
History-Driven Test Program Synthesis for JVM Testing

Yingquan Zhao
College of Intelligence and

Computing, Tianjin

University

China

zhaoyingquan@tju.edu.cn

Zan Wang
College of Intelligence and

Computing, Tianjin

University

China

wangzan@tju.edu.cn

Junjie Chen∗

College of Intelligence and

Computing, Tianjin

University

China

junjiechen@tju.edu.cn

Mengdi Liu
College of Intelligence and

Computing, Tianjin

University

China

liumengdi@tju.edu.cn

Mingyuan Wu
Southern University of

Science and Technology

China

11849319@mail.sustech.edu.cn

Yuqun Zhang
Southern University of

Science and Technology

China

zhangyq@sustech.edu.cn

Lingming Zhang
University of Illinois

Urbana-Champaign

United States

lingming@illinois.edu

ABSTRACT

Java Virtual Machine (JVM) provides the runtime environment for

Java programs, which allows Java to be “write once, run anywhere”.

JVM plays a decisive role in the correctness of all Java programs

running on it. Therefore, ensuring the correctness and robustness

of JVM implementations is essential for Java programs. To date,

various techniques have been proposed to expose JVM bugs via

generating potential bug-revealing test programs. However, the

diversity and effectiveness of test programs generated by existing

research are far from enough since they mainly focus on minor syn-

tactic/semantic mutations. In this paper, we propose JavaTailor,

the first history-driven test program synthesis technique, which

synthesizes diverse test programs by weaving the ingredients ex-

tracted from JVM historical bug-revealing test programs into seed

programs for coveringmore JVM behaviors/paths. More specifically,

JavaTailor first extracts five types of code ingredients from the his-

torical bug-revealing test programs. Then, to synthesize diverse test

programs, it iteratively inserts the extracted ingredients into the

seed programs and strengthens their interactions via introducing

extra data dependencies between them. Finally, JavaTailor employs

these synthesized test programs to differentially test JVMs. Our ex-

perimental results on popular JVM implementations (i.e., HotSpot

and OpenJ9) show that JavaTailor outperforms the state-of-the-art

technique in generating more diverse and effective test programs,

e.g., test programs generated by JavaTailor can achieve higher JVM

code coverage and detect many more unique inconsistencies than

the state-of-the-art technique. Furthermore, JavaTailor has detected

10 previously unknown bugs, 6 of which have been confirmed/fixed

by developers.

∗Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510059

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Compilers.

KEYWORDS

Java Virtual Machine, Program Synthesis, JVM Testing, Compiler

Testing

ACM Reference Format:

Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun

Zhang, and Lingming Zhang. 2022. History-Driven Test Program Synthesis

for JVM Testing. In 44th International Conference on Software Engineering

(ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3510003.3510059

1 INTRODUCTION

Java Virtual Machine (JVM) is the fundamental infrastructure to

support the running of Java programs and the programs that are

written in other programming languages but can be compiled to

Java bytecode [18, 34, 35, 42, 45]. Over the years, many JVMs have

been developed by various organizations or companies, such as

HotSpot from Oracle [6], OpenJ9 from IBM [9], GIJ from GNU [5],

and Zulu from Azul [10]. Although many of them have been elab-

orately maintained for many years, like other software systems,

JVM also contains bugs [44]. Due to its fundamental role, JVM bugs

could lead to unexpected behaviors (even disasters in safety-critical

domains) of any programs running on top of it. Therefore, it is

crucial to ensure JVM’s quality.

In recent years, some JVM testing techniques have been pro-

posed to guarantee the quality of JVM, including classfuzz [31] and

classming [30]. These techniques design various mutation operators

to generate a large number of Java classfiles (*.class) based on

real-world classfiles (also called seed classfiles) as test inputs for

JVM testing. In this paper, we call JVM’s test inputs test programs

and seed classfiles seed programs following the existing work [23].

Specifically, classfuzz [31] designs a series of syntactic mutation op-

erators (e.g., changing the modifier or type of a variable). However,

its generated test programs are usually invalid, causing that they

are rejected at the JVM’s startup stage (i.e., loading, linking, and

initialization) and thus cannot reach the follow-up verification and

execution stages. To get rid of this limitation, the state-of-the-art

1133

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun Zhang, and Lingming Zhang

technique, i.e., classming, was proposed [30], which designs some

mutation operators (e.g., inserting goto or return instructions)

to alter the control- and data- flow of seed programs instead of

syntactic mutation.

Although these techniques have been demonstrated to be able to

detect some new JVM bugs, they still suffer from the effectiveness

problem. Specifically, they just aim to generate the test programs

with diverse control- and data- flow by accumulating minor muta-

tions, rather than bug-revealing test programs. That is, their goal is

not directly aligned with the testing goal, leading to spending plenty

of time on generating and executing the test programs without the

bug-revealing capability and thus hindering their effectiveness.

Moreover, the great control- and data- flow diversity of test pro-

grams does not mean diverse testing capabilities for the JVM under

test. In particular, their minor mutations (e.g., mutating some key-

words) actually limit the space for constructing new test programs

and thus limit their testing capabilities. For example, in our study

(to be presented in Section 4) the state-of-the-art technique (i.e.,

classming) only increases 1.30% JVM line coverage compared with

the seed program (i.e., avrora) after executing 3,765 its generated

test programs. Therefore, more effective JVM testing techniques

are still desirable.

To further improve the effectiveness of JVM testing, in this work

we propose a novel technique, called JavaTailor, which aims to

generate bug-revealing test programs as much as possible in order

to approach the ideal testing goal. To achieve this goal, JavaTailor

investigates the test programs revealing historical JVM bugs and

then extracts bug-revealing ingredients from them to facilitate the

generation of new bug-revealing test programs. The key insight

lies in that each historically bug-revealing test program contains

the ingredients facilitating the detection of the bug, which may

involve complicated code logic or cover corner cases. If we combine

the ingredients extracted from various historically bug-revealing

test programs or put these ingredients into different contexts, it is

very likely to generate the test programs that can cover more inter-

ested JVM’s behaviors/paths, leading to detecting new bugs. With

this intuition, we design JavaTailor consisting of three steps: First,

JavaTailor extracts the ingredients from our collected historically

bug-revealing test programs to form an ingredient pool. In particu-

lar, we systematically extract five types of ingredients at the block

level, to balance extraction efficiency and effectiveness. Second, Ja-

vaTailor generates a new test program by synthesizing a randomly

selected ingredient from the pool and a real-world classfile (i.e., a

seed program). The seed program is responsible to provide different

contexts for the extracted ingredient. The main technical challenge

of JavaTailor lies in this step since it is necessary to guarantee

the synthesized test program to be valid. Here, JavaTailor designs

two strategies (i.e., reusing variables in the seed program and con-

structing new definitions) to fix the broken syntactic and semantic

constraints in the extracted ingredient. In particular, JavaTailor al-

lows synthesizing the seed program with multiple ingredients in an

iterative way, which is helpful to combine different bug-revealing

ingredients for JVM testing. Third, JavaTailor adopts differential

testing to check whether the generated test program can reveal a

JVM bug or not.

To evaluate the effectiveness of JavaTailor, we conducted ex-

tensive experiments on two popular JVM implementations (i.e.,

HotSpot and OpenJ9) involving 5 OpenJDK versions, by taking 8

real-world benchmarks as seed programs and collecting 630 his-

torically bug-revealing test programs. Our experimental results

demonstrate that JavaTailor is able to detect much more unique

inconsistencies than the state-of-the-art JVM testing technique (i.e.,

classming [30]), achieving 792.31% ∼ 1742.86% improvements across

all the OpenJDK versions except OpenJDK14 (only JavaTailor de-

tects inconsistencies on this version, and thus we cannot calculate

the improvement on it). Also, on the basis of test coverage achieved

by the seed programs, JavaTailor is able to further improve much

more line coverage, branch coverage, and function coverage than

classming. In particular, JavaTailor detects 10 unknown bugs in the

latest HotSpot and OpenJ9, among which 6 has been confirmed or

fixed by developers after submitting them to the corresponding bug

repositories. Those results demonstrate the significant effectiveness

of JavaTailor.

