
Evaluating and Improving Hybrid Fuzzing
Ling Jiang†

Southern University of Science
and Technology
Shenzhen, China

11711906@mail.sustech.edu.cn

Hengchen Yuan
Southern University of Science

and Technology
Shenzhen, China

11911202@mail.sustech.edu.cn

Mingyuan Wu
Southern University of Science

and Technology
Shenzhen, China

11849319@mail.sustech.edu.cn

Lingming Zhang
University of Illinois Urbana-Champaign

Champaign, USA
lingming@illinois.edu

Yuqun Zhang∗
Southern University of Science

and Technology
Shenzhen, China

zhangyq@sustech.edu.cn

Abstract—To date, various hybrid fuzzers have been proposed
for maximal program vulnerability exposure by integrating the
power of fuzzing strategies and concolic executors. While the
existing hybrid fuzzers have shown their superiority over con-
ventional coverage-guided fuzzers, they seldom follow equivalent
evaluation setups, e.g., benchmarks and seed corpora. Thus,
there is a pressing need for a comprehensive study on the
existing hybrid fuzzers to provide implications and guidance
for future research in this area. To this end, in this paper,
we conduct the first extensive study on state-of-the-art hybrid
fuzzers. Surprisingly, our study shows that the performance
of existing hybrid fuzzers may not well generalize to other
experimental settings. Meanwhile, their performance advantages
over conventional coverage-guided fuzzers are overall limited.
In addition, instead of simply updating the fuzzing strategies or
concolic executors, updating their coordination modes potentially
poses crucial performance impact of hybrid fuzzers. Accordingly,
we propose CoFuzz to improve the effectiveness of hybrid fuzzers
by upgrading their coordination modes. Specifically, based on
the baseline hybrid fuzzer QSYM, CoFuzz adopts edge-oriented
scheduling to schedule edges for applying concolic execution
via an online linear regression model with Stochastic Gradient
Descent. It also adopts sampling-augmenting synchronization to
derive seeds for applying fuzzing strategies via the interval path
abstraction and John walk as well as incrementally updating
the model. Our evaluation results indicate that CoFuzz can
significantly increase the edge coverage (e.g., 16.31% higher
than the best existing hybrid fuzzer in our study) and expose
around 2X more unique crashes than all studied hybrid fuzzers.
Moreover, CoFuzz successfully detects 37 previously unknown
bugs where 30 are confirmed with 8 new CVEs and 20 are fixed.

I. INTRODUCTION

Fuzzing usually refers to automated test input generation for
exposing potential software bugs or security vulnerabilities. To
date, many existing fuzzers facilitate vulnerability exposure
by optimizing code coverage of programs under test (i.e.,
coverage-guided fuzzing [1]–[6]). However, they have been

† Ling Jiang is also affiliated with the Research Institute of Trustworthy
Autonomous Systems, Shenzhen, China.

* Yuqun Zhang is the corresponding author. He is also affiliated with the
Research Institute of Trustworthy Autonomous Systems, Shenzhen, China and
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Compu-
tation, China

shown ineffective in many occasions [7]–[9]. To address such
issue, hybrid fuzzing [10]–[16] has been proposed to augment
fuzzing effectiveness by coordinating fuzzing strategies and
concolic execution [17]. Specifically, hybrid fuzzers leverage
fuzzing strategies to promptly explore program states and
concolic executors to generate the inputs which advance in
exploring hard-to-cover branches by solving program path
constraints. Moreover, hybrid fuzzers develop coordination
modes [14]–[16] to schedule subjects to be solved by concolic
execution and synchronize the resulting solutions for executing
fuzzing strategies to strengthen their effectiveness.

Although hybrid fuzzers have shown their performance
superiority over conventional coverage-guided fuzzers, e.g.,
Angora outperforms AFL by 27.08% in terms of edge cover-
age in the original paper [11], they seldom follow equivalent
evaluation setups, e.g., they hardly perform evaluations on
identical benchmarks or initial seed corpora. For instance,
QSYM [10] and Eclipser [12] adopt no common benchmark
programs for their evaluations. Meanwhile, the performance
comparisons among the existing hybrid fuzzers are also lim-
ited. For instance, Intriguer [13] only has been evaluated
against QSYM [10] in the existing literature. Such inconsistent
evaluation setups and limited performance comparisons can
potentially compromise the effectiveness and reliability of
the existing hybrid fuzzers. Therefore, there is a pressing
need for an extensive study on the existing hybrid fuzzers
to comprehensively delineate their strengths, limitations, and
rationale.

In this paper, to our best knowledge, we conduct the first
comprehensive study on the existing hybrid fuzzers. Specif-
ically, we select seven state-of-the-art hybrid fuzzers as our
study subjects and construct a comprehensive benchmark suite
with 15 commonly adopted programs in their original papers.
Our study results suggest that the performance of existing
hybrid fuzzers may not well generalize to other experimental
setups. For instance, while Intriguer [13] and MEUZZ [15]
outperform QSYM in the original papers, our study shows that
QSYM can outperform Intriguer and MEUZZ by 9.69% and

410

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00045

20
23

 IE
EE

/A
CM

 4
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(IC

SE
) |

 9
78

-1
-6

65
4-

57
01

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

SE
48

61
9.

20
23

.0
00

45

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

6.29% in terms of edge coverage respectively on our more
comprehensive benchmark suite. Meanwhile, while hybrid
fuzzers can overall outperform conventional coverage-guided
fuzzers, the performance advantage is somewhat limited or
even untenable. For instance, on project tcpdump, conventional
coverage-guided fuzzer AFL++ outperforms hybrid fuzzers In-
triguer and MEUZZ by 7.02% and 4.77% respectively. More-
over, most studied hybrid fuzzers only expose slightly more or
even fewer unique crashes than conventional coverage-guided
fuzzers, e.g., AFL exposes 109 crashes while Eclipser and
DigFuzz only expose 107 and 105 crashes respectively. We
further find that the coordination mode can be a key factor for
the performance impact of a hybrid fuzzer, while the power
of the existing seed-oriented scheduling mechanisms and the
synchronization mechanisms have not been fully leveraged.

Inspired by the findings of our study, we propose a novel
hybrid fuzzing framework named CoFuzz which improves the
coordination mode upon the fuzzing strategies and concolic
executor of the baseline hybrid fuzzer QSYM. In particu-
lar, CoFuzz applies edge-oriented scheduling which adopts
an online linear regression model with Stochastic Gradient
Descent [18] to schedule hard-to-cover edges to be solved
by concolic executor. Furthermore, CoFuzz adopts sampling-
augmenting synchronization to derive the seeds with the in-
terval abstraction domain [19] and John walk [20] for execut-
ing the fuzzing strategy. Our evaluation results indicate that
CoFuzz can outperform AFL and the top-performing hybrid
fuzzer QSYM by 32.44% and 16.31% respectively in terms
of edge coverage. Meanwhile, CoFuzz successfully exposes
around 2X more unique crashes compared with state-of-the-
art hybrid fuzzers. Moreover, CoFuzz can detect 37 previously
unknown bugs where 30 have been confirmed with 8 new
CVEs and 20 have been fixed.

To summarize, our paper makes the following contributions.
• We have performed an extensive study on state-of-the-

art hybrid fuzzers on 15 real-world open-source projects
widely used in prior work. We find that their perfor-
mance may not well generalize to other experimental set-
tings and their performance advantages over conventional
coverage-guided fuzzers are overall limited. Moreover,
improving the coordination mode can be a key factor to
augment the performance of hybrid fuzzers.

• We propose a hybrid fuzzing framework CoFuzz based
on our findings which can significantly outperform the
best existing hybrid fuzzer by 16.31% in terms of edge
coverage and expose 37 previously unknown bugs which
cannot be detected by any studied hybrid fuzzer.

Note that all our study details are presented in our GitHub
repository [21].

II. BACKGROUND

A hybrid fuzzer [10], [22]–[24] typically consists of a
coverage-guided fuzzing strategy and a concolic executor,
and coordinates them via a coordination mode including
the scheduling and synchronization mechanism. Note that
although other implementations of coordination modes may

exist, in this paper, we follow various prior work [25]–
[29] to select the representative mode. Figure 1 presents a
typical framework of a hybrid fuzzer where the coverage-
guided fuzzing strategy iteratively obtains a seed from the seed
corpora and generates the mutants as input to the program
under test (PUT). By acquiring the code coverage updates
caused by executing mutants, the fuzzing strategy retains the
ones with increased/optimized code coverage as the seeds
in the seed corpora for further mutations. Meanwhile, the
collected seeds from the seed corpora are also scheduled for
applying concolic execution to generate the results, i.e., in
essence deriving the mutants, by solving path constraints pc
via the SMT solver [30]. Next, the resulting mutants after
applying concolic execution are synchronized, i.e., input for
executing the fuzzing strategy. In this section, we present the
details of coverage-guided fuzzing strategy, concolic executor,
and coordination mode of hybrid fuzzers respectively.

Concolic ExecutorCoordination Mode

Scheduling

InputUtility

Synchronization σPC

Execution
Env

. .
 .

