

(a) Neuzz𝐸𝑑𝑔𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛/Neuzz (b) Neuzz𝑃𝑟𝑜𝑏 /Neuzz (c) PreFuzz/Neuzz
Figure 6: Edge coverage ratio upon Neuzz

Algorithm 1 Candidate Edge Set Construction

Input : threshold, exploredEdge
Output:selectedEdges

1: function CONSTRUCT_CANDIDATE_EDGE_SET

2: candidate← set()

3: correspRelation← getEdgeRelation()
4: for edge in exploredEdge do
5: explored← 0

6: siblings← |correspRelation[edge]|

7: for neighbour in correspRelation[edge] do
8: if neighbour in exploredEdge then
9: explored← explored + 1

10: if explored/siblings < threshold then
11: candidate.add(edge)

12: selectedEdges← randomlySelectFromSet(candidate)
13: return selectedEdges

Table 3: Edge coverage results of PreFuzz
Benchmarks AFL Neuzz MTFuzz Neuzz𝐸𝑑𝑔𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 Neuzz𝑃𝑟𝑜𝑏 PreFuzz

bison 10,374 12,260 13,812 13,003 13,744 15,078
xmlwf 13,729 10,499 10,853 12,290 16,960 21,009
mupdf 13,665 16,705 16,603 17,002 19,995 21,203

pngimage 4,077 3,369 2,347 2,883 2,838 4,876
pngfix 7,134 5,181 5,767 7,307 7,422 7,930
pngtest 3,185 2,828 3,166 3,993 4,199 4,703
tcpdump 12,434 18,293 17,026 19,764 30,767 34,947
nasm 33,633 34,788 34,958 37,534 41,973 43,628
tiff2pdf 45,183 47,109 44,765 51,506 50,555 57,172
tiff2ps 20,862 23,705 22,671 23,649 24,247 29,332

tiffdump 2,416 3,239 2,617 3,590 3,554 3,888
tiffinfo 11,964 15,853 13,785 17,157 17,572 21,839
libxml 20,064 31,340 29,236 32,161 40,935 47,689

listaction 21,340 17,945 13,382 20,208 29,161 32,447
listaction_d 31,617 25,006 26,629 26,351 40,355 46,762

libsass 198,976 162,717 132,972 169,936 215,510 218,130
jhead 2,082 1,433 1,268 1,952 2,463 2,464
readelf 14,329 40,186 42,173 40,396 47,727 53,859
nm 11,154 16,159 31,402 19,040 22,605 30,709

strip 20,536 32,791 41,520 33,864 37,705 42,943
size 10,730 14,197 18,675 14,734 15,261 19,231

objdump 15,492 31,808 31,507 34,036 38,983 43,195
libjpeg 8,197 16,037 9,038 17,192 22,615 24,365
harfbuzz 26,420 35,502 44,342 47,877 45,412 60,333
base64 1,344 1,202 935 1,454 1,631 1,644
md5sum 2,871 3,168 3,101 3,415 3,580 3,518

uniq 713 756 725 792 794 795
who 2,917 2,973 2,680 3,262 3,255 3,491

Average 20,265 22,395 22,070 24,155 28,636 32,042

4.1.2 Probabilistic Byte Selection Mechanism. Inspired by Finding

2, we further inject an additional nondeterministic stage to neural

program-smoothing fuzzers. To this end, we develop a Probabilistic

Byte Selection Mechanism and append it to Neuzz to expand edge

exploration. Note that the probabilistic byte selection mechanism
utilizes the gradient information generated by the resource-efficient
edge selectionmechanism, and gets activated after themutation stage

inherited from Neuzz. This stage contains three steps: (1) dividing
each seed input into segments, (2) selecting segments by gradient-

based probability distribution, and (3) randomly selecting bytes

from the selected segment for mutation via AFL𝐻𝑎𝑣𝑜𝑐 mutators.

Unlike AFL𝐻𝑎𝑣𝑜𝑐 which randomly selects bytes from the whole

seed, we first divide a seed into a constant number (8 by default in

our paper) of equal-length segments. We then select seed segments

based on their probabilities. Note that while intuitively leveraging

byte-wise probability distribution for byte selection is more natural,

this is essentially deterministic and excludes the benefits of ran-

domness (as in Finding 2). Therefore, our probability distribution is

established upon seed segments rather than individual bytes so as

to leverage the power of randomness and AFL𝐻𝑎𝑣𝑜𝑐 .

