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Abstract. Many real-world applications are complex, involving 

many user “choices”, such as different functionalities, different ways 
to achieve a goal, etc. Conventional automated service composition 
models do not consider such potential choices, or simply consider 
them independently. Also, existing service composition models do 
not model exceptions and automated composition approaches require 
that after an exception, the original system goal should still be 
achieved. This may not be feasible for some exceptions. Thus, the 
service composition model should also consider alternate goals after 
exceptions occur. In this paper, we first define the concept of multi-
functionality and develop a holistic service composition model. Since 
most existing composition reasoning techniques can only handle a 
single functionality, we extend them and develop new algorithms for 
automated holistic service composition. A case study system is used 
to illustrate how our approach automatically generates a holistic 
workflow for a system with multiple functionalities. 

Keywords. Service-oriented computing, automated service 
composition, planning algorithms, multi-functionality systems. 

1 Introduction 
With the increasing provisioning of services on the Internet, 

service composition becomes more and more challenging. A 
lot of research works have investigated automated service 
composition to save cost and time for composition tasks. 
SHOP2 [1]  and OWLS-Xplan [2]  are widely used automated 
service composition tools. They are based on Hierarchical task 
network (HTN) techniques, which are considered as domain 
dependent solutions due to their need for knowledge about 
how to decompose tasks. Some other automated service 
composition works use search-based planning [3] [4], which 
may incur a higher time complexity, but do not require domain 
knowledge. The algorithms proposed in these works are in fact 
the same as a large class of planners such as GraphPlan [5], 
Fast Forward Planner [6], LPG [7], Fast Incremental planner 
[8], Model Based Planner [9], etc.  

Existing automated service composition literature have 
omitted some important issues. First, existing techniques 
consider a single system goal (functionality). However, 
modern systems are complex and the system may have to be 
specified by different functionalities. For example, consider a 
floor cleaning system. The system may offer carpeted floor 
cleaning, hardwood floor cleaning, tile floor cleaning, etc. All 
these floor cleaning services start by ordering service, 
transporting service which transports the people and 
equipment to the location where the service is to be performed, 
furniture moving service, and vacuuming service. After 
vacuuming, depending on the service ordered, different 
services are performed. It is possible to compose services for 

each function and obtain multiple workflows for the system. 
However, from the cleaning service example, we can see that 
there are quite a lot of overlapping services in the workflows 
for multiple functionalities. Thus, it is better to specify 
multiple functionalities for the overall system and compose 
one workflow with branches for achieving all the desired 
functionalities. This solution can reduce composition effort 
and generate a well-integrated workflow.  

The second issue is related to services with multiple effects 
and exceptions. The output of a service may be used as a 
control parameter to determine what the subsequent processes 
should be. Consider developing a retail store management 
workflow that is activated upon store closing. First, a patrol 
service goes across the store to ensure that there are no 
customers remaining in the store.  Then, a store closing service 
closes all doors and counters. Next, an inspection service 
provided by a robotic or manned cart is activated to navigate 
through the aisles to make inspections. This inspection service 
may give different outcomes, such as found misplaced items, 
found some products with low shelf stocks, or found spoiled 
or broken items. Depending on the outcome of this inspection 
service, different subsequent sub-workflows with different 
goals will be invoked to handle the problems.  

Similar to having multiple effects, a service may raise 
exceptions during execution. Exceptions can also result in 
different effects on the system. Generally, when a service is 
defined, the potential exceptions that may be raised by the 
service are also defined. When a service is selected and 
composed into a workflow, its exceptions should be taken care 
of to ensure that the system is holistic. 

Automated service composition techniques have been 
developed for handling multi-effect services and exceptions 
[10] [11], but some gaps still remain. One gap is that formal 
service definition models, such as OWL-S [12] and WSMO 
[13], do not have a specific mechanism for specifying the 
multiple effects or exceptions of a service. Without a proper 
specification model, the techniques for handling them becomes 
ad hoc. Another important gap is that when handling 
exceptions, all works require the system to achieve the same 
original goal. However, in many cases, after an exception is 
raised, the original goal can no longer be satisfied and a new 
goal should be specified. Thus, we need to have a model that 
supports the specifications of different goals for the exceptions. 