ψ2 ¬ψ2

ψ1 ¬ψ1

SMT Solver

Seed

Mutation

Fuzzing Strategy

Seed Corpora

Mutants

PUT
Cov

Trigger new edges？

No

Yes

Fig. 1. The overall framework of hybrid fuzzing

A. Coverage-guided Fuzzing Strategy

Coverage-guided fuzzers [1]–[3] usually maximize/increase
code coverage for advancing iterative executions (e.g., mu-
tations). For instance, AFL [1] retains the mutants that can
be executed to increase edge coverage as seeds for further
mutations. Albeit coverage-guided fuzzing strategies have
been shown effective [25], [31]–[33], they are also argued to
be deficient in exploring hard-to-cover program states (e.g.,
certain conditional jumps between basic blocks) [4], [5], [9],
[24], [34].

B. Concolic Execution

We first introduce symbolic execution [35]–[38] which
inputs programs with symbolic variables and tracks program
execution via an interpreter (e.g., KLEE [36]) or instrumen-
tation (e.g., SymCC [39]) to represent all runtime variable
states as symbolic expressions. Moreover, by leveraging the
power of its inclusive SMT solver [30], symbolic executors
can automatically generate test inputs to solve specific pro-
gram path constraints. Accordingly, concolic execution [17],
[40], [41] refers to tracing a concrete execution path and
performs the symbolic execution simultaneously. Specifically,

411

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

one widely-adopted type of concolic executors negates each
conditional branch in an execution path under concrete input
for solving the corresponding path constraints, such as [17],
[38], [39], [42], [43]. When being applied in fuzzing, concolic
execution can be advanced in exploring hard-to-cover program
transitions such that their solutions can be used as seeds to
facilitate further exploration of program states via fuzzing.
For instance, Figure 1 presents an execution path with two
conditional statements (i.e., ψ1 and ψ2) in the upper right cor-
ner. Correspondingly, a concolic executor solves the negated
path constraints ¬ψ1 and ψ1 ∧¬ψ2 respectively such that the
scope bounded by ψ1 and ψ2 can be further explored. While
compared with coverage-guided fuzzing strategies which are
usually lightweight in promptly exploring program states,
concolic execution tends to be heavyweight, i.e., incurring
significant computation overhead for symbolic emulation and
constraint solving [10], [22], [23].

C. Coordination Mode

As mentioned, in this paper, we focus on hybrid fuzzers
which develop a coordination mode to coordinate the usage
of its fuzzing strategy and concolic executor. Figure 1 shows
that a coordination mode typically includes two components,
i.e, the scheduling and synchronization mechanisms, which are
illustrated as follows.

1) Scheduling: Scheduling refers to selecting and sorting
the subjects for performing concolic execution. In general, the
existing scheduling mechanisms are mainly seed-oriented. For
instance, many hybrid fuzzers [10], [12], [13], [24] randomly
select seeds for concolic execution. Moreover, DigFuzz [14]
prioritizes seeds according to their quantitative difficulty of
exploring edges, and MEUZZ [15] adopts a machine learning-
based regression model to predict the seed utility for seed
scheduling. Note that for a hybrid fuzzer, an ideal scheduling
mechanism is expected to fully leverage the power of the
fuzzing strategy and the concolic execution for their respective
purposes rather than mixing their usage to cause redundant
program state exploration.

2) Synchronization: Synchronization refers to the manner
of inputting the solutions, i.e., the resulting mutants, of con-
colic execution as the seeds for activating the execution of
fuzzing strategies. Essentially, synchronization can advance
the fuzzing strategy to further explore new program states
bounded by the solved path constraints [10], [24]. In general,
most existing hybrid fuzzers simply iteratively execute their
fuzzing strategies upon the termination of their concolic ex-
ecutions. Considering that the mutations in fuzzing strategies
can easily invalidate the path constraints solved by concolic
execution and thus compromise the exploration on program
states, Pangolin [16] converts the path constraint to the polyhe-
dral abstraction domain [44] with the SMT-opt algorithm [45]
for limiting mutation space. Accordingly, Pangolin adopts a
sampling-based algorithm named Dikin walk [46] to uniformly
sample the polyhedral abstraction to generate the mutants.

In this paper, we study the performance and rationale of not
only the hybrid fuzzers, but also their technical components.

TABLE I
STUDIED HYBRID FUZZERS

Name Conference Fuzzing
Strategy

Concolic
Executor

Coordination Mode

Sch† Sync‡

QSYM [10] USENIX Security’18 AFL QSYM-ce R D
Angora [11] S&P’18 AFL Angora-ce R D
Eclipser [12] ICSE’19 AFL Eclipser-ce R D
Intriguer [13] CCS’19 AFL Intriguer-ce R D
DigFuzz [14] NDSS’19 AFL QSYM-ce MC D
MEUZZ [15] RAID’20 AFL QSYM-ce ML D
Pangolin [16] S&P’20 AFL QSYM-ce R PD

†Scheduling - R: Random, MC: Monte Carlo, ML: Machine Learning
‡Synchronization - D: Default, PD: Polyhedral Path Abstraction + Dikin Walk

III. EXTENSIVE STUDY

A. Subjects and Benchmarks

1) Subject: To determine our study subjects, we first select
the hybrid fuzzers recently published in prestigious software
engineering and system security conferences, e.g., ICSE, FSE,
CCS, S&P, and USENIX Security. Next, we filter the selected
hybrid fuzzers based on the availability of their source code
and the feasibility of their execution environments.

Eventually, we select seven hybrid fuzzers for study as
in Table I. We can observe that they all adopt AFL [1] as
their fuzzing strategy. In particular, QSYM [10], Angora [11],
Eclipser [12], and Intriguer [13] propose their specific con-
colic executor designs. On the other hand, DigFuzz [14],
MEUZZ [15], and Pangolin [16] attempt to strengthen their
coordination modes. We present their details as follows.
QSYM [10], proposed as one baseline hybrid fuzzer, tailors a
concolic executor with fast symbolic emulation and enhanced
constraint solving strategy.
Angora [11] attempts to replace the concolic executor of
QSYM by approximating its path constraint solver with taint
tracking and gradient descent search. Note that although
Angora is not a typical hybrid fuzzer, we still include it as
a baseline for our study as it shares the same insight as other
hybrid fuzzers.
Eclipser [12] applies a grey-box concolic executor which
leverages lightweight instrumentation to infer and solve ap-
proximated branch conditions.
Intriguer [13] attempts to address the constraint solving issues
at the field level, i.e., using field inference and field transition
tree to simplify symbolic emulation. Meanwhile, Intriguer
adopts the SMT solver only for complicated constraints.
DigFuzz [14] schedules seeds by modeling the difficulty of
exploring edges for each seed as a probability using the Monte
Carlo method [47] and prioritizes the seeds by ranking their
probabilities for concolic execution.
MEUZZ [15] adopts a linear regression model to predict the
seed utility based on feature engineering and data labeling, for
seed scheduling.
Pangolin [16] improves the synchronization mechanism by
formulating the path constraint as polyhedral path abstraction
and adopting Dikin walk [46] to sample the mutants as input
seeds for its fuzzing strategy.

412

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

To comprehensively evaluate our study subjects, we fur-
ther include typical conventional coverage-guided fuzzers
(AFL [1], FairFuzz [48], and AFL++ [49]) for performance
comparison. Since all the studied hybrid fuzzers adopt one
core for fuzzing strategy and concolic execution respectively,
in this paper, we implement the two-instance versions of the
conventional coverage-guided fuzzers following [50] for fair
performance comparison. In particular, we simply replicate
their original single-core (instance) fuzzing strategies in an
additional core (instance) and run them simultaneously. The
two instances also perform synchronization periodically via
sharing their individually generated seeds.

2) Benchmark Programs: Following prior studies [25],
[27], [51], we construct our benchmark with the commonly
adopted programs in the studied hybrid fuzzers [10]–[16]. As
a result, we collect 15 real-world programs with their latest
versions shown in Table II to evaluate code coverage and bug
detection for our study.

TABLE II
STUDIED REAL-WORLD BENCHMARK

Program Version Input format Argument

readelf binutils-2.37 ELF -a @@
nm binutils-2.37 ELF -C @@
objdump binutils-2.37 ELF -D @@
strip binutils-2.37 ELF @@
tcpdump commit-465a8f PCAP -r @@
libxml2 2.9.12 XML @@
libjpeg v9c JPEG @@
jhead commit-f0a884 JPEG @@
libpng 1.7.0 PNG @@
libtiff 4.2.0 TIFF @@
file commit-d17d8e FILE -m magic @@
bento commit-7ddec0 MP4 @@
wavpack commit-36b08d WAV -y @@
cyclonedds commit-53cf7c IDL @@
libming commit-04aee5 SWF @@

B. Experiment Setup

Prior study [28] indicates that inappropriate seed choices
can lead to high variance in evaluation results and thus poten-
tially cause untenable performance. To alleviate such issue, we
strictly follow the instructions in the previous work [16], [27],
[28], [52] to construct the initial seed corpora for reflecting the
real-world testing scenarios and reducing the bias of the edge
coverage results. In particular, for the benchmark programs
whose input formats are JPEG, PNG, and TIFF as in Table II,
we collect their corresponding AFL seed collection [53]. For
the rest programs, we adopt the seed collection from their
original projects. Then we employ afl-cmin to eliminate
duplicate files to minimize the corpora size. Note that we keep
our initial seed corpora identical across all experimental runs.

We adopt edge coverage to represent code coverage, as our
studied hybrid fuzzers [10]–[16]. Here an edge represents a
conditional jump between two basic blocks in programs. All
the evaluation results are averaged for 5 experimental runs for
reducing the impact caused by randomness. Following prior
work [5], [11], [14], [16], [27], the execution time budget for
each fuzzer is set to be 24 hours for all our experiments.

