
Automated Holistic Service Composition:
Modeling and Composition Reasoning Techniques

Wei Zhu, Farokh Bastani, I-Ling Yen

University of Texas at Dallas
{wxz094120, bastani, ilyen}@utdallas.edu

Jicheng Fu
University of Central Oklahoma

jfu@uco.edu

Yuqun Zhang
SUSTech, China

zhangyq@sustc.edu.cn

Abstract. Many real-world applications are complex, involving

many user “choices”, such as different functionalities, different ways
to achieve a goal, etc. Conventional automated service composition
models do not consider such potential choices, or simply consider
them independently. Also, existing service composition models do
not model exceptions and automated composition approaches require
that after an exception, the original system goal should still be
achieved. This may not be feasible for some exceptions. Thus, the
service composition model should also consider alternate goals after
exceptions occur. In this paper, we first define the concept of multi-
functionality and develop a holistic service composition model. Since
most existing composition reasoning techniques can only handle a
single functionality, we extend them and develop new algorithms for
automated holistic service composition. A case study system is used
to illustrate how our approach automatically generates a holistic
workflow for a system with multiple functionalities.

Keywords. Service-oriented computing, automated service
composition, planning algorithms, multi-functionality systems.

1 Introduction
With the increasing provisioning of services on the Internet,

service composition becomes more and more challenging. A
lot of research works have investigated automated service
composition to save cost and time for composition tasks.
SHOP2 [1] and OWLS-Xplan [2] are widely used automated
service composition tools. They are based on Hierarchical task
network (HTN) techniques, which are considered as domain
dependent solutions due to their need for knowledge about
how to decompose tasks. Some other automated service
composition works use search-based planning [3] [4], which
may incur a higher time complexity, but do not require domain
knowledge. The algorithms proposed in these works are in fact
the same as a large class of planners such as GraphPlan [5],
Fast Forward Planner [6], LPG [7], Fast Incremental planner
[8], Model Based Planner [9], etc.

Existing automated service composition literature have
omitted some important issues. First, existing techniques
consider a single system goal (functionality). However,
modern systems are complex and the system may have to be
specified by different functionalities. For example, consider a
floor cleaning system. The system may offer carpeted floor
cleaning, hardwood floor cleaning, tile floor cleaning, etc. All
these floor cleaning services start by ordering service,
transporting service which transports the people and
equipment to the location where the service is to be performed,
furniture moving service, and vacuuming service. After
vacuuming, depending on the service ordered, different
services are performed. It is possible to compose services for

each function and obtain multiple workflows for the system.
However, from the cleaning service example, we can see that
there are quite a lot of overlapping services in the workflows
for multiple functionalities. Thus, it is better to specify
multiple functionalities for the overall system and compose
one workflow with branches for achieving all the desired
functionalities. This solution can reduce composition effort
and generate a well-integrated workflow.

The second issue is related to services with multiple effects
and exceptions. The output of a service may be used as a
control parameter to determine what the subsequent processes
should be. Consider developing a retail store management
workflow that is activated upon store closing. First, a patrol
service goes across the store to ensure that there are no
customers remaining in the store. Then, a store closing service
closes all doors and counters. Next, an inspection service
provided by a robotic or manned cart is activated to navigate
through the aisles to make inspections. This inspection service
may give different outcomes, such as found misplaced items,
found some products with low shelf stocks, or found spoiled
or broken items. Depending on the outcome of this inspection
service, different subsequent sub-workflows with different
goals will be invoked to handle the problems.

Similar to having multiple effects, a service may raise
exceptions during execution. Exceptions can also result in
different effects on the system. Generally, when a service is
defined, the potential exceptions that may be raised by the
service are also defined. When a service is selected and
composed into a workflow, its exceptions should be taken care
of to ensure that the system is holistic.