To sum up, this work makes the following major contributions:

• Direction.We open a new direction for JVM testing: while

priorwork on JVM testing focused onminor syntactic/semantic

mutations, our work opens a new dimension for JVM test-

ing via history-driven test program synthesis to cover more

diverse JVM paths/behaviors.

• Technique. We propose a novel JVM testing technique,

called JavaTailor, which aims to generate bug-revealing test

programs as much as possible by elaborately utilizing his-

torically bug-revealing test programs.

• Implementation.We develop and release a tool to imple-

ment JavaTailor [7], including systematically extracting in-

gredients from historically bug-revealing test programs and

synthesizing the ingredients with a given seed program to

produce a valid test program.

• Study.We conduct an extensive study to evaluate JavaTailor

based on popular JVM implementations(i.e., HotSpot and

OpenJ9), demonstrating the significant superiority of Ja-

vaTailor over the state-of-the-art JVM testing technique. In

particular, JavaTailor has detected 10 unknown bugs, 6 of

which have been confirmed or fixed by developers.

2 MOTIVATION AND CHALLENGES

Here, we use an example to illustrate the motivation of JavaTailor

and its major challenges.

Figure 1a shows a test program generated by JavaTailor, which

detects an unknown OpenJ9 bug. This bug is caused due to missing

null checks for the parameters in MemoryNotificationInfo in

the OpenJ9 implementation. MemoryNotificationInfo is an inter-

nal class under java.lang.management package, which is used to

notify when the memory usage exceeds a threshold. The notified in-

formation is vital for debugging when error occurs. When running

this test program with a null parameter (i.e., usage) on OpenJ9, it

is executed normally without any exception. However, when run-

ning the same test program on HotSpot, a NullPointerException

is thrown since its implementation contains null checks for the

parameters in MemoryNotificationInfo. The different behavior

exhibited by them indicates the existence of a bug in at least one

of them. Through our manual investigation and submitting a bug

report to the bug repository of OpenJ9, the bug was confirmed

1134

History-Driven Test Program Synthesis for JVM Testing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

 1 public static void main(String[] args) {
 2 String str = "anystring";
 3
 4 String name = str;
 5 MemoryUsage usage = null;
 6 long count = 999; //generate by random
 7 MemoryNotificationInfo mn;
 8 mn = new MemoryNotificationInfo(name, usage, count);
 9 count = mn.getCount();
10
11 System.out.println(str);
12 }

(a) Test program

 1 public static int run(String[] argv, PrintStream out) {
 2 MemoryUsage mu = new MemoryUsage(1, 2, 3, 4);

 3
 4 // Check negative count
 5 mn = new MemoryNotificationInfo("poolName", mu, -1);
 6 count = mn.getCount();
 7 if (count != -1) {
 8 out.println("FAILURE 2.");
 9 out.println("Wrong count: " + count + ", expected: -1");
10 testFailed = true;
11 }
12 ...
13 }

(b) Historical test program

Figure 1: Motivating example

 public MemoryNotificationInfo(String poolName,
MemoryUsage usage, long count) {

 super();
+ if (poolName == null) {
+ /*[MSG "K0D02", "Null poolName"]*/
+ throw new NullPointerException(***.getString("K0D02"));
+ }
+
+ if (usage == null) {
+ /*[MSG "K0D03", "Null usage"]*/
+ throw new NullPointerException(***.getString("K0D03"));
+ }

 this.poolName = poolName;
 this.usage = usage;
 this.count = count;

 }

Figure 2: OpenJ9 Bug#12552

and fixed by OpenJ9’s developers (Bug ID: 12552 [2]). The patch

provided by them is shown in Figure 2, in which null checks have

been added for MemoryNotificationInfo’s parameters.

This bug-revealing test program is generated by synthesizing the

ingredient extracted from a historical bug-revealing test program

(as shown in Figure 1b) and an arbitrarily selected seed program (as

shown in Figure 1a without the code marked in red). Please note

that the historical test program cannot trigger the above detected

bug since no parameters in MemoryNotificationInfo are set to

null. Specifically, we extract Lines 5-6 from the historical test

program as the ingredient and then insert it to the seed program.

As shown in Figure 1a, we insert the ingredient at Lines 4-9 to

produce a test program. Here, directly inserting the ingredient to

the seed program cannot make the synthesized test program valid

due to lack of definition of some variables (such as mn and the

parameters of MemoryNotificationInfo), and we have to conduct

extra operations to make it valid.

To better integrate the ingredient and seed program for the trig-

gering of interesting/corner-case interactions between them, we

prefer to replace the undefined variables in the ingredient with

the existing variables satisfying type compatibility in the seed pro-

gram. Thus, we assign str defined at Line 2 to the first parameter

of MemoryNotificationInfo (as shown at Line 4). If the seed pro-

gram also does not contain such type-compatible variables, we have

to generate definitions for the corresponding variables. For example,

the second parameter of MemoryNotificationInfo belongs to the

type of MemoryUsage and thus we generate its definition as shown

at Line 5. Since the second parameter is initialized to be null, the

synthesized test program is able to trigger the bug.

We further analyzed whether existing JVM testing techniques

can detect this bug. Regardless of classming or classfuzz, they just

conduct minor mutations (e.g., changing the modifier of a vari-

able or inserting the goto keyword) on the seed program in an

iterative way, which aims to change the data- and control- flow

inside the seed program. If the seed program does not contain

MemoryNotificationInfo like the one used in the example (i.e.,

the seed program contains only Lines 2 and 11 as shown in Fig-

ure 1a), these techniques cannot generate test programs revealing

the bug no matter how to change its data- and control- flow. As pre-

sented above, however, synthesizing the ingredients from historical

test programs is more likely to introduce bug-revealing program

features, indicating the promising direction of mining the ingredi-

ents accumulated in a large number of historical bug-revealing test

programs for constructing better JVM test programs.

While it is a promising direction, synthesizing new bug-revealing

test programs based on historically bug-revealing test programs is

not trivial, which suffers from two major challenges:

Challenge 1: How to measure and extract ingredients in histori-

cally bug-revealing test programs? A test program tends to contain

various language structures, which can be represented at different

granularities (such as variables, blocks, or files). If we measure and

extract ingredients at a very fine-grained granularity (e.g., variable

granularity), the process of ingredient extraction could become

costly and the whole syntactic or semantic features relevant to bug

detection may be damaged. If the granularity is too coarse (e.g., file

granularity), the interaction between the extracted ingredients and

the seed program could be weak, which affects the integration of

the ingredients with new contexts and thus impairs the testing per-

formance of synthesized test programs. Therefore, measuring and

extracting ingredients at an appropriate granularity is important

and non-trivial.

Challenge 2: How to guarantee that a synthesized test program

is valid? A test program usually involves various syntactic and

semantic constraints. Violating them can make it become invalid,

and an invalid test program will be rejected by the JVM under

test, thus impairing the testing performance. When synthesizing

the ingredients extracted from one test program with another test

program, it is scarcely possible to produce a valid test program by

directly combining them since they tend to involve very different

syntactic and semantic constraints. Therefore, it is very important

but challenging to make the different constraints from the two test

1135

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun Zhang, and Lingming Zhang

programs compatible during the synthesis process, so that a valid

test program can be produced.

3 APPROACH

In this paper, we propose a novel JVM testing technique, called Ja-

vaTailor, which aims to generate new bug-revealing test programs

by synthesizing the code ingredients extracted from historically

bug-revealing test programs with given seed programs. The key

insight behind JavaTailor is that 1) existing test programs reveal-

ing historical bugs contain the code ingredients facilitating the

detection of bugs, which tend to contain more complicated code

logic or cover various corner cases, and 2) combining various such

code ingredients and/or putting them into different code contexts

can potentially cover even more interesting JVM behaviors/paths

important for new JVM bug detection.