All the experiments are conducted on ESC servers with 2.6
GHz AMD EPYC™ ROME 7H12 CPUs and 256 GiB RAM
running Linux 4.15.0-147-generic Ubuntu 18.04.

C. Research Questions

We investigate the following research questions for exten-
sively studying hybrid fuzzing:

• RQ1: How do hybrid fuzzers perform on top of our bench-
mark programs? For this RQ, we evaluate the performance
of the studied hybrid fuzzers under multiple setups.

• RQ2: How do existing coordination modes impact hybrid
fuzzers? For this RQ, we investigate the performance impact
of the existing coordination modes.

D. Results and Analysis

1) RQ1: Performance of hybrid fuzzers: Table III demon-
strates the edge coverage results of the studied fuzzers upon
our benchmark. Surprisingly, we observe that the baseline
technique QSYM achieves the optimal performance on av-
erage (5,763 edges), followed by Pangolin (5,561 edges)
and Angora (5,517 edges). Moreover, QSYM dominates in
7 out of 15 studied benchmark programs. Specifically, while
DigFuzz and MEUZZ are respectively equipped with Monte
Carlo method [47] and supervised regression model [54] to
strengthen the scheduling mechanism of QSYM, they never-
theless underperform QSYM by 7.67% and 5.92%. Similarly,
while Pangolin attempts to improve the synchronization mech-
anism of QSYM, it underperforms QSYM by 3.51%.

We further attempt to analyse the edge coverage comparison
results presented in the original papers of the studied hybrid
fuzzers. Note that Angora, Eclipser and DigFuzz only compare
their results with conventional coverage-guided fuzzers (e.g.,
AFL) while failing to include any hybrid fuzzer. Thus, we
only include Intriguer, MEUZZ and Pangolin for analysis.
In particular, we analyse the commonly studied benchmark
programs between our study and their original papers (i.e.,
4 for Intriguer, 6 for MEUZZ, and 9 for Pangolin). Surpris-
ingly, while all the original papers demonstrate edge coverage
improvement over QSYM (12.42% for Intriguer, 6.60% for
MEUZZ and 21.90% for Pangolin), QSYM outperforms In-
triguer, MEUZZ, and Pangolin by 3.75%, 9.99%, and 0.17%
respectively in our study.

Interestingly, we observe that different papers present rather
inconsistent edge coverage results on the same projects, e.g.,
for program readelf, QSYM explores 6,012, 1,244, 8,402, and
9,512 edges respectively in the original Intriguer, MEUZZ,
Pangolin papers, and our study. Since all evaluations follow the
same setups, e.g., metric and execution time, we infer that the
performance variances are caused by the divergent hardware
platforms and initial seed corpora applied in different papers.

Finding 1: The edge coverage comparison results among
hybrid fuzzers from their original papers may not well
generalize to other experimental setups.

413

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

TABLE III
EDGE COVERAGE RESULTS OF THE STUDIED FUZZERS

Program AFL FairFuzz AFL++ QSYM Angora Eclipser Intriguer DigFuzz MEUZZ Pangolin

readelf 9,176 9,198 9,154 9,512 9,632 9,220 9,620 9,378 9,487 10,053
nm 5,127 5,258 5,216 5,602 6,255 5,327 5,154 5,209 5,907 7,082
objdump 7,358 7,317 7,415 8,304 7,356 7,455 7,743 7,285 7,203 7,894
strip 6,340 7,104 6,788 7,624 7,582 7,210 6,906 7,541 7,195 7,940
tcpdump 9,782 9,879 9,955 10,279 10,025 10,170 9,302 10,018 9,502 9,320
libxml2 5,876 5,860 5,929 7,888 5,909 5,935 5,844 5,945 5,958 5,797
libjpeg 2,902 2,806 2,981 3,183 3,101 3,169 2,988 3,120 3,147 3,168
jhead 304 304 304 885 304 823 796 747 812 304
libpng 1,496 1,517 1,503 2,058 2,170 1,523 1,466 1,485 2,083 1,915
libtiff 3,546 3,642 3,508 3,793 3,883 3,764 3,710 3,704 3,761 3,697
file 2,283 2,327 2,346 2,553 2,571 2,148 2,342 2,466 2,331 2,391
bento 3,001 3,020 3,135 4,017 3,937 3,566 3,495 3,356 3,855 4,119
wavpack 5,703 5,721 5,683 5,797 5,756 5,780 5,612 5,745 5,633 5,803
cyclonedds 4,822 4,871 5,012 5,612 5,260 4,914 4,885 5,017 5,402 4,956
libming 8,197 8,742 8,775 9,335 9,021 8,847 8,941 8,794 9,048 8,983

AVG 5,061 5,171 5,180 5,763 5,517 5,323 5,254 5,321 5,422 5,561

The optimal result in the conventional coverage-guided fuzzers is highlighted in blue and the corresponding inferior results in the hybrid fuzzers are highlighted in green .
The optimal result for each program among all the studied fuzzers is marked in red.

Note that although hybrid fuzzers are proposed to enhance
conventional coverage-guided fuzzers by injecting concolic
execution [10], [22]–[24], [55], limited research effort has
been made to indicate their exact performance advantages. In
particular, multiple studied hybrid fuzzers only compare their
performance with AFL, while Pangolin and MEUZZ compare
with AFLFast [2] additionally. Thus, we then investigate the
edge coverage comparison between the hybrid fuzzers and
conventional coverage-guided fuzzers, as shown in Table III
where the overall optimal results, the optimal results achieved
by the conventional coverage-guided fuzzers, and the corre-
sponding inferior results achieved by the hybrid fuzzers are
marked. We observe that averagely, all the hybrid fuzzers are
more effective than the conventional coverage-guided fuzzers,
e.g., the worst-performing hybrid fuzzer Intriguer still slightly
outperforms the top-performing conventional coverage-guided
fuzzer AFL++ (5,254 edges vs. 5,180 edges). However, such
performance advantages are compromised compared with their
original papers. For instance, Angora and Eclipser outperform
AFL by 9.01% and 5.18% respectively in our study while
by 27.08% and 25.15% respectively in their original papers.
Moreover, while all our studied hybrid fuzzers outperform
AFL in terms of edge coverage upon each individual collected
benchmark program in their original papers, such comparison
results are also somewhat refuted in our study. For instance,
AFL can outperform Intriguer on 4 out of 15 programs and
MEUZZ on 3 out of 15 programs.

Finding 2: The edge coverage advantages of hybrid
fuzzers over conventional coverage-guided fuzzers are
somewhat limited, indicating that the power of concolic
execution has not been fully unleashed.

Inspired by Findings 1 and 2, we further investigate the
performance impact from the fuzzing strategies and concolic
executors. To this end, we establish a group of hybrid fuzzer
variants by reassembling their fuzzing strategies and concolic

Av
er

ag
e

Ed
ge

 C
ov

er
ag

e

2,000

4,000

6,000

8,000

Origin QSYM-ce Angora-ce Eclipser-ce Intriguer-ce

AFL FairFuzz AFL++

Fig. 2. Edge coverage results of reassembled hybrid fuzzing variants

executors while retaining their original coordination modes.
Specifically, we select the three studied conventional coverage-
guided fuzzers as the fuzzing strategy options. For the concolic
executors (represented as the “hybrid fuzzer name-ce”), since
DigFuzz, MEUZZ and Pangolin all adopt QSYM-ce as their
concolic executors, we select QSYM-ce, Angora-ce, Eclipser-
ce, and Intriguer-ce as the concolic executor options. The
average edge coverage results of our studied hybrid fuzzer
variants are shown in Figure 2 where each column repre-
sents the edge coverage result of one hybrid fuzzer variant
combining one fuzzing strategy and one concolic executor.
Note that the columns labeled with “Origin” refer to the edge
coverage results of the conventional coverage-guided fuzzers.
We then observe that simply changing fuzzing strategies or
concolic executors alone incurs limited impact on the edge
coverage results. For instance, combining QSYM-ce with
different fuzzing strategies (i.e., AFL, FairFuzz, and AFL++)
results in 5,763, 5,830 and 5,842 explored edges respectively
where the maximum performance gap is merely 79 edges.
Moreover, when combining AFL++ with different concolic
executors, the optimal edge coverage result is achieved by
combining with QSYM-ce (5,842 explored edges) even though
Eclipser and Intriguer are proposed to improve over QSYM.

414

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

Finding 3: Simply updating fuzzing strategies or con-
colic executors alone in hybrid fuzzers leads to limited
edge coverage impact.