The third gap in automated service composition is the 
consideration of alternative paths toward a goal. Most existing 
planning and automated service composition techniques only 
derive one path from the initial condition to the goal state. But 
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in a holistic system, there may be multiple ways for achieving 
the system goals for a certain functionality. Sometimes these 
multiple ways should be presented to the users to provide 
flexible choices. For example, an online shopping system may 
be composed of browsing, add to cart, checkout, payment, and 
delivery services. It is desirable to offer different payment and 
delivery methods and leave the choices to the users. The 
service composition model and automated composition 
techniques should be able to construct a workflow with choices 
and identify the user interaction points for making the choices. 

In this paper, we consider the problem of automated holistic 
service composition. Here, “holistic” refers to the composition 
of a complete system. It is necessary to consider multiple 
functionalities of the system, multiple effects and exceptions 
of services, different goals for exceptions, and multiple 
methods as user choices for achieving the goals. We build a 
comprehensive model and integrated techniques to facilitate 
automatic service composition to obtain a holistic workflow 
for the desired system. Our contributions include: 

(1) To facilitate a formal treatment of the holistic 
composition problem, we extend the classical OWL-S service 
model with multi-effect and exception definitions. Also, we 
define a separate “system” model to facilitate the more precise 
specifications of the multi-functionality composition problems. 
Different from a composite service, a system can have a goal 
structure, including the goals for multiple functionalities, 
special goals for exceptions when the regular functionalities 
cannot be achieved, and the goals for choices of methods for 
achieving some of the functionalities. 

(2) We develop the automated service composition 
procedure for composing workflows for holistic systems. The 
procedure is designed to generate a workflow that can achieve 
multiple functionalities, provide choices of multiple methods 
for achieving some system functions, take care of multiple 
effects of the services, and handle exceptions to achieve the 
original or new goals as desired. 

(3) Based on the multi-functionality model, we extend 
existing planning techniques and develop a new planning 
algorithm, Multiple Functionality Planning (MFP), to achieve 
efficient multi-functionality planning.  We use a case study 
system to illustrate how our approach can generate a holistic 
workflow for a system with a multi-functionality specification. 

The rest of this paper is organized as follows. In Section 2, 
we introduce our extended model for automated holistic 
service composition. The composition reasoning algorithms 
for achieving holistic composition are presented in Section 3. 
Section 4 presents a case study to illustrate how to use our 
model for holistic service composition problem specification 
and how our composition reasoning algorithm is used to obtain 
a holistic workflow. Section 5 concludes the paper.  

2 A Holistic Service Composition Model 
In OWL-S, a service can be defined by its , 

where  and  are the input and output of the service,  is the 
precondition, when satisfied, the service can be executed, and 

 is the effect, which specifies the condition that will be 

satisfied after the execution of the service. However, there are 
some shortcomings in the OWL-S model as well as some other 
existing service composition models. We develop a holistic 
service and composition model which extends OWL-S to 
facilitate automated composition of holistic workflows. Our 
extensions are discussed in the following subsections. 

2.1 Holistic Service Specifications 
In a comprehensive service specification, it is necessary to 

consider that the service may cause different effects that 
should be specified separately to facilitate composition 
reasoning. Also, it is necessary to consider the specification of 
exceptions that the service may raise. 

First consider multiple effects that a service may cause. In 
fact, multiple effects can be specified in the OWL-S model by 
a predicate in “disjunctive normal form”. Consider the 
inspection service (InspectS) in the workflow given in the 
introduction for store management upon closing. The input to 
the service may be a “situation” that needs to be taken care of 
and the effects can further define the situation output by literals 
“item-misplaced”, “item-low-shelf-stock”, “item-spoiled”, 
“item-broken” and “no-situation”. An OWL-S specification 
for the effects of InspectS will be 

   “item-misplaced”  “item-low-shelf-stock” 
       “item-spoiled”  “item-broken” 
As can be seen from the example, the effect specified by the 

disjunctive predicate can be used for constructing conditional 
branches in the workflow. For “item-misplaced”, services for 
determining the locations of the items and for moving items 
back to their locations should be composed to achieve the 
function of “no-misplaced-items”. For “item-low-shelf-stock”, 
subsequent sub-workflow will check whether the items have 
sufficient inventory in the store, and if so, restock the shelves 
from the inventory; otherwise, order the items to replenish the 
inventory and the shelves. Similar handling can be made for 
situations “item-spoiled” and “item-broken”. 