Figure 3 shows the overview of JavaTailor, which consists of

three stages. First, JavaTailor extracts the ingredients from the

collected test programs revealing historical bugs to construct an

ingredient pool (Section 3.1). More specifically, we systematically

design various types of code ingredients at the block granularity

in JavaTailor to balance both effectiveness and efficiency. Second,

JavaTailor synthesizes a randomly selected ingredient from the

ingredient pool with a given seed program to generate a valid test

program (Section 3.2). Meanwhile, JavaTailor fixes the broken syn-

tactic and semantic constraints in the code ingredient (i.e., missing

variables’ definitions) by either utilizing the type-compatible vari-

ables in the seed program or automatically constructing the missing

definitions. Third, JavaTailor executes the synthesized test program

for JVM testing (Section 3.3). It adopts differential testing based

on different JVM implementations (e.g., HotSpot and OpenJ9) to

check whether the test program reveals a bug or not. If there is

no inconsistencies identified by the synthesized test program, the

test program will be put into the pool of seed programs for further

combining with more ingredients.

3.1 Ingredient Extraction

As discussed in Section 2, the effectiveness of extracted ingredients

could be affected by its extraction granularity. In JavaTailor, we

adopt the block granularity as the trade-off between extraction

efficiency and effectiveness. Specifically, we systematically deign

five types of blocks for ingredient extraction as follows. In particular,

our implementation for JavaTailor is based on Soot [47], a widely-

used tool for analyzing Java classfiles, and our five types of blocks

can cover all the types of instructions supported by Soot. Based

on Soot, JavaTailor extracts ingredients from the Java classfile (i.e.,

Jimple code transformed by Soot) level rather than the source code

level, which can acquire the following benefits: 1) There are a

number of operations on Jimple code supported by Soot, facilitating

the implementation of JavaTailor; 2) It facilitates to generate more

test programs with richer semantics by getting rid of the constraints

from front-end compilers (e.g., javac).

• Sequential Ingredient (SEQ). A SEQ refers to a block con-

taining a sequence of instructions without any branches.

• If Ingredient (IF): A IF could have several branches (i.e., if,

else if, and else), and it includes the conditions of all the

branches and the corresponding bodies.

• Loop Ingredient (LOOP): A LOOP could be while, do-while,

or for LOOP. It includes the loop condition and the corre-

sponding body.

• Switch Ingredient (SWITCH): A SWITCH includes the

condition and all the cases. In Soot, it contains both lookupswitch

and tableswitch.

• Try-Catch Ingredient (TRAP): It includes the try body

and the statements used for handling the caught exception.

To implement the extraction of ingredients, JavaTailor trans-

forms a historical bug-revealing test program into a Control-Flow

Graph (CFG) based on the Jimple code obtained after Soot’s pro-

cessing. In a CFG, a node refers to a basic block including one or

more instructions, and an edge represents the code logic between

two basic blocks. An ingredient in JavaTailor includes one or more

basic blocks in a CFG.

Based on the CFG of a test program, JavaTailor first identifies

the starting points (i.e., basic blocks) of the latter four types of

ingredients according to the types of instructions included in each

basic block. For example, if a basic block contains a switch in-

struction, it can be regarded as the starting point of a SWITCH

ingredient. Then, for each starting point of an ingredient, JavaTailor

searches for its dependent basic blocks to form a whole ingredient.

For example, after identifying a basic block including a switch

instruction, JavaTailor searches for the basic blocks for all the cases

of this switch condition, and finally all these basic blocks form a

SWITCH ingredient. There is a special case in implementations

and we further illustrate it in detail: If a basic block contains an if

instruction, it is hard to determine whether it is the starting point

of an IF ingredient. This is because in Soot, loops are represented

as the combination of if and goto instructions. Thus, we need to

check whether its successor basic blocks contain a goto instruction.

If a goto instruction is found and its target is the starting point,

this basic block is actually the starting point of a LOOP ingredient;

otherwise, it is the starting point of an IF ingredient. For a basic

block that cannot be identified as the starting point of any of the

latter four types of ingredients, JavaTailor treats the basic block as

a SEQ ingredient.

To further illustrate the extraction process, we take an example

shown in Figure 4, which is a CFG of nested for-if. For each basic

block in the CFG, JavaTailor checks whether it is the starting point

of one of the ingredients. For example, for the block labeled as 2

(also called block 2), it contains an if instruction, indicating that

it may be the start point of an IF ingredient or a LOOP ingredient.

To figure out its type, JavaTailor recursively gets all its successor

blocks, and finds that there is a goto instruction that points to block

2 in block 5, indicating that this is a LOOP ingredient. It corresponds

to the part labeled as FOR in this figure. For block 3, there is no

goto instruction pointing to it in all its successor blocks, and thus

it is an If Ingredient, corresponding to the part labeled as IF in this

figure. When the extraction process is completed, JavaTailor can

extract 4 ingredients in this example, as shown at the bottom of

Figure 4. Note that the start and end blocks of CFG are filtered here,

due to its simple code logic.

Through extracting the five types of ingredients from all the

collected historical bug-revealing test programs, an ingredient pool

can be built by JavaTailor.

1136

History-Driven Test Program Synthesis for JVM Testing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

RAW

Historical
Test Programs

Ingredient Pool

Seed Pool

No Difference Found

Step2:
Ingredient
Extraction

Step3:
Ingredient
Selection

Difference
Report

Failing
Synthesized

Programs
Normal

Synthesized Program

Step4:
Seed Selection

Step5: Insertion

Step1:
Seed

Initialization

Seed Programs

Input Synthesis Phase Execution Phase Output

Other JVMs
…

Figure 3: Overview of JavaTailor

label 1:
if i0>=10 goto label 3

label 3:
return

if i0>=6 goto label 2

FOR

IF

$r1=java.lang.System.out
$r1.println(i0)

label 2:
i0 = i0 + 1
goto label1

r0:=@parameter()
i0=0

1

2

4

3

5

6

Extracted Ingredients: IF: {3,4,5} SEQ: {4}, {5}LOOP: {2,3,4,5}

Figure 4: Control flow graph of nested For-If

3.2 Test Program Synthesis

To generate a new test program, JavaTailor randomly selects an

ingredient from the ingredient pool as well as a seed program,

and then synthesizes the ingredient with the seed program. Also,

JavaTailor randomly selects a program point in the seed program

for inserting the extracted ingredient (we call it synthesis point

in this paper). Such random operations are helpful to generate

diverse synthesized test programs. As discussed in Section 2, it is

challenging to ensure that the synthesized test program is valid

due to breaking the original syntactic and semantic constraints

of the ingredient (i.e., missing variable definitions). Therefore, to

obtain a valid synthesized test program, JavaTailor has to fix those

broken constraints during the synthesis process. To achieve this

goal, JavaTailor has two strategies, i.e., reusing variables in the seed

program and constructing new definitions.

Reusing variables in the seed program. For a variable missing

its definition in the ingredient, JavaTailor prefers to find whether

there is a variable in the seed program that can be used to replace the

variable in the ingredient. In this way, the interaction between the

ingredient and the seed program can be stronger, enabling the new

context to produce larger impact on the historical bug-revealing

ingredient, which in turn is more likely to trigger different JVM

behaviors and reveal new bugs. Specifically, JavaTailor searches for

the type-compatible variables in the seed program with the variable

Ingredient

Depth 1

Depth 2

Seed Variable:
String s0 = “s”;

Class1(String str, Class2 c2)

Class2(int i, float f)

int i=1; float f=1.0;

String str = s0;

invoke Method fun(Class1 c1)

Reusing seed variable: Creating new variables:

Figure 5: Fix broken constraints

missing its definition in the ingredient from the code before the syn-

thesis point. If such a variable is found, JavaTailor then replaces the

ingredient’s variable with the identified type-compatible variable,

in order to recover the broken constraints.

Constructing new definitions. Not all the variables missing defi-

nitions in the ingredient can find such type-compatible variables in

the seed program, especially when the variable type is an Object

type. At this time, JavaTailor has to construct definitions for those

variables in order to fix the broken constraints. Algorithm 1 for-

mally illustrates the definition construction process. Regarding the

primitive types, JavaTailor directly constructs the corresponding

types of variables with a random initialization at Line 5. Otherwise,

if a variable’s type is an Object type, we can invoke the correspond-

ing constructor to define the variable at Line 9, but it is also very

likely to come across the parameters with other Object types in

the constructor as shown in Lines 10-15. Then, JavaTailor is also

required to define these parameters by invoking their constructors

at Line 14. That is, this process is recursive until all the required

parameters are primitive types. In particular, to avoid costly or

even endless recursion, JavaTailor sets a maximal recursion depth

(denoted as D) as the terminating condition in Lines 2-3. If the

recursion depth exceeds D, JavaTailor directly initializes the corre-

sponding parameters as null.