Next, we calculate the fitness score for each segment, presented

in Equation 1, where

∑𝑠𝑒𝑔𝑖
𝑗=1

𝑔𝑟𝑎𝑑 𝑗 denotes the gradient sum for all

the bytes within a given segment 𝑠𝑒𝑔𝑖 , 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑒𝑔𝑖) denotes its byte

number, and the fitness score for a given segment 𝑠𝑒𝑔𝑖 is computed

as the average gradient of all the bytes within 𝑠𝑒𝑔𝑖 .

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑠𝑒𝑔𝑖 =

∑𝑠𝑒𝑔𝑖
𝑗=1

𝑔𝑟𝑎𝑑 𝑗

𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑒𝑔𝑖)
(1)

Accordingly, the probability 𝑃𝑟𝑜𝑏𝑠𝑒𝑔𝑖 for selecting a segment 𝑠𝑒𝑔𝑖
for mutation is presented in Equation 2, i.e., the ratio of the fitness

score of 𝑠𝑒𝑔𝑖 over the total fitness scores of all the segments.

𝑃𝑟𝑜𝑏𝑠𝑒𝑔𝑖 =
𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑠𝑒𝑔𝑖∑𝑡𝑜𝑡𝑎𝑙

𝑗=1 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝑠𝑒𝑔𝑗

(2)

Finally, we apply AFL𝐻𝑎𝑣𝑜𝑐 to mutate the selected segments. In

particular, AFL𝐻𝑎𝑣𝑜𝑐 randomly selects a byte from the segment for

mutation based on its mechanism. Note that if the mutants are also

“interesting”, they are retained for further gradient computation and

the probabilistic byte selection mechanism. Such process is iterated

until hitting the time budget.

4.2 Performance Evaluation
We attempt to evaluate the performance of PreFuzz and its technical
components respectively. To evaluate the usage of the resource-
efficient edge selection mechanism and the probabilistic byte selection
mechanism, we form two Neuzz variants, i.e., Neuzz𝐸𝑑𝑔𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

Evaluating and Improving
Neural Program-Smoothing-based Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

which injects resource-efficient edge selection mechanism to Neuzz
and Neuzz𝑃𝑟𝑜𝑏 which appends the probabilistic byte selection mech-
anism to Neuzz. Note that we retain Neuzz,MTFuzz, and AFL as our
baselines for performance comparison. The experimental setups in

this section follow the same settings in Section 3.2. The threshold
for Algorithm 1 is set to 0.4

1
.

4.2.1 Edge exploration effectiveness. Table 3 presents the experi-
mental results of edge exploration effectiveness. We can find that

overall, PreFuzz outperforms all the existing baselines in terms

of edge coverage averagely, e.g., PreFuzz can outperform AFL by

58.1% (32,042 vs. 20,265 explored edges) and Neuzz by 43.1% (32,042

vs. 22,395 explored edges). Note that under the originally adopted

metric of edge coverage, PreFuzz also outperforms Neuzz and MT-
Fuzz by 34.3% and 36.7%. Such results suggest that combining the

resource-efficient edge selection mechanism and the probabilistic byte
selection mechanism for Neuzz can be rather powerful. Moreover,

Neuzz𝐸𝑑𝑔𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 outperforms Neuzz by 7.9% (24,155 vs. 22,395

explored edges) and MTFuzz by 9.4% (24,155 vs. 22,070 explored

edges). Specifically, Neuzz obtains 271 more edges averagely than

Neuzz𝐸𝑑𝑔𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 on 2 projects while Neuzz𝐸𝑑𝑔𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 obtains

1,917 more edges averagely than Neuzz on the rest 26 projects.

Such results indicate that the resource-efficient edge selection mech-
anism can enhance the overall effectiveness of Neuzz. In addition,

Neuzz𝑃𝑟𝑜𝑏 also outperforms Neuzz by 27.9% (28,636 vs. 22,395 ex-

plored edges) and MTFuzz by 29.8% (28,636 vs. 22,070 explored

edges). Such results demonstrate that introducing randomness can

also significantly increase the edge coverage of the neural program-

smoothing-based fuzzers.