Handling multiple effects of a service have been widely 
considered in automated service composition literature [4] [14] 
[15]. The technique is to create multiple “virtual services” to 
represent one concrete service during composition reasoning, 
one for each disjunctive clause in the effect predicate. For the 
example above, we need to create four virtual services for 
InspectS. InspectS-1 has effect “item-misplaced”, InspectS-2 
has effect “item-low-shelf-stock”, and so on. All 4 virtual 
services have the same input, pre-condition, and output 
specifications as the original service, but with different effects. 

To facilitate virtual service creation when converting a 
service composition problem into a planning problem, it is 
better to specify the disjunctive effects separately so that there 
is no need to perform low level effect predicate analysis every 
time the service is considered as a candidate service for 
composing a system. Thus, we modify the OWL-S service 
model to support the specification of multiple effects.  

Next, we consider exceptions of a service. When a service 
raises an exception, the functionality of the service is not 
fulfilled since the execution is disrupted. We will discuss 
exception specifications later. Here we only consider that each 
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service can be associated to a set of exceptions and we extend 
the OWL-S service model to support such specifications. 

 
Figure 1. The extended service model. 

A partial view of the extended service model for holistic 
service specification is given in Figure 1. Note that since the 
extensions are all under the service profile, the figure only 
shows the Profile class for the service.  

The service profile defined in OWL-S is extended. It still 
has Input, Output, and Pre-condition classes. The extended 
model has a class “Effect Set”, which specifies the set of effect 
clauses for the service. Effects can be instantiated by one or 
more “Effect” classes, where each Effect is the same as the 
original Effect specification in OWL-S. Note that even though 
a service may have multiple effects, there is only a single 
output specification (output has to be a unified one in order to 
allow proper use of the service). Multiple effects specify the 
properties of the output parameters or the system state in 
different situations. The extended model also has an 
“Exception Set” class under the service profile, which can be 
instantiated by one or more “Exception” classes. 

To facilitate the discussion of the reasoning algorithm for 
service composition, we also define the notations to represent 
the holistic service model. 

Definition 1 A web service  is defined by a tuple 
< > where 

 is the set of input parameters for ;  
 is the set of output parameters for ;  
 is the preconditions of ; 

 is the set of effects after the execution of  and  
is the -th effect clause in .  can be defined by 
positive effects  and negative effects . Negative 
effects indicate the state facts that are no longer true after 
executing . If  is the system state before executing service 

, then the resulting state after executing  will be (
.  

 specifies the set of exceptions  may raise and  
is the -th exception defined in .  

2.2 Exception Specifications 
Exception is a very important concept in software and 

systems. Some widely used service models, such as OWL-S 
and WSMO, do not support the specifications of exceptions. 
Some web service models consider exceptions, but they do not 
offer the formal specification mechanism for them [3] [15]. 
Here we provide a model for exception specification which can 
be integrated with the service and system specification models 
to facilitate holistic service composition.  

Similar to the formalism of IOPE in OWL-S, we need to 

have the “effect” specification for exceptions in order to enable 
composition reasoning. Such effect needs to be considered 
carefully. Some segments of a service may have been executed 
when an exception is raised and, hence, it looks as though the 
effect of an exception depends on at which point of execution 
it is raised. However, such concerns are internal to the service. 
We assume that each service can handle their internal 
exceptions and the only visible exceptions are the external 
ones. The execution effects that need to be cleaned up are taken 
care of by the internal exception handlers. The external 
exceptions are those that require external workflows to handle 
and their effects can be defined by externally known literals. 

Another consideration about an exception is the goal for 
exception handling. For most exceptions, it is desirable to still 
achieve one of the original system functionalities. But in some 
cases, the original system goals (of one of the functionalities) 
can no longer be satisfied after an exception. Thus, a different 
goal should be specified for the exception. For example, 
consider a tour booking site which helps users book tickets for 
various types of tourism trips. One cruise workflow has one 
goal predicate “cruise trip booked”. It helps users book airline 
tickets, cruise tickets, hotels, rental cars, etc., to obtain 
complete trip bookings. At the checkout, the payment service 
may raise an external exception “payment failure” after 
multiple internal attempts to get different credit cards and 
different payment methods. This exception has to be external 
because it cannot be handled by the payment service. Also, the 
original system functionality of trip booking can no longer be 
satisfied, and a new functionality “cleanup” should be 
associated to this exception and causes the system to cancel all 
the reservations. Thus, for some exceptions, the composition 
model should support the specification of new functionalities 
that the system should reach after the exceptions. 

