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Abstract—Taint analysis, i.e., labeling data and propagating the
labels through data flows, has been widely used for analyzing pro-
gram information flows and ensuring system/data security. Due
to its important applications, various taint analysis techniques
have been proposed, including static and dynamic taint analysis.
However, existing taint analysis techniques can be hardly applied
to the rising microservice systems for industrial applications.
To address such a problem, in this paper, we proposed the
first practical non-intrusive dynamic taint analysis technique
MirrorTaint for extensively supporting microservice systems on
JVMs. In particular, by instrumenting the microservice systems,
MirrorTaint constructs a set of data structures with their respec-
tive policies for labeling/propagating taints in its mirrored space.
Such data structures are essentially non-intrusive, i.e., modifying
no program meta-data or runtime system. Then, during program
execution,MirrorTaint replicates the stack-based JVM instruction
execution in its mirrored space on-the-fly for dynamic taint
tracking. We have evaluated MirrorTaint against state-of-the-art
dynamic and static taint analysis systems on various popular
open-source microservice systems. The results demonstrate that
MirrorTaint can achieve better compatibility, quite close precision
and higher recall (97.9%/100.0%) than state-of-the-art Phosphor
(100.0%/9.9%) and FlowDroid (100%/28.2%). Also, MirrorTaint
incurs lower runtime overhead than Phosphor (although both
are dynamic techniques). Moreover, we have performed a case
study in Ant Group, a global billion-user FinTech company,
to compare MirrorTaint and their mature developer-experience-
based data checking system for automatically generated fund
documents. The result shows that the developer experience can be
incomplete, causing the data checking system to only cover 84.0%
total data relations, while MirrorTaint can automatically find
99.0% relations with 100.0% precision. Lastly, we also applied
MirrorTaint to successfully detect a recently wide-spread Log4j2
security vulnerability.
Index Terms—dynamic taint analysis, microservice, JVM

I. INTRODUCTION

Nowadays, the microservice architecture [1], which refers

to decomposing software into small independent services that

*Yuqun Zhang is the corresponding author.

communicate over well-defined APIs (the resulting compo-

nents are called microservices), has become dominating in

industrial applications. In contrast to developing traditional

monolithic applications which can be quite inefficient (espe-

cially for big code base) [2], the microservice architecture

is advanced in enabling a lightweight development paradigm

of industrial applications. According to the JetBrains survey

in 2021 upon 31,743 developers from 183 countries/regions,

35% of all respondents develop microservices, among whom

88% adopt microservice for their system design, where Java is

the most popular programming language (41%) [3]. Big tech

companies, e.g., Uber [4], [5], Twitter [6], and Paypal [7], all

build their microservices upon Java Virtual Machines (JVMs)

[8]. They also contribute many frameworks for developing

JVM-based microservices, e.g., Spotify’s appollo [9], Netflix

OSS [10], and Alibaba’s SOFABoot framework [11], which

have been widely used by industrial cloud applications.

However, JVM-based microservice systems can be vulner-

able to data security threats, which can cause severe dam-

ages, e.g., million-dollar or even billion-dollar losses. For

example, a vulnerability [12] in widely-used Java logging

library Log4j2 [13] reported on November 24, 2021 allows

easily executing malicious code from attackers’ servers when

logging certain strings inputted by users. Such vulnerability

posed severe threats to almost all big companies like Google,

IBM, Intel, Apple, Microsoft, Tesla, VMware, Zoom, and

Cloudflare [14], [15] with millions of attacks per hour glob-

ally [16]. Volume developers worldwide have worked intensely

to resolve such issues in their respective applications and the

caused loss is still beyond estimation till now.

Taint analysis, which has been widely adopted in practice

to explore the dependencies between data during program

execution [17]–[30], is in nature the solution for such data

security threat to Java-based microservice systems above.

A typical taint analysis technique firstly marks the source

variables with taints (aka. sourcing). Next, it propagates such
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taints between variables through pre-defined propagation rules.

Finally, the target variables are inspected for whether they

are attached with taints (aka. taint sinking). In general, taint

analysis techniques can be categorized into two dimensions:

static taint tracking and dynamic taint tracking. In particular,

static taint analysis techniques [29]–[31] apply static program

analysis to leverage control-flow graphs and call graphs for

further taint analysis. On the other hand, dynamic taint analysis

techniques [17]–[28] track taints by modifying the runtime

systems (e.g., operating systems and virtual machines) or

program source/intermediate code. Such techniques, if built

precisely, could sensitively track the spread range of program

information and facilitate multiple security tasks, e.g., privacy

leak detection of operation/back-end systems [18], [28].

Ideally, to solve the aforementioned Log4j2 vulnerability,

one can simply adopt the idea of taint analysis – taint-

ing the untrustworthy inputs from outside, and terminating

the ongoing execution when identifying Log4j2 attempts to

evaluate tainted variables. However, JVM-based microservice

architectures can hardly be fully supported by the existing

dynamic or static taint analysis techniques. To illustrate, static

taint analysis techniques [29]–[31] can incur false positives

due to its unawareness of the real-time execution paths.

Specifically, such techniques usually collect taints through

all the possible paths, resulting in inevitable impreciseness.

On the other hand, while dynamic taint analysis techniques

can be essentially more precise compared with static taint

analysis techniques, they tend to result in poor portability by

modifying the specific execution runtime systems for various

microservice systems, which is impractical and even unaccept-

able in industrial production environment where risks cannot

be taken to affect stability of runtime systems. Intuitively, such

issues can be potentially addressed by modifying the source

code to extensively track taints. However, it can be quite

impractical since the source code can often be unavailable.

Note that while recent effort, i.e., Phosphor [17], attempts

to modify program bytecode for enhancing portability and

feasibility, it still cannot be applied to extensively support

microservice systems because it requires to instrument the

Java Development Kit (JDK) and modify the program meta-

data (e.g., class fields, method parameters and return types).

For example, such meta-data modifications can easily fail the

object serialization/de-serialization process widely adopted in

microservice communication. Moreover, they can also fail

the meta-data inspections/modifications adopted by widely-

used dependency injection (DI) [32] and Aspect-Oriented

Programming (AOP) [33] techniques for microservice systems,

e.g., Spring-based systems [34].

To make dynamic taint analysis practical to microservice

systems, our insight is to mirror the application memory

space and enable the taint operations in that mirrored memory

space to retain program meta-data and make dynamic taint

analysis practical on microservice applications. To this end,

in this paper, we present the first non-intrusive dynamic

taint analysis technique, MirrorTaint, which keeps meta-data
in JVM classes intact during instrumentation and can be

widely used in various microservice systems. In particular,

MirrorTaint contains three components in its mirrored mem-
ory space (named mirrored space) to dynamically track the
taints: TaintHeap, TaintStackFrame, and StackFrameRegister.

TaintHeap and TaintStackFrame are two specifically designed

data structures for mirroring the heap and stack in JVM to

store the taints of variables. Moreover, they also re-implement

the associated JVM instructions in terms of taints instead of

associated variables at runtime, as their “mirror”s. To realize

such execution replication, we also design StackFrameRegis-

ter, a temporary taint storage to pass the taints across JVM

stack frames. These components enable MirrorTaint to track
taints without modifying the meta-data of the programs in

field- and object-sensitive manners. Additionally, in order

to further support microservice scenarios, MirrorTaint also
supports automatically taint sourcing and sinking for input

and output data of various APIs, as well as user-defined

taint propagation rules. Noticing that by adopting such an

automatic sourcing and sinking mechanism, MirrorTaint can
track taints across different services in a post-analysis manner,

even though the data communicated between services is not

tainted. However, it is still limited in 1) not supporting implicit

information flow, 2) relying on pre-defined rules to handle

native methods and 3) incurring relatively high memory costs.