TABLE IV
UNIQUE CRASHES ON REAL-WORLD BENCHMARK

Program AFL FairFuzz AFL++ QSYM Angora Eclipser Intriguer DigFuzz MEUZZ Pangolin

readelf 5 6 5 6 7 5 7 4 4 8
nm 10 10 11 10 13 12 7 9 9 13
objdump 3 3 3 3 3 2 3 0 0 3
tcpdump 6 6 5 7 6 4 8 4 3 4
libjpeg 36 30 30 34 28 22 26 18 21 34
jhead 0 2 5 16 0 15 15 12 16 0
libtiff 0 2 3 2 0 1 1 0 0 2
bento 11 19 20 25 28 15 15 21 20 16
cyclonedds 28 30 36 34 32 25 27 29 42 37
libming 10 8 10 10 12 6 10 8 8 10

Total 109 116 128 147 129 107 119 105 123 127

We further evaluate the studied fuzzers in terms of the
unique crashes which are derived by analyzing the coverage
updates upon program crashes following prior work [2], [3],
[11], [16], [48], [56]. Table IV presents the results of unique
crashes which occur on 10 of 15 benchmark programs. We
can observe that while QSYM can achieve the non-negligible
advantage over the conventional coverage-guided fuzzers, e.g.,
exposing 19 more unique crashes than AFL++, the rest hybrid
fuzzers incur somewhat limited or even no advantages. For
instance, Intriguer and MEUZZ only expose 3 and 7 more
crashes respectively than FairFuzz. Additionally, AFL exposes
more unique crashes than Eclipser and DigFuzz (109 vs. 107
and 105 crashes) and dominates in project libjpeg (36 crashes).

Finding 4: Most studied hybrid fuzzers incur rather lim-
ited or even no advantages over conventional coverage-
guided fuzzers in exposing unique crashes upon real-
world benchmark programs.

2) RQ2: Impact of coordination mode: Our earlier find-
ings altogether indicate that the power of hybrid fuzzers has
been compromised so far and updating either their fuzzing
strategies or concolic executors alone leads to limited effect.
Accordingly, we then investigate how their coordination modes
impact fuzzing performance. Note that fuzzing strategies are
leveraged for prompt program state exploration and concolic
executors are leveraged for exploring hard-to-cover program
branches [10], [14], [16], [22], [24]. Ideally, they should
explore no common edges. Thus, to evaluate the effectiveness
of the coordination modes adopted by our studied hybrid
fuzzers, we propose a metric namely redundant edge ratio
to reflect the magnitude of the common edges explored by
the fuzzing strategy and the concolic executor of a hybrid
fuzzer. In particular, we calculate the redundant edge ratio ϕ
via Equation 1.

ϕ(F,C) =
|F ∩ C|
|C|

(1)

where C and F refer to the total edges firstly explored by

executing the concolic executor and the fuzzing strategy (i.e.,
AFL) respectively. Ideally, their intersection should be empty.
However, due to separate global coverage states, fuzzing strat-
egy synchronizes coverage states periodically from concolic
executor, causing inevitable coverage-updating gaps. Thus,
fuzzing strategy and concolic executor can repeatedly explore
the same edges, causing non-empty intersection between C
and F . Intuitively, the larger redundant edge ratio is, the more
common program branches are solved by the concolic executor
and the fuzzing strategy, compromising the effectiveness of the
concolic executor, i.e., degrading the effectiveness of hybrid
fuzzers.

Figure 3 presents the redundant edge ratio results of our
studied hybrid fuzzers for each benchmark program. Surpris-
ingly, we observe quite significant average redundant edge
ratios for most of the benchmarks, ranging from 0.47 (jhead)
to 0.95 (libjpeg). For instance, in project libjpeg, the redundant
edge ratio is larger than 0.95 in all the studied hybrid fuzzers
except QSYM (0.80). Such results indicate that our studied
hybrid fuzzers incur quite severe redundant edge exploration
between fuzzing strategies and concolic executors. Moreover,
combining with Table III, we further find that the performance
of hybrid fuzzing is highly correlated with redundant edge
ratio. In particular, QSYM achieves the optimal edge coverage
results (5,763 edges) and the lowest redundant edge ratio
(0.65) among all. Meanwhile, Eclipser and Intriguer respec-
tively achieve inferior edge coverage (5,323 and 5,254 edges)
and higher redundant edge ratios (0.92 and 0.91). Moreover,
for project jhead, the edge coverage advantage of hybrid
fuzzers is rather significant (i.e., 300+ explored edges for
all the conventional coverage-guided fuzzers vs. 885 and 823
explored edges respectively for QSYM and Eclipser). Note that
the redundant edge ratio in project jhead is even 0 for QSYM

R
ed

un
da

nt
 E

dg
e

R
at

io

readelf
nm objdump

strip
tcpdump

libxml2
libjpeg

jhead
libpng

libtiff
file bento

cyclonedds

libming
wavpack

Fig. 3. Redundant edge ratio of studied fuzzers

b1

… …

b2 b5

b3 b4
b6

b7 b8
process_EXIFReadJpegSections

if (memcmp(Data+2, “Exif”, 4) == 0) {
 if (!process_EXIF(Data, itemlen)) {
 free(Sections[—-SectionsRead].Data);
 }
 break;
}

cmpl $0x66697845,0x2(%r14)
je 61e7 <ReadJpegSections+0x627>

mov %ebp,%esi
mov %r14,%rdi
call 8df0 <process_EXIF>

b5

b1

Fig. 4. An example in project jhead

415

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

and MEUZZ. We then examine the source code of project
jhead to infer the cause. In particular, Figure 4 presents a code
snippet of project jhead which calibrates the if condition to
find out whether string “Exif” (i.e., 0x66697845 in its binary
form) is matched in function ReadJpegSection (the com-
plete code and its corresponding labels are presented in [21]
due to page limit). For conventional coverage-guided fuzzers,
the probability of generating the feasible input matching such
32-bit value via probabilistic mutation is 1/232 ≈ 2.3×10−10.
Therefore, we infer that the chance to explore the edge
associated with such if condition is rather low, i.e., the edge
exploration of the scope under such if condition can be easily
halted. However, applying concolic execution can quickly
solve the path constraint of the if condition such that fuzzing
strategies are further leveraged to promptly explore the edges
within function process_EXIF. Such results enlighten that
for a hybrid fuzzer, its coordination mode potentially plays a
vital role for impacting its effectiveness.

Finding 5: The hybrid fuzzing effectiveness is reflected
by redundant edge ratio which is highly relevant to their
coordination modes.

We further investigate the performance impact from the
individual components of the coordination mode. First, we
investigate how the scheduling mechanism affects the edge
coverage. As mentioned, DigFuzz and MEUZZ propose their
scheduling mechanisms with the Monte Carlo method [47] and
the supervised regression model [54] respectively in order to
schedule the seeds according to their capabilities for exploring
hard-to-cover edges, while the rest studied hybrid fuzzers
randomly select seeds, for concolic execution. However, we
find from Figure 3 that QSYM outperforms DigFuzz in all of
the programs and MEUZZ in 10 out of 15 programs where
the average redundant edge ratio is 0.65 for QSYM, 0.71 for
MEUZZ and 0.87 for DigFuzz. Such results indicate that the
seed scheduling mechanisms adopted by our studied hybrid
fuzzers do not effectively limit redundant edge ratio.

Finding 6: The seed scheduling mechanisms adopted by
our studied hybrid fuzzers do not effectively alleviate
the issue of redundant edge exploration.

We also attempt to investigate the effect of synchronization.
Note that only Pangolin specifically designs its synchroniza-
tion mechanism while the rest studied hybrid fuzzers simply
input the resulting seeds from the concolic execution to the
fuzzing strategy. Specifically, Pangolin first linearizes path
constraint to the polyhedra abstraction domain with the SMT-
opt algorithm [45] for limiting mutation spaces. Then Pangolin
utilizes a sampling algorithm, i.e., Dikin walk [46] to sample
the abstraction domain to derive the mutants as the seeds
for the fuzzing strategy. We then concentrate our analysis
on comparing the edge coverage results between QSYM and
Pangolin because they only differ in their adopted synchroniza-
tion mechanisms. Surprisingly, although Pangolin attempts to

enhance QSYM via its specifically designed synchronization
mechanism, it still performs worse in terms of edge coverage,
i.e., 5,561 edges vs. 5,763 edges on average. Such result
indicates that the existing effort on strengthening the synchro-
nization mechanism of hybrid fuzzers may pose rather limited
performance impact.

Finding 7: The existing effort on strengthening the
synchronization mechanism may have limited impact on
the edge coverage performance of hybrid fuzzers.

E. Discussion
Previous findings indicate that while the coordination modes

significantly impact the performance of hybrid fuzzers, the
existing effort on the scheduling and synchronization mecha-
nisms lead to rather limited effectiveness. We then discuss the
possible reasons. In particular, we first discuss why enhancing
seed scheduling in the studied hybrid fuzzers (i.e. DigFuzz
and MEUZZ) does not effectively alleviate the redundant edge
exploration (Finding 6). More specifically, during concolic
execution, each conditional branch along the execution path
of PUT is negated to solve the corresponding path con-
straints. Note that such effort can be cost-ineffective upon
the conditional branches which can be explored by fuzzing
strategies usually with much lower overhead. Moreover, the
coverage updates on applying fuzzing strategies and concolic
executions are mutually unknown for all our studied hybrid
fuzzers. Therefore, the concolic executor is likely to spend
massive effort on solving the edges which have been explored
by the fuzzing strategy. Typically, fine-grained scheduling
is expected to successfully rule out the redundant edge ex-
ploration. Unfortunately, even when MEUZZ and DigFuzz
attempt to shepherd their seed scheduling mechanisms via
refined machine learning or statistics approaches, they fail to
distinguish the worth of each edge to be explored by concolic
executors, and thus are ineffective on preventing redundant
edge exploration. Accordingly, we infer that proposing finer-
grained edge-oriented rather than seed-oriented scheduling
mechanisms is essential.