Based on the exception specification requirements, we 
define the exception ontology in Figure 2. 

 
Figure 2. The exception model. 

An exception has a Name, a Description, and a Profile. The 
Profile includes the “Effect Set” class which can have one or 
more “Effect” specifications and the “Functionality Set” class, 
which links to one or more functionalities of the system. 

Based on the model given in Figure 2, we also define the 
notations for relevant exception specifications. 

Definition 2 An exception  can be defined by a tuple 
< > where  is the set of functionalities 
in which one of them should be achieved after exception  is 
raised.  is the -th functionality in . 

 is the set of effects that hold when exception  is 
raised by service , and  is the -th effect clause in 

. Note that even though we assume that  does 
not depend on internal states of , but it is still service 
dependent.  On the other hand,  includes the system 
level goals (goals for regular functionalities and special goals 
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for exceptions) that should be achieved after  is raised, no 
matter which service raises it.  

2.3 Holistic System Specifications 

 
Figure 3. The System model. 

In OWL-S, a composite service to be composed can have its 
IOPE specifications, which are used as the rules to govern the 
composition. Such model can facilitate the specification of 
value-added services and hierarchical composition. WSMO 
treats service and composition separately. The composite 
service to be composed is referred to as a service, while the 
available concrete services are referred to as Web services. In 
many applications, service composition is for rapidly 
developing and deploying a comprehensive system, not just a 
value-added service. Though a composite service and a 
comprehensive system have similarities, there are differences 
in their specifications. Thus, we define a separate “System” 
model (like the service model in WSMO) to support a clear 
definition of a holistic composition problem. The ontology for 
the “System” model is given in Figure 3. 

We consider the “System” model in two views, the 
composition domain view and the composition problem view. 
The composition domain view of the system provides 
information that are common to all composition problems in 
the domain. It has the “Service set” (similar to the Web service 
class in WSMO) and the “State Ontology” (similar to the 
ontology class in WSMO) which defines the terms used for 
system state definitions. The “Service set” is the set of all 
services that can be considered for composition. All the terms 
in the IOPE specifications for the services in the “Service set” 
are defined in the “State Ontology”. Mediators in WSMO are 
also an important class in service composition, but they are 
beyond the scope of this paper and are omitted in our model. 

The composition problem view of the system specifies the 
system to be composed, including a “Description” class, the 
“Initial Condition set” class, the “System Exception set” class, 
the “Regular Functionality set” class, and the “Exception Goal 
set” class. The “Regular Functionality set” includes one or 
more “Functionality” of the system and each “Functionality” 
consists of one or more “Goal” subclasses. The “Exception 
Goal set” also consists of one or more “Goal” subclasses. The 
“Workflow” class specifies the workflow that, starting from 

the initial conditions, can achieve the functionalities of the 
system. Before composition, the Workflow is null. After 
composition, the workflow is grounded to a concrete one. Next, 
we define the composition domain in the System model. 

Definition 3 The composition domain can be defined as a 
tuple < >, where  is the set of all the services 
available for compositions in the domain and  is the -th 
service in .  is the set of terms (literals, etc.) used by the 
services and the composition problems to define the relevant 
states, such as those used in preconditions, effects, exceptions, 
input and output data types, etc., of services.  

In Definition 4, we define the tuple that specifies the 
relevant attributes for a specific composition problem in the 
System model under a composition domain.  

Definition 4 A target system to be composed under the 
composition domain < > can be defined by a tuple 
< >, where  is the initial condition set 
for the target system.  is the set of regular functionalities for 
the target system and , where  is the 
number of functionalities to be achieved and  is the -th 
functionality in .  can be considered as a goal state, It 
could have conjunctive and/or disjunctive goal clauses. Since 
modern planners can plan for any form of the goal state, we 
consider  as one integrated goal. 

 is the set of exceptions that may be raised in the system 
and  is the -th exception in . Note that  is defined 
after the regular composition (without exception) is defined. 

 is the set of goals for the exceptions that are not in  
and  is the -th goal in .  is supposed to be 
composition independent, but may be defined or validated 
after regular composition definition to ensure that there are no 
missing goals under exceptions. 

 is the set of workflows defined during the composition 
process for the target system.        