We evaluate MirrorTaint on a set of popular (reflected by
star numbers) and available open-source microservice systems

on GitHub. The evaluation result presents that MirrorTaint
can achieve very close precision (97.9%) and superior recall

(100.0%) for taint tracking while two compared state-of-

the-art techniques Phosphor and FlowDroid either result in

limited performance or even fail to be applied. Meanwhile,

MirrorTaint only incurs an overhead of 32.7% on average.
We further conduct a case study in a global billion-user

FinTech company Ant Group to apply MirrorTaint to their
industrial microservice applications, and compare its explored

data relations with a mature developer-experience-based data

checking system widely used in the company. As a result,

while such a system only covers 84.0% relations, MirrorTaint
achieves 100.0% precision and 99.0% recall in exploring data

relations. We also apply MirrorTaint to a recent influential
Log4j2 security vulnerability and find that MirrorTaint pre-
cisely detects that vulnerability. To summarize, our paper

makes the following contributions:

• To our best knowledge, MirrorTaint is the first work to
build mirrored memory structures for JVM-based programs

to perform dynamic taint analysis, i.e., creating an isolated

mirrored space for taint storage/propagation and keeping
original program meta-data for non-intrusive execution of

microservice applications.

• We have implemented MirrorTaint, the first practical dy-
namic taint analysis technique which can be extensively ap-

plied to modern JVM-based microservice systems. It lever-

ages extensive bytecode engineering based on ASM [35]

and javaagent [36] to mirror the application memory space

and operate taints in this mirrored space while keeping the
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program meta-data intact.

• We evaluate MirrorTaint upon real-world open-source mi-
croservice benchmarks as well as large-scale industrial mi-

croservice applications. All the evaluation results suggest

that MirrorTaint can substantially outperform state-of-the-
art dynamic and static taint analysis techniques in terms of

compatibility and recall for tracked taints under quite limited

overhead. Moreover, for industrial applications, MirrorTaint
shows its superiority in exploring industrial sensitive data

relations and significantly outperforms a mature developer-

experience-based data checking system in Ant Group. Addi-

tionally, its ability to detect the recent Log4j2 vulnerability

further shows its value in practice.

II. BACKGROUND AND RELATED WORK

In this section, we are going to describe the background

about JVM, Java bytecode, and taint analysis.

A. JVM and Java Bytecode

Java Virtual Machine (JVM) [8] executes the programs writ-

ten by languages that can be compiled into Java bytecode [37].

1) Data Types and Meta-data: There are two general data
types in Java bytecode: the primitive and reference types.

Specifically, the primitive types include boolean, byte,
short, char, int, long, float and double. Each prim-
itive type corresponds to a wrapper type (essentially reference

type), i.e., Boolean, Byte, Short, Character, Inte-
ger, Long, Float, and Double, respectively. On the other
hand, the reference types contain the references/addresses of

objects, e.g., class, interface, and array.

The meta-data of Java bytecode refers to the information

of fields, methods, annotations, inheritance, etc., such as the

descriptor/signature of fields/methods and the number of meth-

ods and fields. Many techniques are proposed to inspect and

modify such bytecode meta-data such as Java reflection [38],

ASM [35], javaassit [39], etc. Note that when performing

code instrumentation, such bytecode-level meta-data can be

changed, causing the execution failure of the original program.

2) JVM Memory and Execution Model: A typical JVM
memory structure contains 5 components: method area, heap,

JVM stacks, pc registers, and native method stacks. The heap

memory and JVM stacks are used to store runtime variables.

JVM stacks contain stack frames with local and temporary

variables, while the heap stores all objects.

JVM constructs its execution model to execute bytecode

instructions. Typically, once a Java method is invoked/ter-

minated, its corresponding JVM stack frame would be

pushed/popped to/from the JVM stack. Specifically, a JVM

stack frame contains local variable array and operand stack for

storing the local/temporary variables. Upon the invocation of

a method, its corresponding stack frame is initialized and the

head of local variable array is initialized with the arguments

passed by the caller. Figure 1 shows an example of the exe-

cution model. When adding two local variables a and b of the
int type and storing the result into the local variable c, firstly
a and b should be loaded to the operand stack (instructions

this a b c
Local

Variables
Operand

Stack

a b

this a b c
Local

Variables
Operand

Stack

a+b

this a b c
Local

Variables
Operand

Stack

this a b a+b
Local

Variables
Operand

Stack

ILOAD 1
ILOAD 2

IADD

ISTORE 3

…

Stack Frame

JVM Stack

Stack Frame

Stack Frame

Fig. 1: JVM Execution Model

ILOAD 1 and ILOAD 2). Next, instruction IADD is executed
so that a and b are popped from the operand stack and the
result of their addition is pushed to the operand stack. Finally,

the result is stored into local variable array, where variable c
is located (instruction ISTORE 3).

B. Taint Analysis

1) Static Taint Analysis: Many of the static taint analysis
tools target Android applications. Lu et al. [31] studied a vul-

nerability type called component hijacking vulnerability found

in Android apps and proposed a static data flow analysis ap-

proach to automatically detect them. Arzt et al. [29] proposed

FlowDroid, a novel static taint analysis tool which precisely

models Android lifecycle with multidimensional sensitivity to

support both Android and generic Java applications. Sridharan

et al. [30] proposed F4F, which firstly generates a specification

for framework-related behaviors and then performs deeper

static taint analysis on the framework-based applications.

Livshits et al. [40] built a static taint analyzer based on

user-provided specification of vulnerabilities. Although it finds

many vulnerabilities in open-source applications and Java

libraries, its effectiveness relies on the completeness of the

given specification. Targeting vulnerable web applications, Jo-

vanovic et al. [41] proposed Pixy to perform flow-sensitive and

context-sensitive static analysis to detect cross-site scripting

vulnerabilities in PHP scripts. However, it suffers from around

50% false positive rate.

Although static taint analysis techniques are usually ad-

vanced in requiring no program execution and resulting in

high recall, they suffer from high false positive rates and large

analysis overhead. Moreover, since they are not designed to

cope with the techniques leading to undetermined program

behaviors, e.g., aspect-oriented programming [33] and depen-

dency injection [32] which are widely used in microservice

systems, they can be unfit for microservice systems.

2) Dynamic Taint Analysis: A group of dynamic taint
analysis techniques are built upon modifying the hardwares

or runtime systems. Suh et al. [27] implemented dynamic

taint analysis in the hardware level to achieve low space and

performance overhead via a new register and instructions to the

processor to track information flows. Enck et al. [18] imple-

mented a system-wide dynamic taint tracking tool TaintDroid
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on Android systems by integrating 4 granularities of taint prop-

agation in terms of variables, messages, methods, and files.

For the typical operation system threat that multiple threads

in a JVM process sharing the same security domain even with

illegal information flows, Azadmanesh et al. [42] proposed

SEJVM, a modified JVM to dynamically track information

flows and associate them with confidentiality polices. Lam et

al. [43] proposed GIFT, a compiler for C programs, which is

integrated with general dynamic information flow framework

and provides interfaces for user-defined tag initialization, prop-

agation, and processing. Although these techniques extend the

ability of hardware and runtime systems, their practicability

can be limited due to the strong coupling with specific runtime

systems. For example, TaintDroid has to make efforts on

supporting different Android system versions which can be

rather cost-inefficient.