We then discuss why the synchronization mechanism of
Pangolin causes limited performance impact. Specifically, we
infer that the polyhedra abstraction domain [44] is not an
optimal choice out of the three sound abstract domains (in-
terval [19], octagon [57] and polyhedra) used for limiting
mutation space with different precision levels and time cost.
Specifically, the polyhedra abstraction domain is adopted by
Pangolin due to its highest precision for approximating path
constraints which results in the fewest false positives (i.e.,
mutants which cannot be executed to increase code coverage).
However, the fuzzing strategy adopted by Pangolin, i.e., AFL,
can quickly filter out such mutants [1], [24], [25] such that
adopting any abstract domain actually leads to close effects on
limiting the mutation space. Thus, one could totally adopt the
interval abstraction domain with the lowest time cost instead.

In addition to Dikin walk [46] adopted by Pangolin, there
are also other representative sampling algorithms (e.g., Hit-

416

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

and-run [58], Vaidya walk [20] and John walk [20]) for the
Rd domain defined by n constraints where n is the total
number of path constraints with d corresponding symbolic
inputs (generally n≫ d) for concolic execution in our paper.
Notably, compared with the time complexity of Dikin walk
(O(n2d3)), the time complexity of John walk (O(nd4.5)) is
less dependent on n, i.e., the amount of path constraints,
while more dependent on d, i.e., the amount of program
symbolic inputs. Since in real-world programs, the amount
of path constraints largely exceeds the amount of program
symbolic inputs [30], [45], applying John walk thus can be
more efficient, i.e., exploring more edges under given time.

IV. ENHANCING HYBRID FUZZERS

A. Approach

Inspired by our previous findings and discussion, we pro-
pose CoFuzz (Coordinated hybrid fuzzing framework with
advanced coordination mode) which strengthens the hybrid
fuzzer performance by optimizing their scheduling and syn-
chronization mechanisms on top of QSYM. Figure 5 presents
the workflow of CoFuzz. Specifically, CoFuzz first applies the
edge-oriented scheduling which identifies the edges with unex-
plored sibling edges (marked as ➊). Then, CoFuzz extracts the
corresponding branch features (➋) as input to an online linear
regression model [59] based on Stochastic Gradient Descent
(SGD) [18] for predicting the utility and scheduling the edges
for concolic executors (➌). Note that we select the online
linear regression model because the model expects that the
overall coefficients can be estimated under diverse benchmark
programs where the coefficients typically converge fast. More-
over, by taking the resulting seeds after applying the concolic
executors (➍), CoFuzz applies the sampling-augmenting syn-
chronization mechanism which adopts the interval abstraction
domain with John walk to generate mutants as input for
fuzzing strategies (➎). Meanwhile, the sampling-augmenting
synchronization mechanism incrementally updates our online
linear regression model via the edge utility represented as the
corresponding coverage updates (➏). The details of CoFuzz
are illustrated as follows.

Fuzzing

Seed Corpora

Cov

PUT

Edge-oriented Scheduling

Update model6

σPC

SMT-opt

Mutants
Sampling-augmenting Synchronization

Path abstraction
John Walk &5

. .
 . ej

ei

Identify edges1

SGD Linear
Regressor

Predict utility &
Sort the edges3

Seed

Concolic
Execution4

edgei +

< edgek, utilityk >
< edgej, utilityj >
< edgei, utilityi >

. . .
Extract features2

‣ # Unexplored sibling
‣ # Normalized mutant

. . .

Fig. 5. The framework of CoFuzz

1) Edge-oriented Scheduling: To essentially alleviate the
redundant edge exploration between fuzzing strategies and
concolic executors, we propose the fine-grained edge-oriented

Algorithm 1: Coordination Mode of CoFuzz
Input: Model
Result: res

1 Function PerformingCoordinationMode:
2 res ← set()
3 candidates ← Set of edges with unexplored sibling edges
4 utility ← Model.predict(candidates) ; ▷ predict using

the linear regression model with SGD
5 critical edges ← edgeSchedule(candidates, utility) ;

▷ schedule the edges with high utility
6 for all edge ei in critical edges do
7 si ← Identify the seed covering ei
8 pc ← concolicExec(si, ei)
9 φ̂ ← SMTopt(pc)

10 sample set ← JohnWalk(si, φ̂)
11 for mutant in sample set do
12 if increaseCoverage(mutant) then
13 res.add(mutant)
14 end
15 covi ← Increased coverage
16 Model.update(ei, covi)
17 end
18 return res

scheduling mechanism to schedule edges corresponding to
the branches in program execution path for applying the
concolic executors. Algorithm 1 presents the details of the
edge-oriented scheduling, we first identify the edges having
at least one unexplored sibling edge, i.e., the edge under one
sharing prefix edge, by analyzing runtime code updates (line
3). Next, we predict the utility, i.e., the coverage updates, for
these edges to be solved by the concolic executor using the
linear regression model with SGD (line 4). More specifically,
inspired by the existing work [14], [15], [48], [60], [61],
we extract the following five features covering the general
program and mutant features and the challenges of accessing
conditional branches. Accordingly, we form a five-dimensional
vector as the input of the online linear regression model of our
edge-oriented scheduling.

1. Edge distance to the root. As in [15], [61], this feature
refers to the shortest distance traversing from the given edge
to the root to reflect the potential of generating solutions
by the concolic executor [61].

2. Count of unexplored sibling edges. This feature reflects the
potential of exploring edges as in [15], [26]. For a given
edge, the larger such count is, the more possible that more
program states, e.g., the uncovered cases when executing
the switch statements, can be explored.

3. Normalized mutant amount. For a given edge, we find
first all its explored sibling edges and then the fuzzer-
generated mutants exploring them. Finally, we collect the
mutant amount and normalize it with log transformation.
This metric reflects the effort by the fuzzing strategy to
explore the given edge, as in [14], [48].

4. Conditional branch type. This feature includes equality
predicates (e.g. cmp instruments with eq or neq) and
statements containing comparison functions (e.g., memcmp

417

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

and strcmp) to reflect the challenges of generating the
feasible input via random mutation, as in [15], [62].

5. Condition bit width. This feature refers to the bit width of
operands in a condition as [62], [63] to reflect the challenge
of covering such statement via random mutation.

Then, we schedule the edges with high utility (i.e., namely
critical edges in this paper) and leverage the concolic executor
to solve them (lines 5 to 6). More specifically, we identify
the seed whose execution path covers the critical edge (line
7) to activate the concolic executor to only negate such a
critical edge for solving the corresponding constraint (line
8). In this way, we significantly alleviate the redundant edge
exploration, i.e., such critical edges can only be solved by
concolic executors exclusively instead of fuzzing strategies.
For instance, by adopting edge-oriented scheduling to the
sample code in Figure 4, we only schedule edge (b1, b2)
for concolic execution since edge (b2, b3) has no unexplored
sibling edge. Then the concolic executor negates the condition
in b1 and solves the path constraint to explore the critical edge
(b1, b5), preventing the redundant exploration of edge (b2, b4).

2) Sampling-augmenting Synchronization: Algorithm 1
(lines 8 to 10) demonstrates our sampling-augmenting syn-
chronization mechanism which consists of three steps: (1)
generating the path constraint pc via concolic execution for
the target critical edge from edge-oriented scheduling, (2)
converting pc to the interval path abstraction φ̂ by the SMT-
opt algorithm [45] (i.e., determining the scale of each corre-
sponding input), and (3) sampling in the abstraction domain
with John walk and generating the mutants. Accordingly, we
filter the mutants failing to explore new edges and store the
resulting seeds for future executions of fuzzing strategies (line
13). Meanwhile, we collect the coverage updates as the utility
for each solved edge, and update the online SGD regressor, i.e.,
performing incremental learning (lines 15 to 16). Note that the
sampling-augmenting synchronization mechanism is proposed
to not only increase the edge coverage by inputting the mutants
efficiently sampled within limited mutation space for the
fuzzing strategy, but also advance edge-oriented scheduling
by utilizing the edge increase to update the online linear
regression model simultaneously, i.e., enhancing the prediction
accuracy of the edge utility during edge-oriented scheduling.

B. Evaluation

We evaluate the performance of CoFuzz in terms of edge
coverage and bug detection with the identical evaluation setups
as in Section III-B where the results are shown as follows.

1) Edge Coverage: We select AFL and the top-performing
hybrid fuzzer QSYM for performance comparison. To perform
ablation study on our edge-oriented scheduling and sampling-
augmenting synchronization mechanisms respectively, we
build the corresponding CoFuzz variants, i.e., CoFuzzsch with
edge-oriented scheduling only and CoFuzzsync with sampling-
augmenting synchronization only. Table V presents the edge
coverage results for our study subjects. We can observe that
overall, CoFuzz outperforms AFL and QSYM by 32.44% and
16.31% respectively in terms of edge coverage and dominates

all the benchmark programs. We further perform significance
tests to investigate the robustness of the edge coverage ad-
vantage of CoFuzz over QSYM. Following prior work [16],
[25], [27], [52], we leverage Mann Whitney U-test [64] with
one-tailed hypothesis to measure the significance of such
performance advantage. We calculate the p-value between the
edge coverage performance of QSYM and CoFuzz for each
program in terms of two significance levels (i.e., 0.01 and
0.05). We can observe that the p-values listed in Table V are
smaller than 0.01 for 13 of 15 programs and way smaller
than 0.05 for the rest 2 programs, i.e., libjpeg and libtiff (both
0.01059). Such results indicate that CoFuzz can significantly
and consistently dominate all our studied hybrid fuzzers.