Note that the literals used in the definition of 
 are defined in .  

In this paper, our discussion only involves a single 
composition problem under one composition domain. Thus, 
we do not specify which composition domain and which target 
system the tuples are for. 

There are a few semantics in the “System” model that need 
to be clarified and also compared with the “Service” model. 
First, consider the initial conditions  of the system, which 
have a quite different semantics from the pre-conditions of a 
service in the holistic composition model. Note that the 
workflow being constructed should be able to handle all 
possible initial conditions. Essentially, the initial conditions of 
the system can be viewed as the effects of a special service, 
which takes “True” as the precondition and generates effects 
equivalent to the initial conditions of the system. Thus, similar 
to the effects of a service, the initial conditions should be 
represented in a disjunctive normal form. Each conjunctive 
clause in the predicate becomes an “Initial Condition” in .  

Now consider the regular system functionalities. The 
“Functionality set” includes one or more functionalities to be 
achieved by the system. These functionalities can be achieved 
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separately by separate branches in the system workflow, but 
each of them has to be achieved. This is different from the 
“Effect set” specification in the service model. Consider the set 
of system functionalities . Also, consider 
the effect set of a service , , 
where  is the number of effects  has.  is expressed as: 

 
But the goals for the functionalities of the system do not have 
the same semantics as service effects. If we consider the 
multiple functionalities as , then it will lead to 
the derivation of a workflow that only satisfies one of the 
system functionalities. Neither can the system functionalities 
be specified as  because it is not the intention 
that the multiple system goals are satisfied at the same time 
(and it may not be possible to satisfy these multiple 
functionalities at the same time). A closer semantics for the 
system functionalities may be described as 

  If < > then  
  elsif < > then  
  … 
  else 

where each < > is independent and can be any condition 
to be derived in the holistic workflow or to be set as a user 
selection point.  

Also, each individual effects in the effect set of a service has 
to be a conjunctive clause while an integrated goal for a regular 
functionality or a special goal for some exceptions can be any 
logic predicates. 

We also need to clarify the exception scopes in the system 
model. Some exceptions are specific to individual services, 
some exceptions are common to many services, and yet some 
exceptions may be raised by the system itself. For example, a 
“timeout” exception may be raised by all services with 
interactions to users. An “interrupted” exception may be raised 
by the system to stop the current workflow in execution. This 
can happen, for example, when the system offers a cancel 
button which can be clicked by the user at any time, resulting 
in the termination of the current service in execution. An 
exception that is common to multiple services should have a 
single specification and should be associated to the individual 
services that have this exception. This can avoid duplicated 
derivations of the exception handling workflows. System 
exceptions should be associated to the system, not to services. 

As discussed earlier, each exception should be associated to 
some goals. The goals of an exception, namely, = 
{ }, should satisfy the following constraints: 

For all , , and the semantics for 
 should be . Specifically, each 

goal in the goal set of  can be from the goals for regular 
functionalities of the system or the special goals for exceptions. 
The exception handling workflow for handling exception  
just needs to achieve one goal predicate in ’s goal set. 

2.4 Handling Multiple Methods 
The goal for automated service composition is to derive a 

“system”, not just a “plan”. Thus, it should consider not only 
multiple functionalities of the system, but also alternative ways 

for achieving some of the functionalities. One way to derive a 
system workflow to cover alternative methods for achieving a 
functionality is to let the composition reasoning algorithm find 
all possible paths for achieving a functionality and incorporate 
them in the workflow. However, not all alternative paths are 
desirable choices to be included in the system workflow and it 
is difficult to automatically determine which choices should be 
incorporated. Thus, we consider to incorporate multiple 
method choices as multiple functionalities at the system design 
time and use multi-functionality composition reasoning to 
derive the alternative paths in the workflow.  