Figure 5 shows a simple example to further illustrate the pro-

cess of fixing broken constraints in JavaTailor, where the selected

ingredient is a function call with a parameter c1 of the Class1

type. To create the definition of c1, JavaTailor first needs to create

variables for the parameters of its constructor (i.e., String str

1137

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun Zhang, and Lingming Zhang

Algorithm 1: Constructing new definitions

Input: 𝑡𝑦𝑝𝑒 : the missing type, 𝑑𝑒𝑝𝑡ℎ: current iteration depth
Output: 𝑣: newly generated variable

1 Function CreateVarWithType(𝑡𝑦𝑝𝑒 , 𝑑𝑒𝑝𝑡ℎ):
2 if 𝑑𝑒𝑝𝑡ℎ >D then

3 return 𝑛𝑢𝑙𝑙 ;

4 if type(𝑡) is primitive type or String then

5 𝑣← randomly create variable with type(𝑡);

6 else

7 𝑐𝑠 ← identify all constructors of 𝑡𝑦𝑝𝑒 ;

8 if 𝑐𝑠 contains non-parameter constructor then

9 𝑣← create variable with non-parameter constructor;

10 else

11 𝑐 ← randomly select a constructor in 𝑐𝑠 ;

12 𝑡𝑠 ← identify all parameter types of 𝑐 ;

13 for each 𝑡 ∈ 𝑡𝑠 do
14 𝑝𝑡 ← 𝑝𝑡 ∪ CreateVarWithType(type(𝑡), 𝑑𝑒𝑝𝑡ℎ + 1);

15 𝑣← create variable with 𝑐 and 𝑝𝑡 ;

16 return 𝑣;

and Class2 c2). Since there is a String type variable defined in

seed program, we reuse it at 1©. However, there is no variable of

type Class2 defined in the seed program, JavaTailor needs to re-

cursively create variables of Class2 and its parameters of types

int and float in the next recursion. Since the missing dependent

variables of Class2 are all primitive types, we randomly create a

value for them at 2© and 3©. Then, the variable of Class2 can be

created at 4© and finally create the definition of Class1 c1 at 5©.

After fixing those broken constraints, JavaTailor inserts the pro-

cessed ingredient into the synthesis point. Please note that JavaTai-

lor replaces the return instructions with goto instructions in order

to avoid terminating the synthesized test program prematurely.

Also, it is necessary to assign a label for each goto instruction.

To boost the interaction between the ingredient and the seed pro-

gram, JavaTailor inserts the label to the code belonging to the

seed program.

3.3 Synthesized Program Execution

After generating a new test program via synthesis, JavaTailor then

executes it and checks whether it reveals a JVM bug or not. Here,

JavaTailor adopts differential testing as the test oracle, which com-

pares the outputs of different JVM implementations (such asHotSpot

and OpenJ9) with regard to this test program. Since a test program

may produce a large amount of outputs, which may include non-

deterministic outputs (such as time-related outputs), it may incur

the inaccuracy when determining an inconsistency. Moreover, faced

with the same exception, different JVM implementations may also

produce different stack traces, further aggravating the difficulty of

determining an inconsistency.

JavaTailor relieves this challenge from the following three scenar-

ios: 1) If one JVM terminates normally while another JVM crashes,

JavaTailor regards it as an inconsistency without doubts; 2) If both

JVM implementations crash during the execution of the same syn-

thesized test program, JavaTailor extracts the exception messages

from the produced stack traces by employing regular expressions

(such as identifying the lines including the keywords of Exception,

Error and Failure), in order to reduce the influence of different

styles of stack traces produced by different JVM implementations.

Then, if the extracted exception messages are different, JavaTailor

regards it as an inconsistency. 3) If both JVM terminates normally,

the outputs are also produced by the synthesized test program. To

reduce the noise of determining an inconsistency, JavaTailor first

filters out some non-deterministic messages by employing regular

expressions (such as including the keywords of time, random and

thread, and some common time formats), and then filters out the

messages produced by the third-party libraries (such as JUnit and

Log4J) used by the test program. Then, if the remaining outputs are

still different, we regards it as an inconsistency. Regarding the latter

two scenarios, we further manually check whether the identified

inconsistency is a really bug or a false positive before reporting it

to the JVM’s developers. In particular, if an inconsistency is a false

positive, we further design a rule with regard to it and then incor-

porate it in JavaTailor to further boost the accuracy of determining

an inconsistency.

Please note that if there is no inconsistency identified by a synthe-

sized test program, JavaTailor puts it into the pool of seed programs.

In this way, it can be used as a seed program for the following syn-

thesis, and thus a test program combining multiple ingredients from

different historical bug-revealing test programs could be generated,

which may be more helpful to reveal new JVM bugs.

4 EVALUATION

In the study, we aim to address the following research questions:

• RQ1: How does JavaTailor perform in detecting JVM incon-

sistencies?

• RQ2: Can JavaTailor achieve higher JVM coverage?

• RQ3: Are the ingredients extracted from historically bug-

revealing test programs more effective than existing muta-

tion operators for JVM testing?

• RQ4: Can JavaTailor detect previously unknown bugs in the

latest JVM implementations?

4.1 Evaluation Settings

Subjects. Following the existing work [30], we adopted two popu-

lar JVMs, i.e., HotSpot [6] and OpenJ9 [9], as subjects. Table 1 shows

the subjects used in our study. We did not use OpenJDK9 and Open-

JDK10 since they are no longer maintained in OpenJ9. We can find

that for each OpenJDK version, we used one relatively old build and

one latest build for each JVM. Here, to investigate the effectiveness

of JavaTailor based on more significant results in statistics, we used

these relatively old JVM builds as the subjects under test since they

tend to contain more bugs. We call an experiment based on the

relatively old HotSpot build and the relatively old OpenJ9 build

of one OpenJDK version a differential-testing experiment. In total,

we have five differential-testing experiments due to evaluating on

five OpenJDK versions. Regarding these latest JVM builds, they are

used to determine whether an inconsistency detected by JavaTailor

on the relatively old builds in a differential-testing experiment is a

real one by checking whether the inconsistency has been fixed by

the latest JVM builds (more details about it will be presented in the

1138

History-Driven Test Program Synthesis for JVM Testing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Studied JVM implementations for differential testing

OpenJDK

Version

JVM

Implementation
JVM Version

build 25.0-b70
HotSpot

build 25.292-b10

build openj9-0.8.0OpenJDK8

OpenJ9
build openj9-0.26.0

build 11+2
HotSpot

build 11.0.11+9

build openj9-0.12.0OpenJDK11

OpenJ9
build openj9-0.26.0

build 12+33
HotSpot

build 12.0.2+10

build openj9-0.13.0OpenJDK12

OpenJ9
build openj9-0.15.1

build 13+33
HotSpot

build 13.0.2+8

build openj9-0.16.0OpenJDK13

OpenJ9
build openj9-0.18.0

build 14+36-1461
HotSpot

build 14.0.2+12

build openj9-0.20.0OpenJDK14

OpenJ9
build openj9-0.21.0

part of evaluation metrics). In particular, we also applied JavaTailor

to test the latest JVM builds to investigate whether it can detect

previously unknown JVM bugs.

Historical Bug-Revealing Test Programs.We collected the test

programs revealing historical bugs from the HotSpot test suite. This

is because it well integrates the bug-revealing test programs from

its bug repositories, and each bug-revealing test program in its test

suite is equipped with the corresponding bug description, which

is convenient for us to distinguish whether a test program in the

test suite is bug-revealing or just a normal test. In particular, we

removed the test programs that can reveal bugs directly on the

subjects under test in order to clearly investigate the effectiveness

of JavaTailor. Moreover, we filtered out the test programs that

cannot run successfully in our experimental environment. Finally,

we collected 630 bug-revealing test programs in total. Based on

them, JavaTailor extracts a large number of ingredients (i.e., 33,002),

including 17,716 SEQ ingredients , 8,914 IF ingredients, 6,122 LOOP

ingredients, 236 TRAP ingredients and 14 SWITCH ingredients.