We further observe that CoFuzzsch and CoFuzzsync can
outperform all the studied hybrid fuzzers, e.g., outperforming
QSYM by 11.05% and 7.37% respectively. Note that CoFuzz
outperforms CoFuzzsch and CoFuzzsync by 4.73% and 8.32%
which indicates that jointly improving the scheduling and
synchronization mechanisms is rather essential to optimize the
overall performance of hybrid fuzzers. Such results also indi-
cate that edge-oriented scheduling and sampling-augmenting
synchronization can potentially boost each other. Additionally,
we evaluate the temporal development of CoFuzz in terms of
edge coverage. Figure 6 presents the average edge coverage for
all benchmark programs of CoFuzz and other studied fuzzers
over time. Overall, we can observe that CoFuzz achieves better
performance compared with other studied fuzzers. Specifically,
the edge coverage of CoFuzz is significantly increased after
each synchronization stage, indicating the effectiveness of
concolic execution. Note that we also present the results for
all benchmark programs which show the similar trends in our
GitHub repository [21] due to page limit.

TABLE V
EDGE COVERAGE RESULTS OF COFUZZ

Program AFL QSYM CoFuzzsch CoFuzzsync CoFuzz p-value

readelf 9,176 9,512 10,407 10,236 10,786 0.00596
nm 5,127 5,602 7,824 7,573 8,234 0.00609
objdump 7,358 8,304 8,512 8,453 8,710 0.00609
strip 6,340 7,624 7,839 8,598 9,094 0.00609
tcpdump 9,782 10,279 12,661 10,348 13,130 0.00609
libxml2 5,876 7,888 8,493 7,946 8,640 0.00609
libjpeg 2,902 3,183 3,192 3,190 3,210 0.01059
jhead 304 885 897 890 915 0.00199
libpng 1,496 2,058 2,239 2,197 2,311 0.00609
libtiff 3,546 3,793 3,820 3,842 3,974 0.01059
file 2,283 2,553 2,652 2,730 2,851 0.00609
bento 3,001 4,017 5,624 5,398 6,179 0.00609
wavpack 5,703 5,797 5,832 5,857 5,863 0.00596
cyclonedds 4,822 5,612 5,832 5,713 5,932 0.00609
libming 8,197 9,335 10,177 9,846 10,719 0.00609

AVG 5,061 5,763 6,400 6,188 6,703 0.00640

2) Bug Detection: Following all our studied hybrid
fuzzers [10]–[16], we evaluate CoFuzz on the LAVA-M dataset
with the time budget of 5 hours. Note that while LAVA-
M automatically injects and labels bugs into four programs
(base64, md5sum, uniq, who in coreutils-8.24), it is also quite
common for fuzzers to detect more bugs than the listed ones
[11], [12], [16]. Table VI presents the number of detected bugs
N and the corresponding bug survival time Tm in minutes

418

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Average edge coverage of CoFuzz and other studied fuzzers over time

by all the studied techniques. We can observe that they all
fully expose the listed bugs in the subjects base64, md5sum
and uniq while CoFuzz spends way less time than others, i.e.,
around 66 seconds for CoFuzz vs. 604 seconds for the second
fastest hybrid fuzzer Angora. Meanwhile, for program who,
although none of the hybrid fuzzers full expose the injected
bugs within 5 hours, CoFuzz still exposes the most bugs (1,913
bugs) which outperforms Angora by 23.66%.

We further evaluate CoFuzz in terms of unique crashes
on real-world benchmark programs. Overall, CoFuzz exposes
a total of 456 unique crashes (around 2X more than other
hybrid fuzzers combining with Table IV). Additionally, Co-
Fuzz exposes the crashes in three programs (strip, file and
wavpack) which cannot be detected by any other studied
hybrid fuzzer. The detailed crash information is presented in
our Github repository [21] due to the page limit. We further
manually calibrate all the crashed files to derive 42 bugs
including 37 previously unknown bugs all of which are only
detected by CoFuzz. Table VII presents the bug details where
30 previously unknown bugs have been confirmed by the
developers with 8 new CVEs and 20 of them have been fixed.
Note that for the 5 patched bugs in the latest version, CoFuzz
can still detect different execution paths to trigger them.

TABLE VI
BUG RESULTS OF COFUZZ ON LAVA-M

Fuzzer base64 md5sum uniq who

N Tm N Tm N Tm N Tm

QSYM 44/44 8.48 57/57 31.77 28/28 4.55 1,332/2,136 300.00
Angora 48/44 6.75 57/57 16.37 29/28 7.15 1,547/2,136 300.00
Eclipser 46/44 128.33 57/57 147.35 29/28 155.83 1,030/2,136 300.00
Intriguer 46/44 205.07 57/57 132.60 29/28 187.22 1,350/2,136 300.00
DigFuzz 46/44 7.53 57/57 57.30 28/28 4.32 1,146/2,136 300.00
MEUZZ 44/44 7.28 57/57 40.35 28/28 6.50 1,205/2,136 300.00
Pangolin 48/44 9.37 57/57 132.75 29/28 13.27 1,342/2,136 300.00

CoFuzz 48/44 1.07 57/57 1.75 29/28 0.50 1,913/2,136 300.00

V. THREATS TO VALIDITY

Threats to internal validity. One threat to internal validity lies
in the implementation of the studied subjects. To reduce this
threat, we reuse the source code of the studied hybrid fuzzers
and their runtime environment as we can. For DigFuzz and
Pangolin without publicly available source code, we strictly
follow the description in their papers for re-implementation
where the first three authors carefully review our code to en-
sure the correctness and consistency. Another threat to internal

TABLE VII
BUGS DETECTED BY COFUZZ IN REAL-WORLD BENCHMARK

Program Function Bug Type Count Bug Status

readelf process object memory leaks 1 Confirmed
nm demangle path stack-buffer-overflow 1 Confirmed

str buf append stack-buffer-overflow 1 Patched
objdump unknow module invalid memory reference 1 Patched
strip bfd getl32 heap-buffer-overflow 3 CVE-2022-38533 & Fixed

bfd getl32 invalid memory reference 2 Patched
group signature heap-use-after-free 1 Patched

libjpeg jpeg read scanlines use-of-uninitialized-value 1 Confirmed
jhead ReadJpegSections use-of-uninitialized-value 1 CVE-2022-37165
libtiff tiffMapProc use-of-uninitialized-value 2 Reported

tiffcp heap-buffer-overflow 1 Confirmed & Fixed
file file tryelf allocation-size-too-big 1 Confirmed & Fixed
bento ParseExtension heap-buffer-overflow 1 CVE-2022-37167 & Fixed

WriteBytes heap-buffer-overflow 1 CVE-2022-37169
AP4 HvccAtom heap-buffer-overflow 3 CVE-2022-37690
AP4 StsdAtom invalid memory reference 2 CVE-2022-37166 & Fixed
AP4 AvccAtom invalid memory reference 1 CVE-2022-37168 & Fixed
Create memory leaks 2 CVE-2022-37691

wavpack MD5 Final heap-buffer-overflow 2 Confirmed & Fixed
cyclonedds parse line heap-buffer-overflow 3 Confirmed & Fixed

idl reference node heap-use-after-free 2 Confirmed & Fixed
idlc parse stack-buffer-overflow 2 Confirmed & Fixed
idl parse invalid memory reference 2 Confirmed & Fixed

libming newVar N heap-buffer-overflow 2 Reported
decompileAction invalid memory reference 3 Reported

validity lies in the reliability of our evaluation results which
can possibly be compromised by randomness. Accordingly,
all our results are averaged from five runs, following prior
work [11], [14], [15], [27], [62], [65].
Threats to external validity. The threat to external validity
mainly lies in the subjects and benchmarks. To reduce this
threat, we select 7 representative hybrid fuzzers recently pub-
lished in prestigious software engineering and system security
conferences as mentioned in Section III-A1.We also apply
15 real-world benchmark programs which are frequently used
in the original papers of our studied hybrid fuzzers and the
LAVA-M dataset in our evaluation.
Threats to construct validity. The threat to construct validity
mainly lies in the adopted metrics in our study. To reduce this
threat, we follow many existing fuzzers [5], [16], [25], [27],
[48], [66] to adopt the edge coverage as our evaluation metric.
Moreover, we also evaluate the bug detection capability of the
studied hybrid fuzzers on top of the LAVA-M benchmark and
our real-world benchmark programs.

VI. RELATED WORK

A. Fuzzing

Many fuzzers adopt coverage to guide fuzzing. AFL [1]
retains the mutants executed to increase code coverage as
seeds. Accordingly, AFLFast [2] leverages the Markov chain
model [67] to prioritize low-frequency execution paths, and
AFLGo [3] introduced directed fuzzing which generates inputs
for the target program. FairFuzz [48] increases the edge cov-
erage of AFL by facilitating the exploration of rare branches
identified at runtime. Mopt [56] utilizes the particle swarm
optimization algorithm to schedule mutators. EnFuzz [68]
integrates different fuzzing techniques with a synchronization
mechanism. Additionally, fuzzing has been widely applied in
domain-specific software systems. SGFUZZ [69] is proposed

419

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

to test stateful software systems like network protocol im-
plementations. Deephunter [70] fuzzes deep neural networks
with extensible coverage criteria. Zhang et al. [71] combine
GANs and metamorphic testing to generate image mutants for
fuzzing autonomous driving systems. Zhou et al. [72] further
paint the generated image mutants on billboards to enhance
their real-world applicability. Liu et al. [73] propose FANS
to detect vulnerabilities in Android native system services by
generating test cases for specific interfaces. Wu et al. [74] fuzz
CUDA programs by building memory models and the rules
to detect memory conflicts for exposing their synchronization
bugs. They also use the fuzzing results to guide the process of
fixing them accordingly [75]. More recently, Zhao et al. [76]
propose JavaTailor to learn information from historical bug-
revealing test programs for generating test programs to expose
JVM defects, while Wu et al. [77] further propose JITFuzz
which leverages multiple mutators to fully exercise the JIT
optimization components for fuzzing JVM JIT compilers.