Generally, one goal predicate is specified for a system 
functionality. For the choices of different methods for 
achieving a system functionality, we add additional method-
related predicates in its goal predicate. For the purchasing 
process example, the functionality goal predicate is  

“items delivered”  “payment succeed”  
The alternative delivery methods can be specified by 

method-related predicates such as “home delivery”, “store 
pickup”, etc. Thus, the new functionality set  of the 
purchasing process would include  = “home delivery”  
“items delivered”  “payment succeed” and  = “store 
pickup”  “items delivered”  “payment succeed”, etc. 

Generally, the IOPE definitions of many services have 
already incorporated the method-related predicates to support 
flexible workflow derivations. Thus, the above method can 
derive a workflow with multiple branches for using multiple 
methods to achieve the same functionality. When we just want 
to achieve a functionality via any method, then we only need 
to specify the goal predicate for the functionality. For the 
purchase process example, if we specify the goal as “items 
delivered”, then only one of the methods will be selected by 
the reasoning process. If we need to achieve a functionality 
with method choices, then the goal specification for the 
functionality should include both the method-related goal 
predicate and the functionality-related goal predicate.  

3 Reasoning for Holistic Composition 
Based on the service composition models defined in Section 

2, we leverage traditional planning approach and develop new 
composition reasoning algorithms to achieve automated 
holistic service composition. The service composition problem 
we discuss in this Section is < > under the 
domain < >. In section 3.1, we focus on building the 
basic workflow for the system with multiple goals. In section 
3.2, we provide a systematic approach to handle exceptions 
(external ones). In section 3.3, we discuss the planning 
algorithm for the multiple functionality service composition 
problem. 

3.1 Basic Multi-Functionality Reasoning 
First, we discuss the algorithm for construction a workflow 

 for the basic multi-functionality problem. In , 
multiple functionalities will be reached with branching paths, 
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but it does not consider exceptions. The steps of the algorithm 
are sketched as follows. 

1. The first step is to identify the functionality set  for the 
system to be composed. The goal predicate for each desired 
functionality is added to . For each functionality  in , if 
it is desirable to consider alternative methods to achieve , 
then combine the method-related predicates with  as new 
goal predicates, i.e., add , for all , to , and remove 
the original  from , where  is the predicate for the  -
th alternative method for achieving functionality .  

2. Consider the initial condition . If  has a single clause, 
then it will be used as the initial state. If  has multiple 
disjunctive clauses, then construct an “initial service”  and 
add  into the service set . Service  should have its 
precondition  set to predicate “Initial” and its effects 

 is set to .  is then set to “Initial”. Predicate “Initial” 
should be unique so that it does not duplicate with the pre-
conditions or effects of any service  in . The purpose of 
doing so is to let the multi-conditional initial state to be 
processed uniformly as a multi-effect service, instead of 
having to have a separate special processing method for it. 

3. For each service  in , if  has multiple effects, 
decompose it into virtual services ,  , … and replace 

 in  by its virtual services ,  , …. 
4. Formulate the planning problem as . 

Here  is the updated set of services (updated in Steps 2 and 
3).  is the initial state, which could be the predicate “Initial”. 

 is constructed in Step 1.  
5. Use DMFP (discussed in 3.3) to reason for  and obtain 

the multiple-functionality plan, which is a weak plan in the 
sense that some conditional branches have not been considered 
yet. Convert the plan into the first workflow draft . During 
plan to workflow conversion, we need to consider the branches 
due to the multiple functionalities . These 
functionalities are multiple choices offered to the users and a 
user interface should be constructed to allow users to make the 
choices. Let  denote the list of  
services used in . Let  be the services 
after which there are multiple branches for reaching some of 
the functionalities in  and assume that  is closest to the 
beginning of the workflow among , for all . We create a 
user interface service  with output  for 
choosing among  and insert  right after 

, i.e., the first branching point. Also, after each , we 
insert a conditional node in  to test  to see whether 
it is equal to the corresponding functionality of the branch. 

6. This step handles the conditional branches needed due to 
multiple effects of some services in , where  is initialized 
to 1 and increased in each round.  

6a. Let  denote the bag of  
services used in  (not ordered). For each  , if  is 
a virtual service, and  is constructed from a concrete service 

, and  has virtual services ,  , …, then add ,  
, … into , where  is the bag of virtual services that has 

not been processed. Since each  has already been 

processed (i.e., a subworkflow has been constructed for  to 
reach the goal or to reach a state in ), remove from .  