Figure 6 presents the correlation between the edge coverage ad-

vantage of Neuzz𝐸𝑑𝑔𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 , Neuzz𝑃𝑟𝑜𝑏 , PreFuzz over Neuzz by
dividing their corresponding edge coverage results and the LoC of

the studied benchmark projects. Interestingly, we can observe that

the correlation is rather weak, i.e., all presented 𝑝 values (0.0688,

0.2211 and 0.1602) fail to reach the significance level of 0.05. It in-

dicates that the edge coverage advantage over the original Neuzz is
not affected by the program size. Moreover, such advantage is rather

consistent. Specifically, we determine to use Coefficient of Variation

(CV) [5], a widely-used metric for measuring the dispersion of a

probability distribution [35, 37, 48], to measure the consistency of

their performance improvement. Note that a lower CV indicates a

more consistent performance improvement. As a result, PreFuzz,
Neuzz𝐸𝑑𝑔𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 , and Neuzz𝑃𝑟𝑜𝑏 can achieve 19.6%, 11.5%, and

17.4% of CV for their performance improvement over Neuzz, which
are all significantly reduced compared with the CV of Neuzz (37.6%)
for its improvement over AFL. Therefore, we summarize that our

proposed mechanisms can significantly and consistently strengthen

the neural program-smoothing-based fuzzers. Note that we find un-

der the edge coverage metric adopted in the original Neuzz/MTFuzz
papers, the performance gain of PreFuzz over Neuzz is 34.3% (2,981

vs. 2,219 explored edges) which is also rather significant.

Figure 7 presents the average time trend of edge coverage within

24 hours for AFL, MTFuzz, Neuzz and PreFuzz among all the bench-

mark projects. We can observe that at any time being, PreFuzz can
outperform other fuzzers significantly in terms of edge coverage.

1
We also evaluate more threshold setups and present the results in our GitHub link [38]

which indicate that changing threshold setups incurs limited performance impact.

10,000

16,250

22,500

28,750

35,000

0 4 8 12 16 20 24

AFL Neuzz MTFuzz

A
ve

ra
ge

 E
dg

e
C

ov
er

ag
e

Time (hours)

Prefuzz

Figure 7: Edge coverage of PreFuzz in terms of time

4.2.2 In-depth Ablation Study. In this section, we further perform

in-depth ablation studies to investigate the efficacy of our resource-
efficient edge selection mechanism and probabilistic byte selection
mechanism respectively. Specifically for the resource-efficient edge
selection mechanism, we find that overall, 24.0% edges do not need

to be explored by applying Neuzz𝐸𝑑𝑔𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 under each iteration

averagely (1,230 vs. 935 edges). Moreover, the probabilistic byte
selection mechanism in PreFuzz is more efficient when combining

with the resource-efficient edge selection mechanism since PreFuzz
explores averagely 11.9% more edges than Neuzz𝑃𝑟𝑜𝑏 (32,042 vs.

28,636 explored edges in Table 3). Such results indicate that applying

the resource-efficient edge selection mechanism can significantly

save the effort on exploring the edges which cannot contribute to

increasing edge coverage.

We further investigate the probabilistic byte selection mecha-
nism in terms of Edge Discovery Rate. To this end, we also include

AFL𝐻𝑎𝑣𝑜𝑐 , Neuzz𝐸𝑑𝑔𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 , the gradient-guided mutation stage

of PreFuzz, and the probabilistic byte selection stage of PreFuzz (rep-
resented as PreFuzz𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 and PreFuzz𝑃𝑟𝑜𝑏 , respectively) for per-
formance comparison. Note that PreFuzz𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 and PreFuzz𝑃𝑟𝑜𝑏
results are extracted from the two stages of a complete PreFuzz run,
e.g., PreFuzz𝑃𝑟𝑜𝑏 utilizes the resource-efficient edge selection mecha-
nism to select edges for computing their gradients while Neuzz𝑃𝑟𝑜𝑏
randomly selects explored edges for gradient computation. Fig-

ure 8 presents our evaluation results. We can observe that overall,

PreFuzz𝑃𝑟𝑜𝑏 can significantly outperform all the other studied ap-

proaches on top of all the studied benchmarks, e.g., PreFuzz𝑃𝑟𝑜𝑏
can be 62.0% more efficient than AFL𝐻𝑎𝑣𝑜𝑐 (3.656 vs. 2.256 EDR).