Seed Programs.We collected the benchmarks that were used in

the existing JVM testing study [30] and the test programs from

the test suites of HotSpot and OpenJ9 as seed programs. Table 2

shows the basic information of our used seed programs. The former

six benchmarks are selected from the existing study [12], and only

one classfile (the one including main function) in each of them

is used as the seed program following the study [30]. There are

some other benchmarks used in the existing study [12, 30], but they

cannot run successfully in our experimental environment due to

their old/outdated versions. The fourth column shows the number

of Jimple instructions in the seed programs for each benchmark.

Table 2: Benchmarks description

ID Project #size #inst #iter

P1 avrora 1 302 5000

P2 eclipse 1 2061 20000

P3 pmd 1 840 10000

P4 jython 1 377 6000

P5 fop 1 187 3000

P6 sunflow 1 308 4000

P7 HotSpot-tests 630 136823 3 days

P8 Openj9-tests 1616 273710 3 days

Besides, we constructed two interesting scenarios by using the

test programs from the test suite of HotSpot and OpenJ9 as seed

programs. First, we used the above 630 historically bug-revealing

test programs from HotSpot as seed programs, which is helpful to

investigate the power of integrating various historical bug-revealing

test programs. Second, we also collected the test programs from

the test suite of OpenJ9 as seed programs, which is interesting

to investigate whether the ingredients from the test programs in

one JVM (i.e., HotSpot) can augment the effectiveness of the test

programs in the other JVM (i.e., OpenJ9). Similarly, we discarded

the test programs that can reveal bugs on our used subjects or

cannot run successfully in our experimental environment. In total,

we obtained 1,616 test programs from the test suite of OpenJ9 as

seed programs.

Compared Approaches. In the study, we compared JavaTailor

with the state-of-the-art JVM testing approach, i.e., classming [30].

classming designs several mutation operators to minorly modify

a seed program, aiming to alter the control- and data- flow of

the seed program, which includes the insertion of five keywords:

goto, return, throw, lookupswitch, and tableswitch. Different

from the testing process of JavaTailor (i.e., for generating each test

program, it randomly selects an ingredient and a seed program

for synthesis), classming incorporates the MCMC (Markov Chain

Monte Carlo) algorithm to guide the selection of mutation operators

in order to iteratively mutate a given test program for generating a

series of mutated test programs.

To further evaluate the contribution of our ingredient synthesis

method, we mitigate the difference of the testing process between

JavaTailor and classming. Specifically, we constructed a variant of

JavaTailor by replacing our ingredient synthesis method with the

minor mutation operators proposed in classming, which is called

Javaming. That is, for generating each test program, Javaming

randomly selects a mutation operator and a seed program, and then

applies the mutation operator to the seed program to produce a

new test program. If it does not reveal a JVM bug, this test program

will be placed into the pool of seed programs for future selections.

Implementation and Environment.We implemented JavaTai-

lor based on OpenJDK8 (a popular OpenJDK version) and Soot

(a mature program analysis tool for Java classfiles that has been

widely used in the existing work [30, 31, 41]). Regarding using

Soot in implementing JavaTailor, it definitely can be replaced with

other libraries, but we chose Soot for a fair comparison with the

state-of-the-art classming (which is also implemented on Soot). In

JavaTailor, the maximal recursion depth (i.e., D) of constructing

1139

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun Zhang, and Lingming Zhang

new definitions is set to 5. Since the implementation for classming is

not available, we carefully re-implemented it based on the descrip-

tion in the existing work [30]. All the settings are consistent with

the existing work [30]. In particular, we ran our re-implementation

of classming according to the study design of its original work [30],

and indeed obtained very similar results, which demonstrates the

validity of our re-implementation.

All our experiments are conducted on a sever with two dodeca-

core CPUs Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz and 251GB

RAM, running Ubuntu 18.04.4 LTS (64 bit). The implementation

of JavaTailor and our datasets can be found at our project home-

page [7] for future usage and replication.

Evaluation Metrics.We considered three metrics to measure the

effectiveness of JavaTailor. The first one is the number of unique

inconsistencies. To answer RQ1, we applied each JVM testing ap-

proach to each pair of JVM builds (i.e., the pair of relatively old JVM

builds of HotSpot and OpenJ9) in each differential-testing experi-

ments. During the given testing period, each approach may detect

a number of inconsistencies between each pair of JVM builds. As

presented in Section 3.3, an inconsistency may be a real bug or

a false positive, and we further ran each approach on the corre-

sponding pair of the latest builds of HotSpot and OpenJ9 in order

to check whether the inconsistency still exists or not. If the incon-

sistency disappears, we regarded it as a bug and this bug has been

fixed in the latest builds; Otherwise, we further manually investi-

gated it to obtain the conclusion of the inconsistency. Also, some

inconsistencies may be duplicated due to the same bug, and thus

we further de-duplicated them according to the crash messages

since most of inconsistencies involved the crashes of at least one

JVM implementation in each pair in our study. We call the num-

ber of inconsistencies after de-duplication the number of unique

inconsistencies. Relying on crash messages may not achieve perfect

de-duplication, but it is the most widely-used automatic method

to identify unique failures in the existing work [29]. Indeed, it is a

potential threat and we will design more accurate metrics in the

future.

Since we also applied JavaTailor to test the latest JVM builds

in RQ4, we cannot use the above method to automatically deter-

mine whether each detected inconsistency is a real bug or a false

positive. Here, we manually investigated them, and then created

and submitted a bug report to the corresponding bug repository for

each potential bug after our manual investigation. Then, we can ob-

tain the number of detected unknown bugs according to developers’

feedback, which is the second metric in our study.

Furthermore, we further measured the test coverage of JVM (that

is the third metric in our study) achieved by each approach, in

order to deeply understand the effectiveness difference between

JavaTailor and classming. Here, we measured the widely-used line

coverage, branch coverage, and function coverage, respectively.

4.2 Process

To answer RQ1, in each differential-testing experiment, we ran each

approach for the same testing period on each benchmark. For the

former six benchmarks, the existing work proposing classming pro-

vides the number of iterations for each of them. Here, we kept the

same setting for classming to show its expected effectiveness and

recorded the testing time spent on completing the corresponding

iterations on each benchmark, then ran JavaTailor for the same test-

ing time on the corresponding benchmark for fair comparison with

classming. For the latter two benchmarks, we ran each approach

for three days respectively. Since classming is an iterative process

on a seed program, it is required to set the number of iterations

on each seed program in the two benchmarks. According to the

former six benchmarks, we can obtain that one instruction requires

14 iterations on average. Thus, for the latter two benchmarks, after

selecting a seed program, we set the number of iterations on it to

14 ∗ the number of instructions of the seed program for classming.

The testing process of each approach terminates after running for

three days for fair comparison. To answer RQ3, we ran Javaming

following the same setting of RQ1.

To answer RQ2, we took HotSpot build 11-internal+0 for Open-

JDK11 as the representative, for test coverage collection. The run-

ning process of each approach is consistent with the setting of

RQ1. To collect the coverage of HotSpot, we compiled it with the

flag –enable-native-coverage, and then adopts Gcov [4] and

Lcov [8] to collect and analyze the line coverage, branch coverage,

and function coverage achieved by each approach. In particular, we

consider all the source code irrelevant to the underlying platforms

in HotSpot for coverage collection. In total, there are 331,978 lines

of code, 199,173 branches, and 95,351 functions.

To answer RQ4, we applied JavaTailor to the latest JVM builds,

and ran it on each differential-testing experiment for a longer test-

ing time (i.e., five days). Since manually analyzing and reporting

each unknown bug is time-consuming, especially the process of

reducing a bug-revealing test program into a small but still bug-

revealing one, we chose OpenJDK8 and OpenJDK11 as the repre-

sentatives for testing in this experiment.

4.3 Results and Analysis

4.3.1 RQ1: Effectiveness of JavaTailor. Table 3 shows the compari-

son results among JavaTailor, classming, and Javaming in terms of

the number of detected unique inconsistencies.