Automated service composition techniques have been
developed for handling multi-effect services and exceptions
[10] [11], but some gaps still remain. One gap is that formal
service definition models, such as OWL-S [12] and WSMO
[13], do not have a specific mechanism for specifying the
multiple effects or exceptions of a service. Without a proper
specification model, the techniques for handling them becomes
ad hoc. Another important gap is that when handling
exceptions, all works require the system to achieve the same
original goal. However, in many cases, after an exception is
raised, the original goal can no longer be satisfied and a new
goal should be specified. Thus, we need to have a model that
supports the specifications of different goals for the exceptions.

The third gap in automated service composition is the
consideration of alternative paths toward a goal. Most existing
planning and automated service composition techniques only
derive one path from the initial condition to the goal state. But

2017 IEEE 24th International Conference on Web Services

978-1-5386-0752-7/17 $31.00 © 2017 IEEE

DOI 10.1109/ICWS.2017.70

596

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:44:21 UTC from IEEE Xplore. Restrictions apply.

in a holistic system, there may be multiple ways for achieving
the system goals for a certain functionality. Sometimes these
multiple ways should be presented to the users to provide
flexible choices. For example, an online shopping system may
be composed of browsing, add to cart, checkout, payment, and
delivery services. It is desirable to offer different payment and
delivery methods and leave the choices to the users. The
service composition model and automated composition
techniques should be able to construct a workflow with choices
and identify the user interaction points for making the choices.

In this paper, we consider the problem of automated holistic
service composition. Here, “holistic” refers to the composition
of a complete system. It is necessary to consider multiple
functionalities of the system, multiple effects and exceptions
of services, different goals for exceptions, and multiple
methods as user choices for achieving the goals. We build a
comprehensive model and integrated techniques to facilitate
automatic service composition to obtain a holistic workflow
for the desired system. Our contributions include:

(1) To facilitate a formal treatment of the holistic
composition problem, we extend the classical OWL-S service
model with multi-effect and exception definitions. Also, we
define a separate “system” model to facilitate the more precise
specifications of the multi-functionality composition problems.
Different from a composite service, a system can have a goal
structure, including the goals for multiple functionalities,
special goals for exceptions when the regular functionalities
cannot be achieved, and the goals for choices of methods for
achieving some of the functionalities.

(2) We develop the automated service composition
procedure for composing workflows for holistic systems. The
procedure is designed to generate a workflow that can achieve
multiple functionalities, provide choices of multiple methods
for achieving some system functions, take care of multiple
effects of the services, and handle exceptions to achieve the
original or new goals as desired.

(3) Based on the multi-functionality model, we extend
existing planning techniques and develop a new planning
algorithm, Multiple Functionality Planning (MFP), to achieve
efficient multi-functionality planning. We use a case study
system to illustrate how our approach can generate a holistic
workflow for a system with a multi-functionality specification.

The rest of this paper is organized as follows. In Section 2,
we introduce our extended model for automated holistic
service composition. The composition reasoning algorithms
for achieving holistic composition are presented in Section 3.
Section 4 presents a case study to illustrate how to use our
model for holistic service composition problem specification
and how our composition reasoning algorithm is used to obtain
a holistic workflow. Section 5 concludes the paper.

2 A Holistic Service Composition Model
In OWL-S, a service can be defined by its ,

where and are the input and output of the service, is the
precondition, when satisfied, the service can be executed, and

 is the effect, which specifies the condition that will be

satisfied after the execution of the service. However, there are
some shortcomings in the OWL-S model as well as some other
existing service composition models. We develop a holistic
service and composition model which extends OWL-S to
facilitate automated composition of holistic workflows. Our
extensions are discussed in the following subsections.

2.1 Holistic Service Specifications
In a comprehensive service specification, it is necessary to

consider that the service may cause different effects that
should be specified separately to facilitate composition
reasoning. Also, it is necessary to consider the specification of
exceptions that the service may raise.