Accordingly, we can infer that the gradient guidance adopted by

PreFuzz can provide more “high-quality” seeds and more efficient

guidance (i.e., gradients) for launching its probabilistic byte selection
mechanism to explore more new edges than AFL𝐻𝑎𝑣𝑜𝑐 . Further-

more, we can observe that the EDR of PreFuzz𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 can also

outperform the original Neuzz𝐸𝑑𝑔𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 by 91.4%. Therefore,

we also infer that PreFuzz𝑃𝑟𝑜𝑏 can advance the edge exploration

efficiency of PreFuzz𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 . To summarize, combining the two

improvements can mutually advance their edge exploration.

4.2.3 Crashes. Table 4 presents the unique crashes exposed by

Neuzz, MTFuzz and PreFuzz in the studied benchmarks. Overall,

PreFuzz explores the most unique crashes by outperforming Neuzz
by 62% (149 vs. 92), and MTFuzz by 80% (149 vs. 83). In addition,

PreFuzz dominates the number of the exposed unique crashes in

each benchmark. Furthermore, the crashes exposed by Neuzz and

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA M. Wu et al.

Table 4: Unique crashes found byNeuzz,MTFuzz and PreFuzz
Benchmarks Neuzz MTFuzz PreFuzz

size 5 9 7

readelf 15 7 37

libjpeg 2 0 5

objdump 0 0 1

who 2 0 4

bison 15 18 20

jhead 8 7 12

listaction 25 16 31

listaction_d 7 8 17

nm 3 3 3

strip 10 15 12

Total 92 83 149

0

1.5

3

4.5

6

0.536
0.28

3.656

2.256

AFLHavoc PreFuzzProb NeuzzEdgeSelection PreFuzzGradient

Ed
ge

 D
is

co
ve

r
Ra

te

Figure 8: Edge Discovery Rate of different PreFuzz stages

MTFuzz are also detected by PreFuzz in our evaluation. Such results

suggest that PreFuzz can also be more effective than Neuzz and

MTFuzz in terms of exposing potential vulnerabilities.

4.3 Implications
Based on our findings in this paper, we propose the following

implications for advancing the future research on fuzzing.

Simplistic neural network models may suffice. Our study
results reveal that the edge coverage performance can be essentially

impacted by how the resulting gradients of the adopted neural net-

work models reflect the relations between explored edges and seed

inputs rather than their generalization or prediction capabilities.

That said, simplistic neural network models may already suffice for

program-smoothing-based fuzzing.

Think twice before applying dynamic analysis. Our evalua-
tions indicate that the dynamic analysis module adopted inMTFuzz
can be quite effective on large programs. However, executing such

module can be rather heavyweight, similar as many other program

analysis techniques [6, 12, 19]. Therefore, we recommend to think

carefully before adopting dynamic analysis techniques to enhance

neural program-smoothing-based fuzzing.

Edge selection? Yes! Gradient computation? Maybe. Our
evaluations reveal that selecting “promising” edges for mutations

can be quite effective in increasing the edge coverage performance

on programs of varying sizes.Meanwhile, one question can be asked:

is it necessary to bind such powerful mechanism with gradient

guidance? Especially when we realize that the power of neural

networks can be argued to be “underused” (i.e., their generalization

and prediction capabilities are underused), such question can then

be transformed as — is it necessary to use neural networks for

computing gradients to represent the relations between explored

edges and seed inputs? To answer such question, it is worthwhile to

attempt other lightweight alternatives to represent such relations

as potential future research directions.

Probabilistic search helps. Our study results indicate that the

edge coverage performance of the neural program-smoothing-based

fuzzers can be significantly enhanced by appending the probabilistic
byte selection mechanism. Intuitively, we suggest the users to design

such probabilistic search strategywithmore guidance to any of their

adopted fuzzers when possible. Accordingly, one possible research

direction can be how to integrate such probabilistic search strategy

with diverse fuzzers for optimizing the edge coverage performance.

5 THREATS TO VALIDITY
Threats to internal validity. The threat to internal validity lies

in the implementation of the studied fuzzing approaches in the

experimental study. To reduce this threat, we reused the source code

ofNeuzz andMTFuzzwhenwe implemented PreFuzz. Meanwhile, to

implement the probabilistic byte selection mechanism, we also reused

such code from the original AFL for the PreFuzz implementation.