By comparing JavaTailor and classming, we found that JavaTailor

is able to detect much more unique inconsistencies than classming

for each differential-testing experiment on each benchmark. By tak-

ing the differential-testing experiment for OpenJDK8 as an example,

classming detects unique inconsistencies on four benchmarks and

the total number of unique inconsistencies is 35, while JavaTailor

detects unique inconsistencies on all the eight benchmarks and the

total number of unique inconsistencies is up to 377. The improve-

ments of JavaTailor over classming range from 792.31% to 1742.86%

across all the differential-testing experiments except OpenJDK14

(only JavaTailor detects inconsistencies on this version and thus we

cannot calculate the improvement on it) in terms of the total num-

ber of unique inconsistencies on all the benchmarks. The results

demonstrate the significant superiority of our proposed approach

JavaTailor over the state-of-the-art approach classming.

We further analyzed the reason why JavaTailor significantly out-

performs the state-of-the-art approach classming. The latter focuses

on exploring various control- and data- flow of the seed program

based on the ingredients itself in an iterative way, which actu-

ally limits the space of constructing test programs. Different from

1140

History-Driven Test Program Synthesis for JVM Testing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: JVM inconsistencies detection effectiveness comparison

ID
OpenJDK8 OpenJDK11 OpenJDK12 OpenJDK13 OpenJDK14

C.M. J.T. J.M. C.M. J.T. J.M. C.M. J.T. J.M. C.M. J.T. J.M. C.M. J.T. J.M.

P1 0 8 0 0 3 0 0 3 0 0 1 0 0 0 0

P2 0 14 2 0 8 0 0 2 0 0 6 0 0 0 0

P3 0 9 2 0 6 0 0 1 0 0 3 0 0 1 0

P4 0 8 0 0 2 0 1 2 0 1 1 0 0 0 0

P5 3 12 0 4 17 4 4 18 0 0 1 0 0 0 0

P6 2 20 0 0 8 0 0 5 0 1 4 0 0 1 0

P7 4 143 7 1 122 3 2 48 3 2 30 0 0 16 0

P8 26 163 10 9 92 8 10 95 8 9 70 4 0 70 0

Total 35 377 21 14 258 15 17 174 11 13 116 4 0 88 0

C.M. and J.T. are the abbreviations of classming and JavaTailor respectively

Figure 6: Inconsistency distribution
by ingredient types

Table 4: Confirmed/Fixed unknown bugs

Bug ID JVM Affected Versions Status

Bug#12819 OpenJ9 OpenJDK 8, 11, 16 Fixed

Bug#12992 OpenJ9 OpenJDK 8, 11, 16 Fixed

Bug#12552 OpenJ9 OpenJDK 8, 9, 10, 11 Fixed

Bug#12815 OpenJ9 OpenJDK 8, 11, 16 Confirmed

Bug#13242 OpenJ9 OpenJDK 8, 11, 16 Confirmed

JDK-8271457 HotSpot OpenJDK 9, 11, 17 Confirmed

classming, JavaTailor incorporates various bug-revealing ingredi-

ents from historical test programs to generate new test programs,

which not only can construct the test programs with diverse (even

bug-revealing) control- and data- flow but also enlarges the test

program space to increase the chance of producing bug-revealing

test programs. Besides, according to the results on the benchmark

of HotSpot’s test programs, JavaTailor detects much more unique

inconsistencies than classming, demonstrating that combining vari-

ous ingredients from different historically bug-revealing test pro-

grams is more effective than just individually exploring each his-

torically bug-revealing test program. According to the results on

the benchmark of OpenJ9’s test programs, JavaTailor also detects a

large number of unique inconsistencies, showing that the testing

capability of one JVM’s test suite can be augmented by another

JVM’s test suite.

We also investigated whether each type of ingredients can help

detect some unique inconsistencies, whose results are shown in

Figure 6. This figure presents the percentage of each type of ingre-

dients resulting in the detection of unique inconsistencies. Here,

we integrated the results of all the differential-testing experiments.

We found that every type of ingredients are able to detect unique

inconsistencies. In particular, there are a small number of SWITCH

ingredients in our dataset (i.e., 14), but they also revealed unique

inconsistencies. That demonstrates the contribution of each type

of ingredients. As expected, for each type of ingredients, the num-

ber of detected unique inconsistencies is strongly correlated to

the number of the type of ingredients in our dataset. For example,

we extracted the largest number of SEQ ingredients and indeed it

detected the largest number of unique inconsistencies.

4.3.2 RQ2: JVM’s Coverage Comparison. We compared JavaTailor

and classming in terms of JVM’s coverage (including line cover-

age, branch coverage, and function coverage) achieved by them

respectively, in order to further explain why JavaTailor performs

better than classming. Figure 7 shows the coverage comparison

results, where the gray lines present the coverage achieved by the

seed programs, and the green and yellow lines present the cover-

age achieved by JavaTailor and classming on the basis of the seed

programs respectively. We found that regardless of line coverage,

branch coverage, or function coverage, the improved coverage by

classming over the seed programs is very small on each benchmark,

indicating that just altering control- and data- flow of the seed

programs based on their own ingredients is hard to bring large

JVM coverage increments. Regarding JavaTailor, its improved JVM

coverage over both classming and the seed programs is obvious

on all the benchmarks (except P7). The results demonstrate that

incorporating more ingredients from other test programs into the

seed programs are more helpful to improve JVM coverage, resulting

in the detection of more unique inconsistencies than classming.

The reason for P7 is that both the ingredient pool and the seed

programs are from the same test programs in the HotSpot’s test

suite, leading to the small coverage increments. However, we can

observe that the improvement in terms of branch coverage on P7 is

larger than that in terms of line coverage and function coverage,

indicating that combining various ingredients from different bug-

revealing test programs facilitates to coveragemore interesting JVM

branches/paths and thus can reveal more unique inconsistencies.

4.3.3 RQ3: Comparison between JavaTailor and Javaming. We fur-

ther compared our ingredient synthesis method and existing minor

mutation operators by mitigating the influence of the testing pro-

cess by comparing JavaTailor and Javaming. The columns ”J.T.” and

”J.M.” in Table 3 show the comparison results. We obtained the simi-

lar conclusions with RQ1, i.e., JavaTailor detects much more unique

inconsistencies than Javaming. The improvements of JavaTailor

over Javaming range from 1482.82% to 2800.00% across all the

differential-testing experiments except OpenJDK14 (only JavaTailor

detect inconsistencies on this version) in terms of the total number

of unique inconsistencies on all the benchmarks, demonstrating the

significant superiority of our ingredient synthesis method over the

existing elaborately designedminor mutation operators. In addition,

classming performs better than Javaming in general, demonstrating

1141

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun Zhang, and Lingming Zhang

Figure 7: JVM code coverage comparison

 1 public static Method main:"([Ljava/lang/String;)V"
 2 stack 5 locals 6
 3 {
 4 new class java/util/ArrayList;
 5 dup;
 6 invokespecial Method java/util/ArrayList."<init>":"()V";
 7 astore_0; // stores ArrayList
 8 ...
 9 L13: stack_frame_type full;
10 aload_0; // loads ArrayList
11 checkcast class java/util/List;//compares String[] with List
12 ...
13 if_icmplt L13;
14 getstatic Field /System.out:"Ljava/io/PrintStream;";
15 ldc String "Success";
16 invokevirtual Method …println:"(Ljava/lang/String;)V";
17 return;
18 }

Figure 8: OpenJ9 Bug#12819

the effectiveness of the MCMC-based testing process in classming.

That further motivates a promising direction of improving JavaTai-

lor through designing more effective strategies to guide the process

of test program synthesis, which will be discussed in Section 5.

4.3.4 RQ4: Unknown Bugs detected by JavaTailor. We also applied

JavaTailor to test the latest build of bothHotSpot andOpenJ9 for two

most popular OpenJDK versions (i.e., OpenJDK8 and OpenJDK11).