Taint tracking logics have also been implemented by in-

strumenting executable binaries. Clause et al. [23] proposed

a general dynamic taint tracking framework and implemented

Dytan prototype tool to track taints in x86 binaries. Kemerlis et

al. [26] proposed Libdft to manage tags in a shadow memory

and track taints through binary instrumentation. Newsome et

al. [44] proposed TaintCheck to detect overwrite attacks, which

uses shadow memory with page-table-like structure for each

byte of memory to track data operation instructions and taint

propagation. Note that these techniques mainly target binary

programs and are not applicable to the stack-based memory

layout of JVMs since they will have to modify JVMs which is

not portable and may bring stability/cost issues in production

environment to hinder the execution of microservices.

As for dynamic taint analysis for JVM-based programs,

Bell et al. [17] proposed state-of-the-art Phosphor which

instruments JDKs and dynamically tracks taints by modifying

the bytecode of the executing programs. However, Phosphor

suffers from program meta-data pollution (details shown in

Section III).

III. MOTIVATION

Many microservice frameworks adopt bytecode inspec-

tions/modifications based techniques, e.g., the widely-used

Aspect-Oriented Programming (AOP) [33] and Dependency

Injection (DI) [32] techniques which use JDK reflection, ASM,

and other bytecode operation libraries to construct invocations

and dynamically create instances at runtime.

Existing static taint analysis techniques such as Flow-

Droid [29] hardly support generic microservice systems. For

example, when certain fields are left uninitialized for DI

at runtime, such techniques cannot figure out the concrete

type of the field, missing taints passed to it. Additionally,

such techniques are usually insufficiently precise either. For

example, static taint analysis tools cannot accurately predict

element states inside the container-type data structures such

as Array, Map and Collection and thus can hardly find out

whether their inclusive elements are tainted.

Existing dynamic taint analysis techniques modifying oper-

ating systems [18], [27] and virtual machines [42], [45], [46]

1 - public class Example {
2 + public class Example implements TaintedWithObjTag{
3 + public Taint PHOSPHOR_TAG; // Taint for Example object
4

5 static int val;
6 + public static Taint valPHOSPHOR_TAG; // Taint for field val
7

8 int doMath(int in) {
9 - return in + val;
10 + return this.doMath$$PHOSPHORTAGGED(Taint.emptyTaint(), in,
11 + Taint.emptyTaint(), new TaintedIntWithObjTag()).val;
12 }
13

14 + TaintedIntWithObjTag doMath$$PHOSPHORTAGGED(Taint var1, int in,
15 + Taint in$$PHOSPHORTAGGED, TaintedIntWithObjTag var4) {
16 + Taint ret$$PHOSPHORTAG =
17 + Taint.combineTags(in$$PHOSPHORTAGGED, valPHOSPHOR_TAG);
18 + var4.taint = ret$$PHOSPHORTAG;
19 + var4.val = in + val;
20 + return var4;
21 + }
22 }

Fig. 2: Phosphor Instrumentation Example

can also hardly support generic microservice systems under

various environments due to their unportability. As source

code can be often unavailable in deployment environments,

dynamic taint analysis techniques based on modifying the

source code [43], [47] can be quite impractical.

Although state-of-the-art Phosphor [17] attempts to modify

the bytecode of the applications, it also needs to modify the

program meta-data during bytecode instrumentation and can

hinder the meta-data inspection techniques widely adopted in

microservice systems such as AOP and DI, severely impacting

its applicability on microservice systems.

Figure 2 shows an example of Phosphor instrumenting

a class. First, the class is implementing a new interface

(Line 2). Next, the class instances’ taints are stored in an

inserted field in the class (Line 3) and the primitive field’s

taint is stored in the inserted field inside the same class

(Line 6). The method is further instrumented into Phosphored
method (Lines 14-21) whose parameter list is expanded to

allow taints to pass through method invocations and the

return type is changed to a customized container type to

contain both the taint and the returned value. Actually, we

have observed many cases where such meta-data modification

breaks the functionalities of microservice frameworks when

the frameworks check the number of implemented interfaces,

the signatures of fields/methods, the elements in stack traces,

etc. For example, in the processRaftService method of
a class [48] in a microservice framework, the number of the

interfaces implemented by the application class is asserted to

be 1, which causes the Phosphor-instrumented application to

crash because Phosphor makes the class implement an extra

interface TaintedWithObjTag.

Because of such a flaw in its design, Phosphor cannot

completely handle the meta-data inspection issues as such

issues can be endless regarding the diversity of various

microservice architectures and inspection approaches. For

example, by investigating its commit logs, we found that

Phosphor has been struggling for such issues since 2015 [49].

Figure 3 shows that in the commit “Bug fixes for re-
cent versions of Spring” [50], when Spring frame-
work uses an AnnotationMetadataReadingVisitor
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1 public class HidePhosphorFromASMCV extends ClassVisitor {
2 ...
3 boolean enabled;
4 @Override
5 public void visit(int version, int access, String name, String

signature, String superName, String[] interfaces) {
6 super.visit(version, access, name, signature, superName,

interfaces);
7 enabled = name.equals("org/springframework/core/type/classreading

/AnnotationMetadataReadingVisitor");
8 }
9 @Override
10 public MethodVisitor visitMethod(final int access, final String

name, final String descriptor, String signature, String[]
exceptions) {

11 if(enabled && name.equals("visitMethod")){
12 // Try to instrument AnnotationMetadataReadingVisitor to hide

generated phosphored methods.
13 }
14 return mv;
15 }
16 }

Fig. 3: Phosphor Meta-data Issue Patch Example

to check the methods’ annotations, Phosphor attempts to patch

the issues by instrumenting the visitor to hide its instrumented

methods from this specific visitor introduced by the new

version of Spring. Such issues can be widespread upon any

microservice framework, rendering the patching attempts from

Phosphor unbounded.

In contrast, our approach, while instrumenting the bytecode

to track the taint dynamically, keeps the class meta-data intact

in the mean time to support various microservice systems.

Instead of modifying the original classes to store and pass the

taints, MirrorTaint replicates the stack-based JVM execution
in its isolated mirrored space for non-intrusive dynamic taint
tracking.

Bytecode

Javaagent
JVM

Instrumented
Bytecode

JVM Stack

execute

Stack 
Frame

Stack 
Frame

Taint Stack
Frame

Taint Stack
Frame

Stack Frame 
Register

TaintHeap

Sources

Sinks

Sources

Sinks

…

MirrorTaint

Fig. 4: The Overall Workflow of MirrorTaint

IV. APPROACH

MirrorTaint essentially refers to that its taints can follow
the JVM operations on variables as their “mirrors”. As the

existing dynamic taint analysis techniques can inevitably incur

substantial modifications on bytecode meta-data, our insight

is to store taints in an isolated mirrored space and perform
propagation by replicating the operations on JVM heap and

stack to keep meta-data intact. More specifically, we attempt

to construct “mirrored” data structures similar as JVM heap

and stack called TaintHeap and TaintStackFrame, i.e., replicate

executions just as JVM heap and stack in terms of taints

instead of original variables. Additionally, in order to prevent

modifying the method parameters/return types to pass the

taints of variables, we introduce another data structure called

StackFrameRegister to temporarily store the taints for method

invocations. Such 3 components together enable MirrorTaint
to track the taints dynamically in a non-intrusive way.