Moreover, all the student authors manually reviewed PreFuzz code
carefully to ensure its correctness and consistency.

Threats to external validity. The threat to external validity

mainly lies in the benchmarks used. To reduce this threat, we adopt

the original benchmarks used by Neuzz and MTFuzz, and add 19

more projects widely used for the evaluations in many popular

fuzzers [3, 4, 28, 31, 50] published recently.

Threats to construct validity. The threat to construct validity

mainly lies in the metrics used. While the edge coverage metrics

adopted by Neuzz and MTFuzz are not widely used by the existing

fuzzers and can be arguably limited to reflect edge coverage, to

reduce this threat, we determine to follow the majority by using

the AFL built-in tool afl-showmap for measuring edge coverage

while also presenting partial results in the original measure as well.

Notably while under our metric, the performance advantages of

Neuzz and MTFuzz are reduced, our PreFuzz can incur quite strong

performance gain under both metrics.

6 RELATEDWORK
As this workmainly studies deep learning-based fuzzing approaches,

we are going to discuss closely related work in the following three

dimensions: the existing fuzzing approaches (Section 6.1), the deep

learning-based fuzzing techniques (Section 6.2), and the existing

studies on fuzzing (Section 6.3).

6.1 Fuzzing
To date, various fuzzing techniques have adopted evolutionary

algorithms to improve the performance of fuzz testing. Böhme et

al. [4] proposed AFLFast which designs a seed selection strategy

to weigh seeds via Markov Chain on top of the original AFL [51].

They also proposed AFLGo [3] to take advantages in weighting

seeds based on edge structures to explore the target point specified

by users. Lemieux et al. [27] proposed FairFuzz to increase greybox
fuzz testing coverage by fuzzing rare branches of program. Manès

et al. [32] proposed Ankou, a grey-box fuzzing solution based on

different combinations of execution information. Fioraldi et al. [16]

introduced WEIZZ to automatically generate and mutate inputs

Evaluating and Improving
Neural Program-Smoothing-based Fuzzing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

for unknown chunk-based binary formats. Similar to our PreFuzz,
many works also utilized light-weight program analysis to facilitate

fuzzing efficacy. Rawat et al. [36] proposed VUzzer to leverage

control- and data-flow features based on static and dynamic analysis

to infer fundamental properties of the application without any prior

knowledge or input format. Mathis et al. [33] presented a technique

to learn program tokens by tainting for fuzzing. Padhye et al. [34]

automatically guided QuickCheck-like random input generators

to semantically analyze test programs for generating test-oriented

Java bytecode. Chen et al. [9] introduced Angora, a mutation-based

fuzzer that solves path constraint without symbolic execution by

taint checking and searching. Furthermore, new guidance other

than code coverage are proposed to fuzz specific software systems.

Wu et al. [46] proposed Simulee to parse constraints of inputs from a

givenGPU kernel function andmutate the inputs guided bymemory

access conflict to fuzz CUDA programs. Accordingly, they further

proposed AuCS [47] to repair the detected synchronization bugs.

Wen et al. [43] proposed a memory-usage-guided fuzzer to generate

excessive memory consumption inputs and trigger uncontrolled

memory consumption bugs. Zhao et al. [53] synthesized programs

for testing JVMs based on the ingredients extracted from JVM

historical bug-revealing tests.

6.2 Deep Learning on Fuzzing
She et al. proposed Neuzz [41], the first neural program-smoothing-

based fuzzer using neural network models to discover “promis-

ing” bytes for a previously explored edge. They [40] also proposed

MTFuzz to fuzz a system more efficiently via a multi-task neural

network. Meanwhile, deep learning is also used in evolution-based

fuzzing. Zong et al. [55] proposed FuzzGuard, a deep-learning-based
approach to help evolution-based fuzzers predict the reachability

of inputs before executing programs. Moreover, researchers have

also utilized deep learning to learn how to generate valid inputs

for deeply fuzzing a system. Lyu et al. [30] introduced SmartSeed
which used Generative Adversarial Networks [21] to generate seeds

from learning the patterns of valuable existing seeds. Liu et al. [29]

proposed DeepFuzz to automatically and continuously generate

C programs by a generative Sequence-to-Sequence model [11].