6b. For each virtual service  in  (where  is a 
virtual service of ), formulate the planning problem  

 
to obtain the sub-workflow  for ’s conditional 
branch to reach the goal.  and  are defined earlier. Here 
we derive  for all . 

Let  denote the state before  in  is executed. 
From the initial state, there may be one or more paths in  
that reach  and let , denote these paths. Let 

 be the sequence of  services 
forming path , , for all . Also, let  
denote the state before  is executed. For each , we 
have  and 

, . Then, , for all , can be 
derived. Subsequently, we can obtain the state before  is 
executed, i.e., .  

Let  denote the effect state after executing  in  
and . Finally, we 
have . Next,  or  can be used to 
reason for  to obtain the sub-workflow .  

6.c. After 6b, all virtual services in  
have been processed, i.e., if  is a virtual service of , then 
the sub-workflows  for all ’s virtual services , for 
all , to reach the goals have been constructed. Now merge 

 into  by:  
For each  in  and  is a virtual service of :  
(i) Replace  by , and  
(ii) Add the following conditional branch 
            if  =  then . 
      after  for each virtual service  of . 

Let the new workflow constructed from this step be .  
7. Note that all virtual services in  have been processed. 

But there still may be unprocessed virtual services in  if 
there are virtual services in . Thus, we have to continue 
the virtual service processing. Now set  to +1 and go back to 
Step 6a till the new  from  is empty.  

8. Let  denote the basic plan constructed after exiting 
the loop above. Also,  is the set of all the services in . 
It is possible that a service in  is used more than once. In this 
case, we consider them as different services in  because 
they will be treated differently when handling their exceptions. 

3.2 Process Exceptions 
From the workflow  constructed up to now, services 

that have the potential of raising external exceptions can be 
identified based on their exception set definitions ( ). Also, 
at design time, the sets of system exceptions  and the set 
of exception goals  should have been defined. At this 
stage, manual intervention can be introduced if desirable to 
ensure that the system exceptions in  have been properly 
identified. Also, with the identified exceptions, now the 
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designer can check whether the corresponding exception goal 
set  is complete and if not, complete it. Moreover, manual 
decisions on exception goals can be made for some exceptions 
as desired because some exceptions may have their known 
goal sets. For each exception , if its goals are known, then 
define the goal set  for them, where 

. Otherwise, by default, the goal set for  is .  
We now perform composition reasoning for each exception 

 raised by service  with effect . We construct 
the sub-workflow  and merge it into  as follow. 

1. Formulate the planning problem  
 

to obtain the workflow  to handle exception , where 
 is given in the specification of  and  can be 

determined in a similar way as the initial state derivation for 
conditional branches discussed in Section 3.1 and  

. 
2. Use a traditional planner to reason for  and obtain the 

sub-workflow .  
3. Apply Step 6 in Section 3.1 repeatedly to handle all the 

conditional branches for multi-effect services in  and 
obtain the final sub-workflow . 

4. Merge , for all  , into  for handling .  
The above procedure should be performed for all exceptions 

of all services in the workflow . Let  denote the final 
workflow constructed that can handle all the exceptions 
defined in  for all services . 

Next, we perform composition reasoning for each system 
exception in . System exceptions are defined globally and 
may be raised at any time during workflow execution. Thus, 
we need to consider the state when it is raised in order to 
support proper exception handling. Also, generally each 
system exception  would have a clearly defined goal set 

. Similar to the exceptions for the 
services, we can construct the sub-workflow  for each 
exception  and merge it into . Since the 
construction of , , is similar to the steps defined 
above, we do not repeat all the steps, but only discuss the step 
that is different, namely, Step 1, below.  

1. Formulate the planning problem  

 
Assume that  is in execution or to be invoked when 

exception  is raised. Let  denote the state before  is 
executed and , for all , can be derived the same way as 
discussed in 6b of Section 3.1. We need to ensure that  
is reached no matter when  is raised so we have 

 (here we assume that if  is in execution and gets 
interrupted by ,  will clean itself up). 

Let  denote the workflow derived based on  and 
after processing all the exceptions in . In other words, 

 is the workflow that can handle all the exceptions. 