Figure 4 shows the overall workflow of MirrorTaint. Firstly,
as a javaagent [36], our tool instruments the bytecode of the

original program at runtime. Secondly, it taints target variables

for tracking. Next, when invoking methods, TaintStackFrame

is initialized along with the JVM stack frame and interacts with

TaintHeap and StackFrameRegister to store and propagate the

taints. Finally, MirrorTaint outputs the sink results when the
invocation is terminated.

[0] [1] … [n] Ref.Local
Variables
Operand

Stack
…

Stack Frame

…

Stack Frame

JVM Stack

[0] [1] … [n]Mirrored 
Local Variables

Mirrored 
Operand Stack

…
Taint Stack Frame

…

JVM Heap

Taint Heap

< Object1, Taint1 >
< Object2, Taint2 >
< Object3, Taint3 >

…

Object1,  
< Field1, Taint1_1 >
< Field2, Taint1_2 >
< Field3, Taint1_3 >

Object Taint Map

Field Taint Map
Stack Frame 

Register Stack

…

…Arguments’
Taints

Returned 
Value’s Taints

…

Stack Frame Register

Stack Frame Register

…

Fig. 5: Data Structures for MirrorTaint

A. Taint Storage

1) Data Structures: Figure 5 presents the data structures
of TaintHeap, TaintStackFrame and StackFrameRegister. Cor-

responding to JVM heap, TaintHeap (marked green) is essen-

tially constructed by two global maps—ObjectTaintMap which

stores the objects and their corresponding taints as well as

FieldTaintMap which stores the field names and the primitive

type field taints of objects. Corresponding to the JVM stack,

TaintStackFrame (marked blue) contains the similar structure

as JVM stack frame. As variables in JVM stack frame are

mainly stored in local variable array and operand stack,

TaintStackFrame also constructs mirrored local variables and

mirrored operand stack to store their taints. In particular,

as each JVM stack frame corresponds to a TaintStackFrame

object, MirrorTaint uses ASM to increase the size of local

variable array and stores the reference of TaintStackFrame in

the expanded space (the TaintStackFrame object pointed by

the reference is stored in heap). Since such expanded space

does not override any existing data in local variable array

and is only accessed by MirrorTaint, it will not affect the
original program execution. Moreover, StackFrameRegisters

(marked purple) are stored in a global StackFrameRegister

stack in the heap. Corresponding to a JVM stack frame,

each StackFrameRegister contains a list of taints for method

arguments and another taint for method return value.

2) Storage Principles: MirrorTaint adopts the following
principles in terms of our proposed three data structures:

For TaintStackFrame: At runtime, variable v in the local
variable array or operand stack and its taint in mirrored local

variables or mirrored operand stack should be identically

indexed.
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Algorithm 1 Sourcing Variable
1: function SOURCE(V ariable)
2: if V ariable is a primitive then
3: Put a taint at the corresponding place in TaintStackFrame

for V ariable;
4: else if V ariable is an terminating type object then
5: Store the pair of V ariable and taint into TaintHeap;
6: else if V ariable is an non-terminating type object then
7: TAGOBJECT(V ariable, 1, ∅);
8:

9: function TAGOBJECT(V ariable, depth, searchedList)
10: if searchedList.contains(V ariable) then return
11: if depth > DEPTH THRESHOLD then return
12: searchedList.add(V ariable);
13: if V ariable is of terminating type then
14: Store a new taint along with V ariable into TaintHeap;
15: else if V ariable is of Collection type or object Array then
16: for element in V ariable do
17: TAGOBJECT(element, depth+1, searchedList);
18: else if V ariable is of Map type then
19: for element in V ariable.values() do
20: TAGOBJECT(element, depth+1, searchedList);
21: else if V ariable is an primitive Array then
22: for element in V ariable do
23: storePrimitiveFieldToTaintHeap(V ariable,index,taint);
24: else
25: for field in V ariable.fields do
26: if field is an object then
27: TAGOBJECT(field, depth+1, searchedList);
28: else if field is a primitive then
29: storePrimitiveFieldToTaintHeap(V ariable,

field.name, taint);

For StackFrameRegister:When taints are passed across JVM
stack frames, they are first transferred to StackFrameRegister

by a TaintStackFrame, and then fetched from the Stack-

FrameRegister by another TaintStackFrame.

For TaintHeap: Before propagating the taint of an object,
the taint must be fetched from TaintHeap first; if an object is

tainted after taint propagation, the object and taint should be

stored in TaintHeap as the key and value.
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Config Server

Read Configuration

RPC Request

RPC Response
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Publish MessageSubscribe
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Fig. 6: Source and Sink Types of Microservice Services

B. Source and Sink Automatically for Microservice Systems

Noticing that manually configuring arbitrary source/sink

methods for performing MirrorTaint can be impractical since
any source/sink configuration change demands re-deploying

MirrorTaint in production environments which can be rather
inconvenient, we propose a mechanism for automatic sourcing

and sinking. In particular, we model each service as a black

box, i.e., ignoring the details inside each service and only

focusing on the data flows in and out of it. Accordingly,

our automatic sourcing and sinking mechanism is designed

to source all the input data and sink all the output data of

a service to deploy MirrorTaint once and for all. Figure 6
presents the inputs/outputs which need to be sourced/sinked,

marked as blue/red arrows. The input data include the ar-

guments passed by an upstream service, the returned result

of a downstream RPC invocation, the data from storage

(databases and distributed caches), and the data from config

server and message server. On the other hand, the output data

include its returned value, the arguments of a downstream

RPC invocation, the data written to storage and the message

published to the message server.

We further design an algorithm to correctly source different

types of variables as presented in Algorithm 1. As “nested”

composition can frequently occur in objects (e.g., class A

contains a field of class B, class B contains a field of class C,

etc), for a fine-grained sourcing process, we recursively source

the objects and their inclusive objects under the termination

condition that either the variable is already sourced or the

recursion depth reaches a threshold (16 by default) or a field of

“terminating type”, including the primitive types, the wrapper

types of primitives, our specified terminating types (i.e., String,

StringBuilder, Date, BigDecimal, and Enum), and other user-

designated types, is reached. As presented in Algorithm 1,

we determine whether the variable is of primitive-type or

terminating-type first. If a variable to be sourced is a primitive,

its taint will be created in TaintStackFrame (Lines 2-3); if

the variable is an terminating-type object, its taint will be

created and stored into TaintHeap (Lines 4-5). Otherwise, as

the variable is a non-terminating-type object, it will be passed

to the recursive method TAGOBJECT to source (Line 7). In
method TAGOBJECT, the terminating conditions are firstly
checked (Lines 10-11, 13-14). At the same time, the variable,

if has not been sourced before, is added to the list storing the

variables already sourced (Line 12). After that, MirrorTaint
further determines whether the variable is of container-type

(i.e., Collection, Map, and Array). If so, its elements are

directly stored into the FieldTaintMap of TaintHeap (if they

are primitives) or passed to method TAGOBJECT recursively
(Lines 15-23). Otherwise, each field of the variable is tagged

by storing it to the TaintHeap (if it is primitive) or invoking

method TAGOBJECT (Lines 24-29).
The sinking algorithm is quite similar to Algorithm 1 except

that storing the taints to TaintHeap is replaced by fetching the

taints from TaintHeap or TaintStackFrame and outputting them

to the sink result. After the execution of Microservice APIs,

the logs of sink results will be dumped for further processing.