Many fuzzers are proposed to enhance coverage-guided
fuzzing strategies when exploring hard-to-cover program
states. VUzzer [78] integrates its evolutionary fuzzing strategy
via dynamic taint analysis. Steelix [34] leverages light-weight
program analysis to acquire program state information and
locate the offsets for magic bytes. Greyone [65] infers taints of
variables driven by fuzzing and utilizes them to guide program
state exploration. Aschermann et al. [4] exploit input-to-state
relations to improve fuzzing effectiveness. Specifically, hybrid
fuzzers leverage the power of concolic executors in addition
to fuzzing strategies. QSYM [10] tailors a concolic executor
with fast symbolic emulation and enhanced constraint solving.
Accordingly, Angora [11] adopts gradient descent to solve path
constraints. Eclipser [12] proposes grey-box concolic testing
to resolve conditional branches. Intriguer [13] proposes field-
level constraint solving which applies the SMT solver only
for complicated conditions. On the other hand, DigFuzz [14]
proposes probabilistic seed prioritization with the Monte Carlo
method. MEUZZ [15] utilizes a machine learning regression
model to predict seed utility for seed scheduling. The more
recent Pangolin [16] uses Dikin walk to uniformly sample
a polyhedron path abstraction. In this paper, we propose
CoFuzz to enhance the coordination mode of hybrid fuzzers
for augmenting the overall fuzzing effectiveness.

Researchers also tend to study the existing fuzzers to guide
the future relevant research. Klees et al. [27] investigate the
experiment setup and statistical analysis methods for reliable
fuzzing evaluation. Liang et al. [29] present the major obsta-
cles and their solutions while applying fuzzing in practice.
Boehme et al. [8] investigate challenges and opportunities for
fuzzing and symbolic execution. Herrera et al. [28] study how
to construct initial seed corpora for fuzzing. Moreover, some
researchers study the rationale of fuzzing strategies. Wang
et al. [79] investigate and evaluate the efficacy of machine
learning techniques in the existing fuzzers. Ding et al. [80]
investigate characteristics and life cycles of the detected faults
of OSS-Fuzz, a continuous fuzzing service for open source
software. Wu et al. [25] evaluate a generic stochastic mutation

strategy adopted in many existing fuzzers and improve the
strategy with a reinforcement learning model. They also find
that while combining deep learning and program smoothing
can be helpful for fuzzing, it still can be improved by including
a mechanism for identifying edge properties [26]. In this paper,
we conduct the first extensive study on hybrid fuzzers and
demonstrate that their coordination modes significantly impact
the overall performance for the first time.

B. Symbolic/Concolic Execution

While symbolic execution has been applied in vulnerability
exploitation for long time [30], [35], it tends to incur high
computation overhead and path explosion. To tackle such
issues, KLEE [36] reserves the solved constraint states to
eliminate the repetitive computation costs. Trabish et al. [81]
propose chopped symbolic execution, which alleviates path
explosion by targeting important code fragments and lever-
ages static analysis to resolve side effects. Li et al. [82]
propose the heuristic to guide symbolic execution to in-
sufficient explored program states. Concolic execution [17]
combines symbolic execution and concrete execution [40],
[83] to improve efficiency and scalability in large softwares.
SAGE [84] performs concolic execution at the binary level
and mitigates the problem of scalability. Triton [43] is a
concolic execution framework which allows dynamic binary
analysis. Poeplau et al. [39] propose SymCC which compiles
the concolic execution right in the binary level to facilitate
the performance. Very recently, Liu et al. [85], [86] have
also applied symbolic/concolic constraint solving to test the
emerging machine learning systems.

VII. CONCLUSION

In this paper, we have extensively investigated hybrid
fuzzers. Specifically, we first find for many studied hybrid
fuzzes, their performance may not well generalize to other
experimental setups. We further find that their edge cov-
erage performance is highly related to the redundant edge
exploration between applying fuzzing strategy and concolic
execution. Inspired by our findings, we propose CoFuzz with
edge-oriented scheduling and sampling-augmenting synchro-
nization. The evaluation results demonstrate that CoFuzz can
significantly outperform QSYM by 16.31% in terms of edge
coverage and expose 2X more unique crashes than all studied
hybrid fuzzers with 37 previously unknown bugs detected.

VIII. ACKNOWLEDGEMENT

This work is partially supported by the National Natural
Science Foundation of China (Grant No. 61902169),
Guangdong Provincial Key Laboratory (Grant No.
2020B121201001), and Shenzhen Peacock Plan (Grant
No. KQTD2016112514355531). This work is also partially
supported by National Science Foundation under Grant Nos.
CCF-2131943 and CCF-2141474, as well as Ant Group.
Yuqun Zhang would like to dedicate this paper to the memory
of his grandmother. She will live in his heart forever.

420

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Zalewski, “American fuzz lop,” https://github.com/google/AFL,
2020.

[2] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” IEEE Transactions on Software Engi-
neering, vol. 45, no. 5, pp. 489–506, 2017.

[3] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 2329–2344.

[4] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence.” in NDSS,
vol. 19, 2019, pp. 1–15.

[5] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz: Effi-
cient fuzzing with neural program smoothing,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 803–817.

[6] J. Liu, Y. Wei, S. Yang, Y. Deng, and L. Zhang, “Coverage-guided
tensor compiler fuzzing with joint ir-pass mutation,” Proc. ACM
Program. Lang., vol. 6, no. OOPSLA1, apr 2022. [Online]. Available:
https://doi.org/10.1145/3527317

[7] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1,
no. 1, pp. 1–13, 2018.

[8] M. Boehme, C. Cadar, and A. Roychoudhury, “Fuzzing: Challenges and
reflections.” IEEE Softw., vol. 38, no. 3, pp. 79–86, 2021.

[9] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Ijon: Exploring
deep state spaces via fuzzing,” in 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 2020, pp. 1597–1612.

[10] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{QSYM}: A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018, pp. 745–761.

[11] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 711–725.

[12] J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box concolic testing
on binary code,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 736–747.

[13] M. Cho, S. Kim, and T. Kwon, “Intriguer: Field-level constraint solving
for hybrid fuzzing,” in Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2019, pp. 515–530.

[14] L. Zhao, Y. Duan, H. Yin, and J. Xuan, “Send hardest problems my way:
Probabilistic path prioritization for hybrid fuzzing.” in NDSS, 2019.

[15] Y. Chen, M. Ahmadi, B. Wang, L. Lu et al., “{MEUZZ}: Smart seed
scheduling for hybrid fuzzing,” in 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020), 2020, pp.
77–92.

[16] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang, “Pangolin: Incremental
hybrid fuzzing with polyhedral path abstraction,” in 2020 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2020, pp. 1613–1627.

[17] K. Sen, “Concolic testing,” in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineer-
ing, 2007, pp. 571–572.

[18] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks:
Tricks of the trade. Springer, 2012, pp. 421–436.

[19] P. Cousot et al., “Static determination of dynamic properties of pro-
grams.” 1977.

[20] Y. Chen, R. Dwivedi, M. J. Wainwright, and B. Yu, “Fast mcmc sampling
algorithms on polytopes,” The Journal of Machine Learning Research,
vol. 19, no. 1, pp. 2146–2231, 2018.

[21] G. Repository, “Hybrid fuzzing approach,” https://github.com/Tricker-z/
CoFuzz, 2022.

[22] R. Majumdar and K. Sen, “Hybrid concolic testing,” in 29th Interna-
tional Conference on Software Engineering (ICSE’07). IEEE, 2007,
pp. 416–426.

[23] B. S. Pak, “Hybrid fuzz testing: Discovering software bugs via fuzzing
and symbolic execution,” School of Computer Science Carnegie Mellon
University, 2012.

[24] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16, no.
2016, 2016, pp. 1–16.

[25] M. Wu, L. Jiang, J. Xiang, Y. Huang, H. Cui, L. Zhang, and Y. Zhang,
“One fuzzing strategy to rule them all,” in Proceedings of the Interna-
tional Conference on Software Engineering, 2022.

[26] M. Wu, L. Jiang, J. Xiang, Y. Zhang, G. Yang, H. Ma, S. Nie, S. Wu,
H. Cui, and L. Zhang, “Evaluating and improving neural program-
smoothing-based fuzzing,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 847–858.
[Online]. Available: https://doi.org/10.1145/3510003.3510089

[27] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 2123–2138.

[28] A. Herrera, H. Gunadi, S. Magrath, M. Norrish, M. Payer, and A. L.
Hosking, “Seed selection for successful fuzzing,” in Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2021, pp. 230–243.

[29] J. Liang, M. Wang, Y. Chen, Y. Jiang, and R. Zhang, “Fuzz testing in
practice: Obstacles and solutions,” in 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2018, pp. 562–566.