Godefroid et al. [20] divided fuzzing tasks into two categories, i.e.,

learning input format to fuzz deeper and breaking input format

to trigger defects. Zhang et al. [52] proposed DeepRoad to auto-

matically generate driving scenes to fuzz image-based autonomous

driving systems. Zhou et al. [54] further generated realistic and con-

tinuous physical-world images to fuzz such systems. In this paper,

we propose PreFuzz with the resource-efficient edge selection mecha-
nism and the probabilistic byte selection mechanism to improve the

performance of neural program-smoothing-based fuzzers.

6.3 Studies on Fuzzing
The empirical studies on fuzzing give many implications for further

research. Klees et al. [25] provided guidelines on evaluating the

effectiveness of fuzzers by assessing the experimental evaluations

carried out by different fuzzers. Gavrilov et al. [17] proposed a new

metric consistently with bug-based metrics by conducting a pro-

gram behavior study during fuzzing. Böhme et al. [2] summarized

the challenges and opportunities for fuzzing by studying existing

popular fuzzers. Geng et al. [18] performed an empirical study on

multiple artificial vulnerability benchmarks to understand how

close these benchmarks reflect reality. Herrera et al. [23] investi-

gated and evaluated how seed selection affects a fuzzer’s ability to

find bugs in real-world software. Wu et al. [45] studied the features

of the havoc mechanism adopted by many fuzzers including AFL

and found it is already a powerful fuzzer which outperforms many

existing ones. In this paper, we conduct an empirical study to inves-

tigate the power and limitation of neural program-smoothing-based

fuzzing and reveal various findings/guidelines for future learning-

based fuzzing research.

7 CONCLUSION
In this paper, we investigated the strengths and limitations of neural

program-smoothing-based fuzzing approaches, e.g., MTFuzz and
Neuzz. We first extended our benchmark suite by including addi-

tional projects that were widely adopted in the existing fuzzing

evaluations. Next, we evaluated Neuzz and MTFuzz on the exten-

sive benchmark suite to study their effectiveness and efficiency.

Inspired by our study findings, we proposed PreFuzz combining

two technical improvements, i.e., the resource-efficient edge selec-
tion mechanism and the probabilistic byte selection mechanism. The

evaluation results demonstrate that PreFuzz can significantly out-

perform Neuzz andMTFuzz in terms of edge coverage. Furthermore,

our results also reveal various findings/guidelines for advancing

future fuzzing research.

8 ACKNOWLEDGEMENT
This work is partially supported by the National Natural Science

Foundation of China (Grant No. 61902169), Guangdong Provincial

Key Laboratory (Grant No. 2020B121201001), and Shenzhen Pea-

cock Plan (Grant No. KQTD2016112514355531). This work is also

partially supported by National Science Foundation under Grant

Nos. CCF-2131943 and CCF-2141474, as well as Ant Group.

REFERENCES
[1] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson

correlation coefficient. In Noise reduction in speech processing. Springer, 1–4.
[2] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. 2020. Fuzzing: Chal-

lenges and Reflections. IEEE Software (2020).
[3] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.

2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference
on Computer and Communications Security. 2329–2344.

[4] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-

Based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). Association for

Computing Machinery, New York, NY, USA, 1032–1043. https://doi.org/10.1145/

2976749.2978428

[5] Charles E Brown. 1998. Coefficient of variation. In Applied multivariate statistics
in geohydrology and related sciences. Springer, 155–157.

[6] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs.

In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, USA, 209–224.

[7] Swarat Chaudhuri and Armando Solar-lezama. 2010. Smooth interpretation. In

In PLDI.
[8] Swarat Chaudhuri and Armando Solar-Lezama. 2011. Smoothing a Program

Soundly and Robustly. In Computer Aided Verification - 23rd International Con-
ference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. 277–292.
https://doi.org/10.1007/978-3-642-22110-1_22

[9] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.

In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711–725.
[10] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase

https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1007/978-3-642-22110-1_22

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA M. Wu et al.

representations using RNN encoder-decoder for statistical machine translation.

arXiv preprint arXiv:1406.1078 (2014).
[11] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase

representations using RNN encoder-decoder for statistical machine translation.

arXiv preprint arXiv:1406.1078 (2014).
[12] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver.

In Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[13] Jared DeMott, Richard Enbody, and William F Punch. 2007. Revolutionizing the

field of grey-box attack surface testing with evolutionary fuzzing. BlackHat and
Defcon (2007).

[14] Jeffrey L Elman. 1990. Finding structure in time. Cognitive science 14, 2 (1990),
179–211.

[15] Shawn Embleton, Sherri Sparks, and Ryan Cunningham. 2006. Sidewinder: An

Evolutionary Guidance System for Malicious Input Crafting. Black Hat USA
(2006).

[16] Andrea Fioraldi, Daniele ConoD’Elia, and Emilio Coppa. 2020. WEIZZ: Automatic

Grey-Box Fuzzing for Structured Binary Formats. In Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2020). Association for Computing Machinery, New York, NY, USA, 1–13. https:

//doi.org/10.1145/3395363.3397372

[17] M. Gavrilov, K. Dewey, A. Groce, D. Zamanzadeh, and B. Hardekopf. 2020. A

Practical, Principled Measure of Fuzzer Appeal: A Preliminary Study. In 2020
IEEE 20th International Conference on Software Quality, Reliability and Security
(QRS). 510–517. https://doi.org/10.1109/QRS51102.2020.00071

[18] Sijia Geng, Yuekang Li, Yunlan Du, Jun Xu, Yang Liu, and Bing Mao. 2020. An

empirical study on benchmarks of artificial software vulnerabilities. arXiv preprint
arXiv:2003.09561 (2020).

[19] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. 2008. Automated

whitebox fuzz testing.. In NDSS, Vol. 8. 151–166.
[20] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&fuzz: Machine

learning for input fuzzing. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 50–59.

[21] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

networks. arXiv preprint arXiv:1406.2661 (2014).
[22] Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification

with bidirectional LSTM and other neural network architectures. Neural networks
18, 5-6 (2005), 602–610.

[23] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,

and Tony Hosking. 2021. Seed Selection for Successful Fuzzing. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2021).

[24] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[25] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2123–2138.

[26] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied

to handwritten zip code recognition. Neural computation 1, 4 (1989), 541–551.

[27] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy

for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 475–485.

[28] Yuwei Li, Shouling Ji, Chenyang Lv, Yuan Chen, Jianhai Chen, Qinchen Gu, and

Chunming Wu. 2019. V-fuzz: Vulnerability-oriented evolutionary fuzzing. arXiv
preprint arXiv:1901.01142 (2019).

[29] Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. Deepfuzz:

Automatic generation of syntax valid c programs for fuzz testing. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 33. 1044–1051.

[30] Chenyang Lyu, Shouling Ji, Yuwei Li, Junfeng Zhou, Jianhai Chen, and Jing Chen.

2018. Smartseed: Smart seed generation for efficient fuzzing. arXiv preprint
arXiv:1807.02606 (2018).

[31] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and

Raheem Beyah. 2019. {MOPT}: Optimized mutation scheduling for fuzzers. In

28th {USENIX} Security Symposium ({USENIX} Security 19). 1949–1966.
[32] Valentin J. M. Manès, Soomin Kim, and Sang Kil Cha. 2020. Ankou: Guiding Grey-

Box Fuzzing towards Combinatorial Difference. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (ICSE ’20). Association for

Computing Machinery, New York, NY, USA, 1024–1036. https://doi.org/10.1145/

3377811.3380421

[33] Björn Mathis, Rahul Gopinath, and Andreas Zeller. 2020. Learning input to-

kens for effective fuzzing. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 27–37.

[34] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves

Le Traon. 2019. Semantic fuzzing with zest. In Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis. 329–340.
[35] Rahul Potharaju and Navendu Jain. 2013. Demystifying the dark side of the

middle: A field study of middlebox failures in datacenters. In Proceedings of the
2013 conference on Internet measurement conference. 9–22.

[36] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,

and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing.. In

NDSS, Vol. 17. 1–14.
[37] Yanyan Ren, Shriram Krishnamurthi, and Kathi Fisler. 2019. What Help Do

Students Seek in TA Office Hours. In Proceedings of the 2019 ACM Conference on
International Computing Education Research. Association for Computing Machin-

ery, 41–49.

[38] Github Repository. 2021. Program smoothing fuzzing. https://github.com/

PoShaung/program-smoothing-fuzzing.