C. Taint Propagation

1) Interprocedural Taint Propagation: Figure 7 presents
our approach for interprocedural taint propagation. In Fig-

ure 7a, before invoking a method, according to the storage

principles, the mirrored operand stack of the caller should

contain the taints corresponding to the associated arguments,

which are stored in the operand stack of the caller. Then,

MirrorTaint firstly transfers those taints to the StackFrameReg-
ister (marked as red dashed arrow 1a). To prepare the method
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Fig. 7: Interprocedural Taint Propagation Workflow of MirrorTaint

invocation, JVM will create a JVM stack frame for the callee

and transfer the arguments from the operand stack of the caller

to the local variable array of the callee (marked as blue solid

arrow 1). Accordingly, MirrorTaint will transfer the taints of
the arguments from the StackFrameRegister to the mirrored

local variables of the callee.

Figure 7b demonstrates the process during and after method

invocation. When invoking a method, the callee executes the

instructions to operate the variables in local variable array and

operand stack (marked as blue solid arrow 2). Meanwhile,

MirrorTaint performs such operations on mirrored local vari-
ables and mirrored operand stack as well to align with JVM

and propagates taints on mirrored operand stack and mirrored

local variables (marked as red dashed arrow 2). Note that Mir-
rorTaint will query TaintHeap before object taint propagation
and store the resulting taints into TaintHeap after propagation

if taints are propagated to an object. Next, before the JVM

stack frame of the callee and TaintStackFrame are removed

upon the completion of the method invocation, JVM will pass

the returned value to the caller’s operand stack (marked as blue

solid arrow 3). Correspondingly, MirrorTaint passes the taint
of the returned value to the StackFrameRegister (marked as red

dashed arrow 3a). Finally, MirrorTaint fetches the taint of the
returned value from the StackFrameRegister and stores it to

the mirrored operand stack of the caller (marked as red dashed

arrow 3b), ensuring the mirrored operand stack can align with

the operand stack. Thus, taint tracking components are totally

separated from the original programs. Note that since the

references of the TaintStackFrames are stored in corresponding

JVM stack frames, once the references are removed together

with JVM stack frames after the method invocations, the

TaintStackFrame will be freed by the JVM garbage collector

because there is no reference pointing to it. Also, MirrorTaint
will remove the corresponding StackFrameRegisters from the

StackFrameRegister stack after method invocations.

2) Intraprocedural Taint Propagation: Intraprocedural taint
propagation refers to propagating the taints inside a method

during its execution. In order to update the TaintHeap and

TaintStackFrame at runtime, we overwrite all the taint-related

bytecode instructions for their executions upon our proposed

“mirrored” data structures. Besides the taint propagation of

instructions, MirrorTaint also allows the users to define their
own rules of taint propagation as “shortcuts” for specific meth-

ods. In particular, MirrorTaint includes a series of pre-defined
propagation rules (as presented in our repository [51]) for

commonly-used methods in JDK to avoid JDK instrumentation

(which may bring stability issues in production environment)

and bypass native methods.

D. Instruction Overwriting

202 Java bytecode instructions can be used in class files

since Java SE 8 [52]. MirrorTaint modifies 191 of them
(i.e., all the taint-related ones) to not only track taints in

its TaintHeap and TaintStackFrame, but also update mir-

rored local variables and mirrored operand stack at runtime

to align with the JVM local variable array and operand

stack. Specifically, to overwrite an instruction, MirrorTaint
uses ASM to append the original instruction with additional

instruction(s) handling mirrored space. For example, as the

instruction ALOAD loads a reference-type variable from the
local variable array to the operand stack, MirrorTaint will
append ALOAD with additional instructions to load the taint of
the target variable from mirrored local variables to mirrored

operand stack correspondingly. The whole list of instrumented

instructions can be found in our repository [51].

E. Cross-service Taint Tracking

Thanks to the automatic sourcing and sinking mechanism

described in Section IV-B, MirrorTaint is able to perform
cross-service taint tracking in a post-analysis manner. Firstly,

MirrorTaint performs taint analysis in each service indepen-
dently. As a result, every time a service is called (i.e., an API

in it is invoked), the relations between ALL its input and output
data during the invocation can be revealed upon the termina-

tion of the invocation. Note that each of such input/ouput data

is assigned with an identifier, e.g., [SERVICE]#[CLASS]-
#[METHOD]#[ARGUMENT_ID]#[FIELD]. Then, Mirror-
Taint leverages the microservice tracing service (e.g., Spring
Cloud Sleuth [53]) to dynamically track the invocation traces

(i.e., route of requests) for cross-service communications.

Every time when the taint tracking results of the previous step
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are dumped, the information of the current trace is recorded

as well. Next, MirrorTaint links the taint tracking results of
the caller/callee services by the following criteria: (1) their

taint tracking results are dumped in the same trace; (2) the

sink data identifier in the caller service matches the source

data identifier in the callee service. In this way, by matching

the output data (sinked) of one service and the input data

(sourced) of another service, MirrorTaint is able to show how
the taint can be propagated across different services in the

whole invocation trace.

V. EVALUATION

Our evaluation addresses the following research questions:

• RQ1 How doesMirrorTaint perform compared to other taint
analysis tools on open-source microservice systems in terms

of precision and recall?

• RQ2 How does MirrorTaint perform compared to Phosphor
in terms of overhead on open-source microservice systems?

• RQ3 How does MirrorTaint perform on commercial sys-
tems?

A. Benchmarks

Table I presents the benchmarks adopted for the evaluation,

including 8 open-source projects and 5 industrial projects. In

order to collect open-source microservice systems, we collect

the benchmarks from GitHub by the following process: Firstly

we search the projects with the keyword “microservice”, so

that the displayed projects are all related to microservice. Next,

since MirrorTaint aims at the applications executed on JVMs
and most of the microservice applications running on JVMs

are written in Java, we further filter the displayed results by the

Java language. Furthermore, we sort the search results by the

star numbers in order to select more influential projects. Then,

we manually inspect each result in the first 5 pages to select

the projects that are microservice applications instead of tools,

plugins, libraries or frameworks. Finally, we clone and execute

the projects following the instructions on their documentations.

We notice that only 8 applications meet our requirements

because 1) microservice systems are intrinsically hard to build

due to its complexity and distributed design and 2) outdated

third-party components like databases, message brokers, and

other services can cause problems in our environment. As a

result, we collect these 8 popular open-source microservice

applications as our open-source benchmarks.

Additionally, in order to investigate the effectiveness of

MirrorTaint in industry, we cooperated with a world-leading
FinTech company Ant Group, which provides services to more

than one billion users. In Ant Group, fund consignment is

one important business with more than 90 fund companies

as consignors. Specifically, the users purchase funds on the

platform provided by Ant Group which, as a broker, gener-

ates multiple standardized fund documents with the rigorous

format regulated by Ant Group’s residential country. Such

files contain the transaction data (including customers’ trading

records and acknowledgments of receipt) for each consignor

which are transferred to them through FTP at the end of each

TABLE I: Subjects
Open-source Microservice System Description LoC Star
ctripcorp/apollo Configuration management system 55473 27.7k

sqshq/piggymetrics Financial advisor app 3292 12.1k

zlt2000/microservices-platform Enterprise-class microservice application 17732 3.9k

microservices-demo/microservices-demo Online sock shop 3577 3.3k

febsteam/FEBS-Cloud Permission management system 9924 1.6k

techa03/goodsKill Online flash sale system 7340 1.4k

macrozheng/mall-swarm Shopping mall management system 65720 9.8k

GoogleLLP/SuperMarket Online supermarket app 2399 1.8k

Industry Microservice System Description LoC TPM
finfundtrade Fund transaction system 252516 2693302.4

finfundtaskcenter Fund clearing system 295259 200405.7

finfundprotocol Fund protocol system 84544 5182782.6

finfundmng Fund back-end management system 65953 182569.3

finvirtualta Fund virtual transfer agent system 57589 2026439.1

day. Subsequently, the transactions take effect for the users

by processing these documents. In order to protect the users’

financial security, it is vital for Ant Group to ensure the data

correctness of programs for generating fund documents since

a small error can spread to all the consignors easily.