First consider multiple effects that a service may cause. In
fact, multiple effects can be specified in the OWL-S model by
a predicate in “disjunctive normal form”. Consider the
inspection service (InspectS) in the workflow given in the
introduction for store management upon closing. The input to
the service may be a “situation” that needs to be taken care of
and the effects can further define the situation output by literals
“item-misplaced”, “item-low-shelf-stock”, “item-spoiled”,
“item-broken” and “no-situation”. An OWL-S specification
for the effects of InspectS will be

 “item-misplaced” “item-low-shelf-stock”
 “item-spoiled” “item-broken”
As can be seen from the example, the effect specified by the

disjunctive predicate can be used for constructing conditional
branches in the workflow. For “item-misplaced”, services for
determining the locations of the items and for moving items
back to their locations should be composed to achieve the
function of “no-misplaced-items”. For “item-low-shelf-stock”,
subsequent sub-workflow will check whether the items have
sufficient inventory in the store, and if so, restock the shelves
from the inventory; otherwise, order the items to replenish the
inventory and the shelves. Similar handling can be made for
situations “item-spoiled” and “item-broken”.

Handling multiple effects of a service have been widely
considered in automated service composition literature [4] [14]
[15]. The technique is to create multiple “virtual services” to
represent one concrete service during composition reasoning,
one for each disjunctive clause in the effect predicate. For the
example above, we need to create four virtual services for
InspectS. InspectS-1 has effect “item-misplaced”, InspectS-2
has effect “item-low-shelf-stock”, and so on. All 4 virtual
services have the same input, pre-condition, and output
specifications as the original service, but with different effects.

To facilitate virtual service creation when converting a
service composition problem into a planning problem, it is
better to specify the disjunctive effects separately so that there
is no need to perform low level effect predicate analysis every
time the service is considered as a candidate service for
composing a system. Thus, we modify the OWL-S service
model to support the specification of multiple effects.

Next, we consider exceptions of a service. When a service
raises an exception, the functionality of the service is not
fulfilled since the execution is disrupted. We will discuss
exception specifications later. Here we only consider that each

597

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:44:21 UTC from IEEE Xplore. Restrictions apply.

service can be associated to a set of exceptions and we extend
the OWL-S service model to support such specifications.

Figure 1. The extended service model.

A partial view of the extended service model for holistic
service specification is given in Figure 1. Note that since the
extensions are all under the service profile, the figure only
shows the Profile class for the service.

The service profile defined in OWL-S is extended. It still
has Input, Output, and Pre-condition classes. The extended
model has a class “Effect Set”, which specifies the set of effect
clauses for the service. Effects can be instantiated by one or
more “Effect” classes, where each Effect is the same as the
original Effect specification in OWL-S. Note that even though
a service may have multiple effects, there is only a single
output specification (output has to be a unified one in order to
allow proper use of the service). Multiple effects specify the
properties of the output parameters or the system state in
different situations. The extended model also has an
“Exception Set” class under the service profile, which can be
instantiated by one or more “Exception” classes.

To facilitate the discussion of the reasoning algorithm for
service composition, we also define the notations to represent
the holistic service model.

Definition 1 A web service is defined by a tuple
< > where

 is the set of input parameters for ;
 is the set of output parameters for ;
 is the preconditions of ;

 is the set of effects after the execution of and
is the -th effect clause in . can be defined by
positive effects and negative effects . Negative
effects indicate the state facts that are no longer true after
executing . If is the system state before executing service

, then the resulting state after executing will be (
.

 specifies the set of exceptions may raise and
is the -th exception defined in .

2.2 Exception Specifications
Exception is a very important concept in software and

systems. Some widely used service models, such as OWL-S
and WSMO, do not support the specifications of exceptions.
Some web service models consider exceptions, but they do not
offer the formal specification mechanism for them [3] [15].
Here we provide a model for exception specification which can
be integrated with the service and system specification models
to facilitate holistic service composition.