During the test time of five days, JavaTailor detects 10 unknown

bugs and 6 have been confirmed or fixed by developers, while class-

ming and Javaming did not detect any unknown bugs. One possible

reason could be that classming has applied against the JVMs before,

making them immune to the classming-like approaches. Table 4

shows the detailed information for the confirmed/fixed unknown

bugs detected by JavaTailor. In particular, all these bugs cannot be

detected by classming and Javaming based on our used benchmarks

during the given testing period. We then used one unknown bug

as en example for further illustration.

Figure 8 shows an OpenJ9 bug (Bug#12819 [3]) detected by Ja-

vaTailor, which is represented by Jasm (a bytecode-like assembly

language that allows testers to reorganize bytecode order in a spe-

cific way [1]). In this example, Lines 14-16 corresponding to the

System.out.println("Success") statement in the seed program,

which should be executed and output "Success". However, this

statement was not executed on the latest OpenJ9 (for both Open-

JDK8 and OpenJDK11) due to a bug in the OpenJ9’s optimizer. Lines

9-13 of the inserted code contain a complex nested loop. Due to the

space limit, we only showed the outermost loop. OpenJ9 optimizes

this complex loop for better execution performance. Specifically,

JVM stores the first parameter (if exists) of the static function

(i.e., String[] in the main function at Line 1) to the local variable

table at index 0, and then this local variable is overwritten by an

ArrayList at Line 7. Since the optimizer of OpenJ9 assumes that

the types of these parameters in the local variable table will not

change during execution, it compares String[] with List at Line

11 but actually should compare ArrayList with List. Then, the

optimizer believes that the checkcast must fail due to impossi-

ble conversion between String[] and List, and thus removes all

the instructions after the outermost loop, causing that "Success"

cannot be outputted. The developers of OpenJ9 fixed this bug by

making the function’s parameters in the local variable table become

changeable during the optimization process, since these types may

be changed during execution. Note that classming failed to detect

this bug, since 1) classming cannot introduce such a complicated

loop into the seed program; 2) it cannot introduce the instructions

that overwrite the local variable table into the seed program.

5 DISCUSSION

5.1 Future Work

First, as presented in Section 4.3.3, regarding classming, MCMC-

based mutation is more effective than random mutation, and thus it

may be helpful to improve the performance of JavaTailor by design-

ing an effective strategy for guiding synthesis. The strategy should

guide to select both an ingredient and a seed program, as well as

the synthesis point in the seed program. Second, in our study we

came across one common but interesting type of false positives, i.e.,

HotSpot and OpenJ9 have different implementations for the same

OpenJDK specification, but both of them believe they conform the

specification. The root cause may lie in that the specification is a bit

general. In the future, we may report such kind of inconsistencies

to OpenJDK for further understanding. Third, although we eval-

uated JavaTailor on JVM implementations, the idea of JavaTailor

is actually general. This idea could be generalized to other soft-

ware taking programs as test inputs, such as compilers, symbolic

executors, and database, as long as there are a large number of test

programs revealing historical bugs that can be collected.

5.2 Threats to Validity

The internal threat to validity mainly lies in the implementations of

JavaTailor and classming. To reduce this kind of threat, two authors

carefully checked all code and we implemented them based on the

mature tool Soot. Regarding the re-implementation of classming,

1142

History-Driven Test Program Synthesis for JVM Testing ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

we implemented it according to the description in its paper and

checked its correctness by reproducing its original evaluation.

The external threat to validity mainly lies in the benchmarks

and historically bug-revealing test programs used in our study. In

our study, we used six benchmarks from the existing study [30] and

constructed two benchmarks based on the test suites of HotSpot and

OpenJ9. Also, we collected 630 test programs revealing historical

HotSpot’s bugs from its test suite. To further reduce this kind of

threat, we will evaluate JavaTailor on more benchmarks and the

test programs revealing other JVM’s bugs.

The construct threat to validity mainly in the randomness in-

volved in those approaches. To reduce this threat, we conducted

five differential-testing experiments instead of repeating one exper-

iment several times. Indeed, our results demonstrate that JavaTailor

stably outperforms classming in all the five experiments.

6 RELATEDWORK

Since the first work on fuzzing [40], various techniques have been

proposed for fuzzing software systems from different application

domains [13, 32, 49, 51, 52, 55]. While all such techniques are related

to this work, we mainly talk about the most closely related work in

the areas of JVM testing and compiler fuzzing in this section.

JVM Testing. Due to the crucial role of JVM, both industry and

academia proposed various testing techniques to ensure JVM’s qual-

ity [11]. Besides classming and classfuzz introduced before, Sirer

et al. [44] proposed lava, which generates test programs based on

the production grammar. Yoshikawa et al. [54] proposed a random

test program generator to test the JIT compiler. Freund et al. [33]

developed a specification to verify bytecode verifiers in the form of

a type system. Calvagna et al. [15–17] used a finite state machine

model of the JVM specification to assess the conformance of JVM.

Hwang et al. [36] proposed JUSTGen, which designs a set of do-

main specific languages and generates test programs by identifying

unspecified cases from the JNI specification.

All of them except classming and classfuzz target one compo-

nent in JVM. Different from them, JavaTailor is independent of a

certain component in JVM. For example, our collected historical

bug-revealing test programs for ingredient extraction cover the

testing of a wide range of JVM components, such as C1 (client com-

piler), C2 (server compiler) and GC (garbage collection). Different

from classming and classfuzz, JavaTailor synthesizes the ingredients

extracted from historical bug-revealing test programs with a seed

program to produce valid new test programs, and our experimental

results have shown that JavaTailor significantly outperforms the

state-of-the-art classming. In actual, JavaTailor can be combined

with existing research, such as concurrency testing [48, 50], to

target different components in JVM.

Compiler Testing. Similar to JVM, the test inputs of compilers

are also programs [14, 21, 24], and thus we also briefly introduce

the related work on compiler testing [19, 20, 22, 25, 27, 28, 43]. For

example, Yang et al. [53] proposed Csmith, which generates C pro-

grams based on the grammar of the C language. Lidbury et al. [39]

proposed CLsmith on the basis of Csmith for OpenCL compiler test

program generation. Chen et al. [26]. proposed HiCOND, which

uses historical data to infer a set of bug-revealing test configurations

for effective test program generation. Le et al. [37] proposed EMI,

which generates a program variant equivalent to the original test

program under the given test inputs, and then uses these program

pairs to test compilers. Based on the idea of EMI, researchers fur-

ther proposed Athena [38] and Hermes [46]. Different from them,

JavaTailor targets JVM testing by mining the ingredients in his-

torical bug-revealing test programs and then inserting them to a

seed program for test program generation. Such history-driven test

program synthesis is also novel in the area of compiler testing and

could be generalized to this area as discussed in Section 5.1.

7 CONCLUSION

In this paper, we propose a history-driven test program synthesis

approach, called JavaTailor. It first tackles the challenge of extract-

ing ingredients from bug-revealing test programs by designing five

types of ingredients. Then, it inserts these extracted ingredients

into seed programs, and automatically fixes the broken syntactic

and semantic constraints in the ingredients in order to produce

valid synthesized programs. Finally, these synthesized programs

are used to differentially test JVMs. We conducted extensive experi-

ments on popular JVM implementations (i.e., HotSpot and OpenJ9)

to evaluate the effectiveness of JavaTailor. The experimental results

demonstrate that JavaTailor significantly outperforms the state-

of-the-art technique. That is, JavaTailor can achieve higher JVM

code coverage and expose more unique inconsistencies. Moreover,

JavaTailor found 6 unknown bugs that have been confirmed or

fixed by developers.

ACKNOWLEDGMENT

We thank all the ICSE anonymous reviewers for their valuable com-

ments. We also thank all the JVM developers for analyzing and

replying to the bugs we reported. This work is partially funded

by the National Natural Science Foundation of China Grant No.

62002256, 61872263, and the Tianjin Intelligent Manufacturing Spe-

cial Fund Project Grant No. 20201180. This work is also partially

supported by National Science Foundation under Grant Nos. CCF-

2131943 and CCF-2141474, as well as Ant Group.