In Ant Group, we deploy MirrorTaint on the pre-launch
environments of 5 core microservice applications involved

in generating fund documents such as transaction, protocol,

and clearing to explore the source-sink data relations. Table I

presents the statistics about our studied projects, including the

star number in GitHub for the open-source projects, the aver-

age Transaction Per Minute (TPM) for industrial microservice

systems, and their lines of code (LoC). Note that the detailed

studied services and APIs of open-source systems are shown

later in Table II, while those of industrial systems are omitted

in this paper for brevity due to their excessively large amount.

B. Implementation

We implementMirrorTaint in Java and utilize ASM [35] and
javaagent [36] to instrument JVM bytecode at runtime. With

over 20,000 lines of Java code, MirrorTaint has been care-
fully implemented to support both open-source and industrial

microservice systems so that the input/output of microservice

APIs are sourced/sinked as described in Section IV-B.

C. Experimental Setup

1) Environment: All of our experiments are performed on
an Ubuntu Server 20.04 LTS with Intel Xeon CPU E5-4610

and 320 GB memory. WhileMirrorTaint essentially can run on
different JVMs, i.e., is not specific to JVM implementations,

we adopt Hotspot JDK8u252-b09 as the JVM to perform our

evaluations in this paper due to page limit. We execute each

evaluation task for 20 times to obtain their average results.

2) Approaches for Comparison: We determine to adopt the
state-of-the-art dynamic taint analysis technique Phosphor [17]

and static taint analysis technique FlowDroid [29] for perfor-

mance comparison. Note that although there are other potential

options, they are selected because (1) they represent state-of-

the-art dynamic and static taint analysis, and (2) their source

code is publicly available for successful execution.

3) Metrics: Following prior work [17], [29], we adopt the
widely-used metrics for evaluating our studied approaches:

precision, recall, and time overhead. Since the output of taint

analysis is data relations (aka. source-sink pairs [54]–[56],

which are used to check data correctness, track suspicious

outer input, prevent data leaks, etc), we use the reported
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data relations to calculate precision and recall. Specifically,

precision refers to the fraction of correctly found data relations

among the all the relations found, while recall refers to the

fraction of correctly found data relations among all the ground-

truth relations. Time overhead refers to the extra execution

time when applying taint analysis tools to the benchmarks.

D. Result Analysis

1) RQ1: Precision and Recall on Open-source Benchmarks:
As stated in Section IV-B, the sink sites (where the data is

likely to be exposed to external environments) are tightly

associated with communications between microservice sys-

tem components. Since such communications can be time-

consuming [57], [58], we determine to use the 5 most time-

consuming APIs of each open-source project as the bench-

marks. For the API having its corresponding test(s), we

directly use such tests. Otherwise we write a test to invoke

the API to simulate user operations. Specifically, for a test

case T, the ground truth is defined by the pairs of the tainted

variable at the sink site and the corresponding sourced variable

which propagates the taint to it on the T’s execution path.

Therefore, we collected the test execution code coverage and

manually analyzed the data-flow along the exact test execution

path to find such ground truth relations and compare it with

the analysis results of MirrorTaint, Phosphor and FlowDroid.
Their precision and recall results are shown in the columns

4-7 in Table II where “F” and “M” respectively denote found
and missed data relations. Additionally, the numbers of false

positives are denoted with parentheses in the column “F”.
We can observe from the results that MirrorTaint has found

all the relations while incurring 9 false positives. We find

such false positives are caused by “over-taint” which means

some variables are unnecessarily tainted when a variable

is correctly tainted. For example, as the “String” class is

immutable in Java, when tainting a constant String variable,

other variables sharing the same constant String value will

be tainted as well. Moreover, because of the Java Integer

caching mechanism [59], where the Integer objects from -128

to 127 are cached internally and reused when creating a new

Integer, multiple Integer variables can be tainted together when

they share the same Integer objects. As a result, MirrorTaint
achieves 97.9% precision and 100.0% recall.

Note that FlowDroid and Phosphor actually report the

results of analysis at a coarser-grained statement granularity,

while MirrorTaint’s variable-granularity reports present not
only sink/source statements but also the specific values and

variables that are tainted at the sink statement. For example,

consider an object O sourced at source statement Ssr and

its taint found at sink statement Ssk. While FlowDroid and

Phosphor report Ssr and Ssk, MirrorTaint also reports the
presence of taint in the fields (including recursive ones) of O
at Ssk. For an illustration of the comparison of the results of

these tools, refer to an example provided in our repository [51].

Therefore, MirrorTaint and FlowDroid/Phosphor derive differ-
ent ground-truth results and we have to define the “M” column

differently (“M” in table) for FlowDroid and Phosphor, i.e.,

missed reports for sink-source statements instead of missed

variable relations. As the result shows, FlowDroid produces

empty results for most of the APIs. We find that FlowDroid

fails to support taint tracking in asynchronized invocations

and polymorphism scenarios. Notably, since the sink-source

statements found by FlowDroid are quite simple, FlowDroid

does not incur any false positives. Finally, while FlowDroid

results in 100% precision, it only enables 28.2% recall and

misses 51 records. On the other hand, Phosphor fails to

execute 7 out of the 8 benchmarks. Their failure messages

all imply meta-data-related issues which can hardly be fixed

once and for all. As for the benchmark which can be executed

with Phosphor, Phosphor finds all the sink-source statements,

leading to a precision of 100.0% and a recall of 9.9%.

In order to investigate the contributions made by the compo-

nents of MirrorTaint, we implement a variant of MirrorTaint
marked as MirrorTaintTH by disabling the TaintStackFrame

(MirrorTaint cannot work without TaintHeap). As Mirror-
TaintTH cannot store the taints of primitive types without

TaintStackFrame, it loses the relations when primitive wrapper

types are cast into primitive types. However, such cases are

not common. As shown in Table II, MirrorTaint without
TaintStackFrame can still achieve 98.1% precision and 97.9%

recall. Note that it enables higher precision than MirrorTaint
because it misses some data relations that are false positives

in MirrorTaint’s results. Therefore, we can infer that Mirror-
TaintTH is capable of exploring most relations.

In a nutshell, MirrorTaint is close in precision and superior
in recall compared to state-of-the-art Phosphor and FlowDroid.

2) RQ2: Overhead on Open-source Benchmarks: For the
overhead of MirrorTaint/Phosphor (static techniques like
FlowDroid do not dynamically execute the application, thus

incomparable), we collect the time/memory costs of the orig-

inal API executions, followed by the time/memory costs of

the same process while applying MirrorTaint’s and Phosphor’s
javaagents. As presented in the last two columns of Table II,

where TO/MO, TMirrorTaint/MMirrorTaint and TPhos/MPhos refer to

the runtime/memory costs of the original execution, Mirror-
Taint, and Phosphor respectively. The numbers in parentheses
indicate the overhead percentage. Specifically, for the only

microservice application (i.e., SockShop) Phosphor can run

on, MirrorTaint incurs 83.4% runtime overhead and 167.6%
memory overhead on average, while Phosphor incurs 138.6%

and 40.36%. Overall, MirrorTaint achieves an average 32.7%
runtime overhead and 127.9% memory overhead on all studied

APIs. Note that such memory overhead is normally acceptable

following prior work (e.g., DYTAN [23]).