[30] L. d. Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[31] J. Metzman, L. Szekeres, L. Simon, R. Sprabery, and A. Arya,
“Fuzzbench: an open fuzzer benchmarking platform and service,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021, pp. 1393–1403.

[32] J. Song and J. Alves-Foss, “The darpa cyber grand challenge: A
competitor’s perspective,” IEEE Security & Privacy, vol. 13, no. 6, pp.
72–76, 2015.

[33] K. Serebryany, “{OSS-Fuzz}-google’s continuous fuzzing service for
open source software,” 2017.

[34] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: program-state based binary fuzzing,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, 2017,
pp. 627–637.

[35] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[36] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209–224.

[37] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Till-
mann, and W. Visser, “Symbolic execution for software testing in prac-
tice: preliminary assessment,” in 2011 33rd International Conference on
Software Engineering (ICSE). IEEE, 2011, pp. 1066–1071.

[38] C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90,
2013.

[39] S. Poeplau and A. Francillon, “Symbolic execution with {SymCC}:
Don’t interpret, compile!” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 181–198.

[40] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for c,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp.
263–272, 2005.

[41] X. Wang, J. Sun, Z. Chen, P. Zhang, J. Wang, and Y. Lin, “Towards
optimal concolic testing,” in Proceedings of the 40th International
Conference on Software Engineering, 2018, pp. 291–302.

[42] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox
fuzz testing.” in NDSS, vol. 8, 2008, pp. 151–166.

[43] F. Saudel and J. Salwan, “Triton: A dynamic symbolic execution frame-
work,” in Symposium sur la sécurité des technologies de l’information
et des communications, SSTIC, France, Rennes, 2015, pp. 31–54.

[44] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” in Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, 1978,
pp. 84–96.

[45] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik,
“Symbolic optimization with smt solvers,” ACM SIGPLAN Notices,
vol. 49, no. 1, pp. 607–618, 2014.

[46] R. Kannan and H. Narayanan, “Random walks on polytopes and an
affine interior point method for linear programming,” Mathematics of
Operations Research, vol. 37, no. 1, pp. 1–20, 2012.

[47] J. Hammersley, Monte carlo methods. Springer Science & Business
Media, 2013.

[48] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of the 33rd

421

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

ACM/IEEE International Conference on Automated Software Engineer-
ing, 2018, pp. 475–485.

[49] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “{AFL++}: Combin-
ing incremental steps of fuzzing research,” in 14th USENIX Workshop
on Offensive Technologies (WOOT 20), 2020.

[50] M. Zalewski, “Afl parallel fuzzing,” https://github.com/google/AFL/
blob/master/docs/parallel fuzzing.txt, 2020.

[51] Y. Li, S. Ji, Y. Chen, S. Liang, W.-H. Lee, Y. Chen, C. Lyu, C. Wu,
R. Beyah, P. Cheng et al., “Unifuzz: A holistic and pragmatic metrics-
driven platform for evaluating fuzzers.” in USENIX Security Symposium,
2021, pp. 2777–2794.

[52] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, T. Wei, and L. Lu,
“Savior: Towards bug-driven hybrid testing,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 1580–1596.

[53] M. Zalewski, “Afl official seed corpus,” http://lcamtuf.coredump.cx/afl/
demo/, 2021.

[54] L. Bottou et al., “Online learning and stochastic approximations,” On-
line learning in neural networks, vol. 17, no. 9, p. 142, 1998.

[55] M. Wang, J. Liang, Y. Chen, Y. Jiang, X. Jiao, H. Liu, X. Zhao, and
J. Sun, “Safl: increasing and accelerating testing coverage with symbolic
execution and guided fuzzing,” in Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings, 2018,
pp. 61–64.

[56] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“{MOPT}: Optimized mutation scheduling for fuzzers,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019, pp. 1949–1966.

[57] A. Miné, “The octagon abstract domain,” Higher-order and symbolic
computation, vol. 19, no. 1, pp. 31–100, 2006.

[58] L. Lovász and S. Vempala, “Hit-and-run from a corner,” SIAM Journal
on Computing, vol. 35, no. 4, pp. 985–1005, 2006.

[59] S. Weisberg, Applied linear regression. John Wiley & Sons, 2005, vol.
528.

[60] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Model-based whitebox
fuzzing for program binaries,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, 2016, pp.
543–553.

[61] S. Cha, S. Hong, J. Lee, and H. Oh, “Automatically generating search
heuristics for concolic testing,” in Proceedings of the 40th International
Conference on Software Engineering, 2018, pp. 1244–1254.

[62] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu, Z. Liu, and
J. Sun, “Pata: Fuzzing with path aware taint analysis,” in 2022 2022
IEEE Symposium on Security and Privacy (SP)(SP). IEEE Computer
Society, Los Alamitos, CA, USA, 2022, pp. 154–170.

[63] A. Fioraldi, D. C. D’Elia, and E. Coppa, “Weizz: Automatic grey-box
fuzzing for structured binary formats,” in Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2020, pp. 1–13.

[64] P. E. McKnight and J. Najab, “Mann-whitney u test,” The Corsini
encyclopedia of psychology, pp. 1–1, 2010.

[65] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen,
“{GREYONE}: Data flow sensitive fuzzing,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 2577–2594.

[66] D. She, R. Krishna, L. Yan, S. Jana, and B. Ray, “Mtfuzz: fuzzing with
a multi-task neural network,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 737–749.

[67] J. R. Norris and J. R. Norris, Markov chains. Cambridge university
press, 1998, no. 2.

[68] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and
Z. Su, “{EnFuzz}: Ensemble fuzzing with seed synchronization among
diverse fuzzers,” in 28th USENIX Security Symposium (USENIX Security
19), 2019, pp. 1967–1983.

[69] J. Ba, M. Böhme, Z. Mirzamomen, and A. Roychoudhury, “Stateful
greybox fuzzing,” arXiv preprint arXiv:2204.02545, 2022.

[70] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2019, pp. 146–157.

[71] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid,
“Deeproad: Gan-based metamorphic testing and input validation
framework for autonomous driving systems,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’18. New York, NY, USA: Association

for Computing Machinery, 2018, p. 132–142. [Online]. Available:
https://doi.org/10.1145/3238147.3238187

[72] H. Zhou, W. Li, Z. Kong, J. Guo, Y. Zhang, B. Yu, L. Zhang,
and C. Liu, “Deepbillboard: Systematic physical-world testing of
autonomous driving systems,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
347–358. [Online]. Available: https://doi.org/10.1145/3377811.3380422

[73] B. Liu, C. Zhang, G. Gong, Y. Zeng, H. Ruan, and J. Zhuge, “{FANS}:
Fuzzing android native system services via automated interface analy-
sis,” in 29th USENIX Security Symposium (USENIX Security 20), 2020,
pp. 307–323.

[74] M. Wu, Y. Ouyang, H. Zhou, L. Zhang, C. Liu, and Y. Zhang,
“Simulee: Detecting cuda synchronization bugs via memory-access
modeling,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 937–948.
[Online]. Available: https://doi.org/10.1145/3377811.3380358

[75] M. Wu, L. Zhang, C. Liu, S. H. Tan, and Y. Zhang, “Automating cuda
synchronization via program transformation,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2019, pp. 748–759.

[76] Y. Zhao, Z. Wang, J. Chen, M. Liu, M. Wu, Y. Zhang, and
L. Zhang, “History-driven test program synthesis for jvm testing,”
in Proceedings of the 44th International Conference on Software
Engineering, ser. ICSE ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1133–1144. [Online]. Available:
https://doi.org/10.1145/3510003.3510059

[77] M. Wu, M. Lu, H. Cui, J. Chen, Y. Zhang, and L. Zhang, “Jitfuzz:
Coverage-guided fuzzing for jvm just-in-time compilers,” in Proceedings
of the 45th International Conference on Software Engineering, ser. ICSE
’23. New York, NY, USA: Association for Computing Machinery, 2023.

[78] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing.” in NDSS, vol. 17,
2017, pp. 1–14.

[79] Y. Wang, P. Jia, L. Liu, C. Huang, and Z. Liu, “A systematic review
of fuzzing based on machine learning techniques,” PloS one, vol. 15,
no. 8, p. e0237749, 2020.

[80] Z. Y. Ding and C. Le Goues, “An empirical study of oss-fuzz bugs,”
in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR). IEEE, 2021, pp. 131–142.

[81] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar, “Chopped sym-
bolic execution,” in Proceedings of the 40th International Conference
on Software Engineering, 2018, pp. 350–360.

[82] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less
traveled paths,” ACM SigPlan Notices, vol. 48, no. 10, pp. 19–32, 2013.

[83] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, 2005, pp. 213–
223.

[84] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing for
security testing,” Communications of the ACM, vol. 55, no. 3, pp. 40–44,
2012.

[85] J. Liu, J. Lin, F. Ruffy, C. Tan, J. Li, A. Panda, and L. Zhang,
“Nnsmith: Generating diverse and valid test cases for deep learning
compilers,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 530–543. [Online].
Available: https://doi.org/10.1145/3575693.3575707

[86] J. Liu, J. Peng, Y. Wang, and L. Zhang, “Neuri: Diversifying dnn gen-
eration via inductive rule inference,” arXiv preprint arXiv:2302.02261,
2023.

422

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on August 03,2023 at 03:48:42 UTC from IEEE Xplore. Restrictions apply.