REFERENCES
[1] 2021. ASMTools. https://wiki.openjdk.java.net/display/CodeTools/asmtools.
[2] 2021. Bug-12552. https://github.com/eclipse-openj9/openj9/issues/12552.
[3] 2021. Bug-12819. https://github.com/eclipse-openj9/openj9/issues/12819.
[4] 2021. Gcov. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[5] 2021. GIJ. https://web.archive.org/web/20070509055923/http://gcc.gnu.org/java.
[6] 2021. Hotspot. http://openjdk.java.net.
[7] 2021. JavaTailor. https://github.com/JavaTailor/CFSynthesis
[8] 2021. Lcov. http://ltp.sourceforge.net/coverage/lcov.php.
[9] 2021. OpenJ9. https://www.eclipse.org/openj9.
[10] 2021. Zulu. https://www.azulsystems.com/products/core.
[11] Bowen Alpern, Ton Ngo, Jong-Deok Choi, and Manu Sridharan. 2000. DejaVu:

deterministic Java replay debugger for Jalapeño Java virtual machine. In Object
Oriented Programming Systems Languages and Applications Conference. 165–166.

[12] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo benchmarks:
java benchmarking development and analysis. In Proceedings of the 21th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications. 169–190.

[13] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. 2020. Fuzzing: Chal-
lenges and Reflections. IEEE Software (2020).

[14] Abdulazeez S. Boujarwah and Kassem Saleh. 1997. Compiler test case generation
methods: a survey and assessment. Inf. Softw. Technol. 39, 9 (1997), 617–625.

1143

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun Zhang, and Lingming Zhang

[15] Andrea Calvagna, Andrea Fornaia, and Emiliano Tramontana. 2014. Combinato-
rial Interaction Testing of a Java Card Static Verifier. In Seventh IEEE International
Conference on Software Testing, Verification and Validation. 84–87.

[16] Andrea Calvagna and Emiliano Tramontana. 2013. Automated Conformance
Testing of Java Virtual Machines. In Seventh International Conference on Complex,
Intelligent, and Software Intensive Systems. 547–552.

[17] Andrea Calvagna and Emiliano Tramontana. 2013. Combinatorial Validation Test-
ing of Java Card Byte Code Verifiers. In 2013 Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises. 347–352.

[18] Felipe Canales, Geoffrey Hecht, and Alexandre Bergel. 2021. Optimization of
Java Virtual Machine Flags using Feature Model and Genetic Algorithm. In ICPE
’21: ACM/SPEC International Conference on Performance Engineering. 183–186.

[19] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie.
2017. Learning to prioritize test programs for compiler testing. In Proceedings of
the 39th International Conference on Software Engineering. 700–711.

[20] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. Test Case Prioritization for Compilers: A Text-Vector Based
Approach. In 2016 IEEE International Conference on Software Testing, Verification
and Validation. 266–277.

[21] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.
2019. Compiler bug isolation via effective witness test program generation. In
Proceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 223–234.

[22] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An empirical comparison of compiler testing techniques. In
Proceedings of the 38th International Conference on Software Engineering. 180–190.

[23] Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced Compiler Bug
Isolation via Memoized Search. In 35th IEEE/ACM International Conference on
Automated Software Engineering. 78–89.

[24] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. ACM Comput. Surv. 53,
1 (2020), 4:1–4:36.

[25] Junjie Chen and Chenyao Suo. 2022. Boosting Compiler Testing via Compiler
Optimization Exploration. In TOSEM. to appear.

[26] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Lu
Zhang. 2019. History-Guided Configuration Diversification for Compiler Test-
Program Generation. In 34th IEEE/ACM International Conference on Automated
Software Engineering. 305–316.

[27] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu
Zhang, and Bing Xie. 2021. Coverage Prediction for Accelerating Compiler
Testing. IEEE Trans. Software Eng. 47, 2 (2021), 261–278.

[28] Junjie Chen, Ningxin Xu, Peiqi Chen, andHongyu Zhang. 2021. Efficient Compiler
Autotuning via Bayesian Optimization. In 43rd IEEE/ACM International Conference
on Software Engineering. 1198–1209.

[29] Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang. 2020. Tam-
ing Behavioral Backward Incompatibilities via Cross-Project Testing and Anal-
ysis. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. 112–124.

[30] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep differential testing of JVM
implementations. In Proceedings of the 41st International Conference on Software
Engineering. 1257–1268.

[31] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of JVM implementations. In 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 85–
99.

[32] Jaeseung Choi, Kangsu Kim, Daejin Lee, and Sang Kil Cha. 2021. NTFUZZ:
Enabling Type-Aware Kernel Fuzzing on Windows with Static Binary Analysis.
(2021).

[33] Stephen N. Freund and John C. Mitchell. 2003. A Type System for the Java
Bytecode Language and Verifier. J. Autom. Reason. 30, 3-4 (2003), 271–321.

[34] Vincenzo Gervasi and Roozbeh Farahbod. 2009. JASMine: Accessing Java Code
from CoreASM. In Rigorous Methods for Software Construction and Analysis, Essays
Dedicated to Egon Börger on the Occasion of His 60th Birthday, Vol. 5115. 170–186.

[35] Matthias Grimmer, Manuel Rigger, Roland Schatz, Lukas Stadler, and Hanspeter
Mössenböck. 2014. TruffleC: dynamic execution of C on a Java virtual machine.
In 2014 International Conference on Principles and Practices of Programming on
the Java Platform Virtual Machines, Languages and Tools. 17–26.

[36] Sungjae Hwang, Sungho Lee, Jihoon Kim, and Sukyoung Ryu. 2021. JUSTGen: Ef-
fective Test Generation for Unspecified JNI Behaviors on JVMs. In 43rd IEEE/ACM
International Conference on Software Engineering. 1708–1718.

[37] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. In ACM SIGPLAN Conference on Programming Language
Design and Implementation. 216–226.

[38] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via
guided stochastic program mutation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. 386–399.

[39] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
2015. Many-core compiler fuzzing. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 65–76.

[40] Barton P Miller, Louis Fredriksen, and Bryan So. 1990. An empirical study of the
reliability of UNIX utilities. Commun. ACM 33, 12 (1990), 32–44.

[41] Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. 2009. Effective
static deadlock detection. In 31st International Conference on Software Engineering.
386–396.

[42] Manuel Rigger, Matthias Grimmer, Christian Wimmer, Thomas Würthinger, and
Hanspeter Mössenböck. 2016. Bringing low-level languages to the JVM: efficient
execution of LLVM IR on Truffle. In Proceedings of the 8th International Workshop
on Virtual Machines and Intermediate Languages. 6–15.

[43] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs.
In 29th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Diomidis Spinellis, Georgios Gousios,
Marsha Chechik, and Massimiliano Di Penta (Eds.). 968–980.

[44] Emin Gün Sirer and Brian N. Bershad. 1999. Using production grammars in
software testing. In Proceedings of the Second Conference on Domain-Specific
Languages. 1–13.

[45] James E. Smith and Ravi Nair. 2005. Virtual machines - versatile platforms for
systems and processes. Elsevier.

[46] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live
code mutation. In Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications. 849–863.

[47] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java bytecode optimization framework. In Pro-
ceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative
Research. 13.

[48] Haichi Wang, Zan Wang, Jun Sun, Shuang Liu, Ayesha Sadiq, and Yuan-Fang Li.
2020. Towards Generating Thread-Safe Classes Automatically. In 35th IEEE/ACM
International Conference on Automated Software Engineering. 943–955.

[49] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
learning library testing via effective model generation. In 28th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann
(Eds.). 788–799.

[50] Zan Wang, Yingquan Zhao, Shuang Liu, Jun Sun, Xiang Chen, and Huarui Lin.
2019. MAP-Coverage: A Novel Coverage Criterion for Testing Thread-Safe
Classes. In 34th IEEE/ACM International Conference on Automated Software Engi-
neering. 722–734.

[51] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free
Lunch for Testing: Fuzzing Deep-Learning Libraries from Open Source. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE).

[52] Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang.
2021. Exposing numerical bugs in deep learning via gradient back-propagation.
In ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 627–638.

[53] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation. 283–294.

[54] Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. 2003. Random Pro-
gram Generator for Java JIT Compiler Test System. In 3rd International Conference
on Quality Software. 20.

[55] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
2018. Deeproad: Gan-based metamorphic testing and input validation framework
for autonomous driving systems. In 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE). 132–142.

1144