Interestingly, although high memory overhead cases (e.g.,

greater than 500%) are observed from the memory overhead

results, such cases are mainly distributed in the benchmarks

with low/moderate memory usage (less than 1000kB) as shown

in Figure 8. On the benchmarks consuming more than 1000

kB, MirrorTaint’s memory overhead is much more stable,
i.e., having a relatively low percentage (around 100%), which

implies the scalability of MirrorTaint.
3) RQ3: MirrorTaint in Industry:
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TABLE II: Experimental results for MirrorTaint, MirrorTaintTH , FlowDroid, and Phosphor
Benchmark Service MethodName MirrorTaint MirrorTaintTH FlowDroid Phosphor Runtime Cost (ms) Memory Cost (kB)

F M F M F M F M TO TMirrorTaint TPhos MO MMirrorTaint MPhos

apollo apollo

findNamespace 30 0 28 2 2 0

�

56.9 75.1 (32.0%)

N/A

363.2 3782.5 (941.5%)

N/A

findActiveReleases 14 0 14 0 0 1 32.3 39.7 (22.9%) 1182.1 1990.9 (68.4%)

getInstancesCountByNamespace 13 0 13 0 0 1 27.1 32.1 (18.5%) 173.0 224.2 (29.6%)

findBranch 3 0 3 0 0 1 23.4 30.3 (29.5%) 822.3 2119.7 (157.8%)

getByRelease 12 0 12 0 0 2 20.6 22.0 (6.8%) 81.9 227.7 (178.0%)

piggymetrics

account-service
saveCurrentAccount 18 0 17 1 2 0

�

45.6 55.5 (21.7%)

N/A

274.2 2028.6 (639.8%)

N/A

createNewAccount 2 0 2 0 1 0 97.6 104.2 (6.8%) 308.5 1008.4 (226.9%)

auth-service
createUser 1 0 1 0 0 1 81.6 86.2 (5.6%) 152.1 415.0 (172.9%)

getUser 10 0 10 0 1 0 4.0 7.4 (85.0%) 9.7 19.1 (97.1%)

notification-service saveCurrentNotificationsSettings 11 (1) 0 11 (1) 0 2 0 2.7 5.9 (118.5%) 210.9 640.7 (203.8%)

ZLT-MP

UaaServer list 2 0 2 0 0 1

�

14.8 29.7 (100.7%)

N/A

422.5 936.6 (121.7%)

N/A
UserCenter

saveOrUpdate 17 (1) 0 17 (1) 0 0 1 5.1 7.6 (49.0%) 2587.8 3205.6 (23.9%)

findByMobile 17 0 17 0 0 1 20.1 23.3 (15.9%) 513.4 822.9 (60.3%)

findUsers 17 0 17 0 0 1 19.7 32.6 (65.5%) 717.5 1818.7 (153.5%)

getLoginAppUser 25 (1) 0 25 (1) 0 0 1 18.9 24.2 (28.0%) 689.7 1004.8 (45.7%)

SockShop

Orders newOrder 47 0 46 1 0 2 2 0 92.6 140.3 (51.5%) 209.0 (125.7%) 1705.6 3521.5 (106.5%) 2108.8 (23.6%)

Carts

get 7 0 7 0 0 1 1 0 3.7 8.0 (116.2%) 8.6 (132.4%) 188.2 989.7 (425.9%) 419.5 (122.9%)

delete 6 0 6 0 0 1 1 0 6.0 14.9 (148.3%) 16.1 (168.3%) 100.7 816.2 (710.4%) 317.6 (215.3%)

mergeCarts 5 0 5 0 0 1 1 0 15.2 37.8 (148.7%) 41.7 (174.3%) 287.9 1704.0 (491.9%) 504.7 (75.3%)

Shipping postShipping 4 0 4 0 2 0 2 0 8.5 30.1 (254.1%) 25.2 (196.5%) 590.4 655.6 (11.0%) 681.8 (15.5%)

FEBS-Cloud

auth addOauthCliendetails 7 0 7 0 0 1

�

76.6 102.7 (34.1%)

N/A

2947.6 49116.4 (1566.3%)

N/A

server-job jobList 9 (1) 0 9 (1) 0 0 1 4.8 8.4 (75.0%) 865.7 2612.2 (201.7%)

server-system

userList 16 0 16 0 0 1 7.7 13.1 (70.1%) 980.3 5145.9 (424.9%)

index 11 (3) 0 10 (2) 1 0 4 13.2 22.4 (69.7%) 2499.4 7000.6 (180.1%)

addUser 9 0 9 0 0 1 74.9 81.8 (9.2%) 2993.8 5460.0 (82.4%)

goodskill

goodsservice executeSeckill 7 0 7 0 0 3

�

62.2 111.6 (79.4%)

N/A

82714.4 121789.9 (47.2%)

N/A
goodsweb

doWithSychronized 4 0 1 3 1 3 330.6 385.1 (16.5%) 839.4 2043.2 (143.4%)

getDirectoryPermissionList 10 (2) 0 10 (2) 0 0 4 123.2 214.5 (74.1%) 11470.1 14156.8 (23.4%)

execute 10 0 10 0 2 2 78.5 84.8 (8.0%) 1122.1 1624.0 (44.7%)

roleLess 11 0 11 0 0 3 7.9 11.8 (49.4%) 711.4 1356.9 (90.7%)

mall-swarm

portal login 8 0 8 0 1 1

�

126.0 130.6 (3.7%)

N/A

4391.1 8723.0 (98.7%)

N/A
admn

register 13 0 13 0 0 2 60.6 75.6 (24.8%) 1315.0 4771.6 (262.9%)

login 10 0 10 0 1 2 132.9 162.9 (22.6%) 594.5 12181.9 (1949.2%)

updatePassword 8 0 8 0 0 1 61.8 83.6 (35.3%) 975.2 7175.1 (635.8%)

update 7 0 7 0 1 0 112.6 133.6 (18.7%) 3324.9 6477.4 (94.8%)

SuperMarket

cart
updateCart 4 0 4 0 1 1

�

18.3 26.3 (43.7%)

N/A

488.2 4542.1 (830.4%)

N/A

addCart 7 0 7 0 2 1 22.8 29.5 (29.4%) 527.5 3832.5 (626.6%)

order addOrder 11 0 11 0 0 2 96.4 173.5 (80.0%) 512.1 6283.3 (1127.0%)

product pageManage 9 0 8 1 0 2 9.0 17.2 (91.1%) 1024.3 7195.7 (602.5%)

user registUser 4 0 4 0 1 0 12.3 16.0 (30.1%) 2039.2 5331.3 (161.4%)

Sum / Average 436 (9) 0 427 (8) 9 20 51 7 0 50.7 67.3 (32.7%) N/A 3342.9 7618.8 (127.9%) N/A

Fig. 8: MirrorTaint’s Memory Overhead on Open-source
Benchmarks in terms of Memory Usage of APIs

TABLE III: MirrorTaint and the Data Checking System
on Covering Data Relations for 01/03 Fund Documents