3.3 The MFP Algorithm 
We have constructed the multi-functionality composition 

problem and now we discuss how to efficiently derive the 
multi-functionality plan. In traditional planners, only one goal 
predicate is considered (the goal can have multiple 
propositions composed conjunctively and/or disjunctively). 
From the initial state, applicable actions are applied to generate 
a new state and form a plan graph. The expansion continues 
till the goal can be satisfied by the current state. Then, a 
backward search is performed to find the sequence of actions 
that can actually lead to the goal state.  

If the multi-functional goals (MFG) is one predicate, then it 
can be treated the same as the classical planning problem. For 
example, if MFG is in fact composed disjunctively, then, 
during graph expansion, we simply check whether the goal 
predicate for one of the functionalities is satisfied. If MFG is 
composed conjunctively, then we check whether the current 
state can satisfy all the goals of all the functionalities. However, 
in the correct way, we can have one functionality of MFG 
satisfied in one state and another functionality satisfied by 
another state. MFP is designed based on this principle. 

In MFP, the goals of multiple functionalities is tentatively 
considered in disjunctive form. Thus, during graph expansion, 
the planner breaks as long as one of the functionalities is 
satisfied. After the first break, backward search is performed 
from the goal state till it reaches the initial state. Now the first 
plan is formed. Next, we remove the already achieved 
functionality from MFG and continue graph expansion from 
the last state (where the planner breaks) till one of the 
remaining functionalities in MFG is satisfied. After the new 
break, backward search is again performed, but from the new 
goal state, till it reaches any state in the existing plan or the 
initial state. If it reaches the initial state, then the final 
workflow start the branching from the initial state. If it reaches 
a state in the existing plan, then the workflow branches at that 
point. Graph expansion and backward search continues till all 
the functionalities are satisfied. 

4 An Example Case  

 
Figure 4. Goal hierarchy for the online cleaning service. 

Consider the case about the online cleaning system. The 
system provides different functionalities, like “carpet floor 
cleaning”, “tile floor cleaning” and “hardwood floor cleaning”. 
For each cleaning function, there are two ways to achieve the 
goal, book the profession cleaning service or rent the 
equipment and do self-cleaning. These two ways should be 
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presented as user choices. Thus, as discussed in Step 1 of 
Section 3.1, we add two additional predicates, “self cleaning” 
and “professional cleaning” to the goal. By doing so, our 
approach can treat them as multiple functionalities and plan 
paths for them. If the user chooses to rent the equipment, she 
may pick up the equipment by herself or wait for the equipment 
to be delivered.  

The overall goal set  for the case study is shown in 
Figure 4. Some sample goals in  are given as follows. 

=“self cleaning”  “equipment delivery” “deposit 
refund”  “carpet cleaned” 

=“professional cleaning”  “carpet cleaned” 
=“self cleaning”  “equipment return” “deposit 

refund”  “tile cleaned” 

 
Figure 5.  Automatically generated workflow for the online 

cleaning services case study. 

We use MFP to derive the multi-functionality workflow as 
shown in Figure 5 (some sub-workflows are omitted). Note 
that the automated workflow generation based on the 
algorithm given in Section 3.1 will not include the choices 
(purple diamonds) which are added after further processing 
steps. Also, exception handling processes are added to the 
workflow after applying the algorithm discussed in Section 3.2. 

5 Conclusion 
We have presented a model for formally specifying systems 

requiring holistic service composition procedures and have 
developed an efficient reasoning algorithm for obtaining a 

holistic workflow for such applications. Our model extends 
existing models to enable more comprehensive composition 
requirement specifications, considering systems with multiple 
functionalities, offering users more choices, and handling 
exceptions. The reasoning procedure augments existing 
planning methods to address the need for holistic composition. 
A case study is presented to show the resulting workflows 
generated from our reasoning procedures. 

Future research directions include: (1) Incorporate methods 
to enable the system to continuously evolve by autonomously 
identifying new functionality requirements and compose 
services rapidly for them. (2) Support real time composition of 
services to handle newly emerging unexpected operational 
conditions. (3) Investigate planning algorithms to further 
enhance the composition procedure to meet optimality goals of 
the multi-functionality systems.  
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