[39] Dongdong She. 2020. neuzz repository. https://github.com/Dongdongshe/neuzz.

[40] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi Ray. 2020.

MTFuzz: fuzzing with a multi-task neural network. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 737–749.

[41] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman

Jana. 2019. NEUZZ: Efficient fuzzing with neural program smoothing. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 803–817.

[42] Ari Takanen, Jared D Demott, Charles Miller, and Atte Kettunen. 2018. Fuzzing
for software security testing and quality assurance. Artech House.

[43] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu,

Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. 2020. MemLock: Memory

Usage Guided Fuzzing. In Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering (ICSE ’20). Association for Computing Machinery,

New York, NY, USA, 765–777. https://doi.org/10.1145/3377811.3380396

[44] Wikipedia. 2020. Fuzzing. en.wikipedia.org/wiki/Fuzzing. Online; accessed

27-Jan-2020.

[45] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming

Zhang, and Yuqun Zhang. 2022. One Fuzzing Strategy to Rule Them All. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE).

[46] Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang, Cong Liu,

and Yuqun Zhang. 2020. Simulee: Detecting cuda synchronization bugs via

memory-access modeling. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE, 937–948.

[47] Mingyuan Wu, Lingming Zhang, Cong Liu, Shin Hwei Tan, and Yuqun Zhang.

2019. Automating CUDA Synchronization via Program Transformation. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
748–759. https://doi.org/10.1109/ASE.2019.00075

[48] Yalong Yang, Bernhard Jenny, Tim Dwyer, Kim Marriott, Haohui Chen, and

Maxime Cordeil. 2018. Maps and globes in virtual reality. In Computer Graphics
Forum, Vol. 37. Wiley Online Library, 427–438.

[49] Xin Yao, Yong Liu, and Guangming Lin. 1999. Evolutionary programming made

faster. IEEE Transactions on Evolutionary computation 3, 2 (1999), 82–102.

[50] Insu Yun, Sangho Lee,MengXu, Yeongjin Jang, and Taesoo Kim. 2018. {QSYM}: A
practical concolic execution engine tailored for hybrid fuzzing. In 27th {USENIX}
Security Symposium ({USENIX} Security 18). 745–761.

[51] Michał Zalewski. 2020. American Fuzz Lop. https://github.com/google/AFL.

[52] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-

shid. 2018. DeepRoad: GAN-Based Metamorphic Testing and Input Valida-

tion Framework for Autonomous Driving Systems. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE). 132–142.
https://doi.org/10.1145/3238147.3238187

[53] Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun

Zhang, and Lingming Zhang. 2022. History-Driven Test Program Synthesis

for JVM Testing. In 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE).

[54] Husheng Zhou,Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Bei Yu, Lingming

Zhang, and Cong Liu. 2020. DeepBillboard: Systematic Physical-World Testing of

Autonomous Driving Systems. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). 347–358.

[55] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai

Chen. 2020. Fuzzguard: Filtering out unreachable inputs in directed grey-box

fuzzing through deep learning. In 29th {USENIX} Security Symposium ({USENIX}
Security 20). 2255–2269.

https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1109/QRS51102.2020.00071
https://doi.org/10.1145/3377811.3380421
https://doi.org/10.1145/3377811.3380421
https://github.com/PoShaung/program-smoothing-fuzzing
https://github.com/PoShaung/program-smoothing-fuzzing
https://github.com/Dongdongshe/neuzz
https://doi.org/10.1145/3377811.3380396
en.wikipedia.org/wiki/Fuzzing
https://doi.org/10.1109/ASE.2019.00075
https://github.com/google/AFL
https://doi.org/10.1145/3238147.3238187

	Abstract
	1 Introduction
	2 Background
	2.1 Coverage-guided Fuzzers
	2.2 Neural Program-smoothing-based Fuzzers

	3 Extensive Study
	3.1 Benchmarks
	3.2 Evaluation Setups
	3.3 Research Questions
	3.4 Results and Analysis
	3.5 Discussion

	4 PreFuzz
	4.1 The Details
	4.2 Performance Evaluation
	4.3 Implications

	5 Threats to validity
	6 Related Work
	6.1 Fuzzing
	6.2 Deep Learning on Fuzzing
	6.3 Studies on Fuzzing

	7 Conclusion
	8 Acknowledgement
	References