Fund Document # Fields
# Actual

Relations

MirrorTaint
Developer-experience-based

Data Checking System

# Found

Relations

# Correct

Relations

# Missed

Relations

# Covered

Relations

# Missed

Relations

Relation

Coverage

01 Fund Doc A 17 22 22 22 0 16 6 72.7%

01 Fund Doc B 22 28 28 28 0 23 5 82.1%

01 Fund Doc C

01 Fund Doc D

01 Fund Doc E

01 Fund Doc F

17 23 23 23 0 17 6 73.9%

03 Fund Doc A 27 59 57 57 2 52 7 88.1%

03 Fund Doc B 13 17 17 17 0 15 2 88.2%

03 Fund Doc C

03 Fund Doc D

03 Fund Doc E

03 Fund Doc F

28 45 45 45 0 40 5 88.9%

Sum 124 194 192 192 2 163 31 84.0%

Case Study in Ant Group. To investigate the applicabil-
ity and effectiveness of MirrorTaint in industry, we apply
MirrorTaint to perform cross-service taint tracking to the

microservice systems for generating the fund documents in

Ant Group where 01 fund documents and 03 fund
documents are most hazardous as they are responsible for
account registration/closure and fund transactions (e.g., fund

purchase and redemption) respectively.
Ant Group has built a mature developer-experience-based

data checking system with a collection of checking rules

summarized by multiple teams. Such data checking system

is executed to check data correctness in the fund documents

before delivering the documents to fund companies. However,

such an approach is susceptible to missing potential checking

rules and even incorporates wrong rules due to incomplete

and unreliable human experience. For instance, taint analysis

can reveal the relationship between the actual amount of

paid money A, recorded in fund documents, and the product
price B stored in a database, and the discount C stored in

another database. A should equal B minus C, but devel-
opers/experts may not know this relationship and miss the

correctness check. In order to investigate the effectiveness of

the data checking system and MirrorTaint, we perform a case
study on 12 01/03 fund documents of 6 business tasks
(such as standard funds and exchange-traded funds) which are

generated by adopting the 5 systems shown in Table I.

Table III shows the study results. Because the fund doc-
uments of C, D, E, F are similar (i.e., the classes generating
them share the same super class), we put them together in one

table cell. In order to obtain the complete number of data rela-

tions (shown in the “# Actual Relations” column), we invited

3 experienced developers to check them carefully. As shown in

the table, MirrorTaint almost explores all the ground-truth data
relations, achieving 99.0% recall and 100.0% precision, while

the developer-experience-based data checking system misses

31 relations (which are all explored by MirrorTaint) and
only achieves 84.0% relation coverage. The 2 data relations

missed by MirrorTaint are the constant source tracking cases
(new BigDecimal(0) and new Money(0)), which are
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not included in the sourcing scope of MirrorTaint.
We found the data relations missed by the data checking

system can be divided into two categories: infrequent relation

omissions and source relation omissions. Figure 9a shows an

infrequent relation omission. It shows that the data in the

01 Fund Document A of field TransactionAccoun-
tID is passed from field trade_account of table fin-
fundprotocol.trade_account_info. Such a relation
only appears when there exists account closure application

records in the 01 Fund Document A, which is infrequent
and can be easily missed by human experience. Figure 9b

shows two source relations missed by the data checking

system. Although the data checking system has explored

the relation from field cert_no in table finfundproto-
cal.fund_sign_contract to field CertificateNo
in 01 Fund Document A, it still misses the other two
upstream relations which are explored by MirrorTaint (high-
lighted with red). All such results show thatMirrorTaint covers
much more data relations than developer experience, and is

more reliable in ensuring data correctness.

Case Study on Log4j2 Vulnerability. At the end of 2021,
a reported vulnerability (CVE-2021-44228 [12]) in a widely-

used Java logging library Log4j2 [13] caused global panic and

was described as the most serious vulnerability in decades

by mass media [60]–[62]. Specifically, as a logging library,

Log4j2 supports a feature called “lookup” to evaluate variables

or expressions embedded in logging text, e.g., “${date:MM-
dd-yyyy}” can be logged as runtime date by Log4j2. How-
ever, among many different kinds of lookup, the vulnerability

allows JNDI (Java Naming and Directory Interface) lookup

(e.g., “${jndi:ldap://xxx.xxx/xxx}”) to download
and execute malicious code from attackers’ servers.

In this paper, we also reproduce the vulnerability to inves-

tigate the potential of MirrorTaint in detecting such attacks.
Specifically, we reproduce the attack scenario in an API of

an earlier version of a microservice-based application in Ant

Group which suffers from this vulnerability as shown in Fig-

ure 10 (sensitive information is hidden for security reasons).

Dangers can occur when requesting this API with malicious

input such as ${jndi:ldap://xxx.xxx/xxx}. Since the
outer inputs are untrustworthy, we source the arguments of

the API which receives input data from users and sink the

argument of the Log4j2 sensitive lookup method. After
executing the test case,MirrorTaint has identified the lookup to
be unsafe as taint is found in the argument of lookup method.
Its complete output log can be found in our repository [51].

Additionally, we also try to apply FlowDroid and Phosphor on

this API. While Phosphor still fails on execution, FlowDroid

reports no taint as it fails to track the taint under polymorphism

scenarios (invoking interface methods).

VI. THREATS TO VALIDITY

The threats to external validity mainly lie in the limited

set of studied open-source microservice projects and the

generalizability of the approach. Therefore, we also performed

a case study applying MirrorTaint to 5 microservice systems

01 Fund Doc A finfundprotocal.trade_account_info

TransactionAccountID trade_account

(a) Missed Infrequent Relation

01 Fund Doc A finfundprotocal.fund_sign_contract

CertificateNo cert_no

finfundprotocal.trade_account_info

cert_nocert_no

obcif.iw_user

cert_nocert_no

(b) Missed Source Relations
Fig. 9: Missed Relations by Existing Data Checking System

1 @GetMapping("/")
2 public String index(@RequestHeader("Api-Version") String version) {
3 ...
4 logger.info("Received a request for version " + version);
5 ...
6 }

Fig. 10: One Microservice API Triggering Log4j2 CVE

in the 1-billion-user Ant Group as benchmarks. As for the

generalizability, it is worth noting that MirrorTaint can be
easily extended to any JVM-based program. For such a pur-

pose, one only needs to modify the automatic sourcing and

sinking mechanism for different microservice inputs/outputs

while retainning other MirrorTaint components. The threats
to internal validity mainly lie in the approach implementation

and ground-truth sink result production. Thus, we collaborated

with experienced industrial engineers to develop our tool to

ensure the implementation correctness. We also standardized

the ground-truth sink result production procedure and had 4

authors analyze it individually and discuss the differences until

reaching a consensus. The threats to construct validity mainly

lie in the metrics used. Thus, following prior work [17], [29],

we adopt widely-used metrics – precision/recall/overhead for

evaluating our studied approaches.

VII. CONCLUSION

In this paper, we propose a practical non-intrusive dynamic

taint tracking tool named MirrorTaint which automatically
tracks the taints of the input and output data in microservice

systems via a mirrored JVM space, and successfully avoids
the meta-data modification. We compare its precision and

recall on open-source benchmarks to state-of-the-art Phosphor

and FlowDroid. The result shows that MirrorTaint is more
compatible with microservice systems and achieves quite

close precision and much higher recall than Phosphor and

FlowDroid with only 32.7% average runtime overhead. Also,

we apply MirrorTaint to 5 important microservice systems
in the world-leading FinTech company Ant Group where the

result shows that MirrorTaint can find 99.0% data relations
with 100.0% precision. Additionally, the fact that MirrorTaint
detects the severe Log4j2 vulnerability indicates its capability

of detecting real-world vulnerabilities.
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