Similar to the formalism of IOPE in OWL-S, we need to

have the “effect” specification for exceptions in order to enable
composition reasoning. Such effect needs to be considered
carefully. Some segments of a service may have been executed
when an exception is raised and, hence, it looks as though the
effect of an exception depends on at which point of execution
it is raised. However, such concerns are internal to the service.
We assume that each service can handle their internal
exceptions and the only visible exceptions are the external
ones. The execution effects that need to be cleaned up are taken
care of by the internal exception handlers. The external
exceptions are those that require external workflows to handle
and their effects can be defined by externally known literals.

Another consideration about an exception is the goal for
exception handling. For most exceptions, it is desirable to still
achieve one of the original system functionalities. But in some
cases, the original system goals (of one of the functionalities)
can no longer be satisfied after an exception. Thus, a different
goal should be specified for the exception. For example,
consider a tour booking site which helps users book tickets for
various types of tourism trips. One cruise workflow has one
goal predicate “cruise trip booked”. It helps users book airline
tickets, cruise tickets, hotels, rental cars, etc., to obtain
complete trip bookings. At the checkout, the payment service
may raise an external exception “payment failure” after
multiple internal attempts to get different credit cards and
different payment methods. This exception has to be external
because it cannot be handled by the payment service. Also, the
original system functionality of trip booking can no longer be
satisfied, and a new functionality “cleanup” should be
associated to this exception and causes the system to cancel all
the reservations. Thus, for some exceptions, the composition
model should support the specification of new functionalities
that the system should reach after the exceptions.

Based on the exception specification requirements, we
define the exception ontology in Figure 2.

Figure 2. The exception model.

An exception has a Name, a Description, and a Profile. The
Profile includes the “Effect Set” class which can have one or
more “Effect” specifications and the “Functionality Set” class,
which links to one or more functionalities of the system.

Based on the model given in Figure 2, we also define the
notations for relevant exception specifications.

Definition 2 An exception can be defined by a tuple
< > where is the set of functionalities
in which one of them should be achieved after exception is
raised. is the -th functionality in .

 is the set of effects that hold when exception is
raised by service , and is the -th effect clause in

. Note that even though we assume that does
not depend on internal states of , but it is still service
dependent. On the other hand, includes the system
level goals (goals for regular functionalities and special goals

Process
Effect Set

Profile

Service

Exception Set

Output

Precondition

Input

Grounding
Effect*

Exception*
. . .

Description Effect Set

Profile

Exception

Funct. Set

Name
Effect*

Functionality*

598

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:44:21 UTC from IEEE Xplore. Restrictions apply.

for exceptions) that should be achieved after is raised, no
matter which service raises it.

2.3 Holistic System Specifications

Figure 3. The System model.

In OWL-S, a composite service to be composed can have its
IOPE specifications, which are used as the rules to govern the
composition. Such model can facilitate the specification of
value-added services and hierarchical composition. WSMO
treats service and composition separately. The composite
service to be composed is referred to as a service, while the
available concrete services are referred to as Web services. In
many applications, service composition is for rapidly
developing and deploying a comprehensive system, not just a
value-added service. Though a composite service and a
comprehensive system have similarities, there are differences
in their specifications. Thus, we define a separate “System”
model (like the service model in WSMO) to support a clear
definition of a holistic composition problem. The ontology for
the “System” model is given in Figure 3.

We consider the “System” model in two views, the
composition domain view and the composition problem view.
The composition domain view of the system provides
information that are common to all composition problems in
the domain. It has the “Service set” (similar to the Web service
class in WSMO) and the “State Ontology” (similar to the
ontology class in WSMO) which defines the terms used for
system state definitions. The “Service set” is the set of all
services that can be considered for composition. All the terms
in the IOPE specifications for the services in the “Service set”
are defined in the “State Ontology”. Mediators in WSMO are
also an important class in service composition, but they are
beyond the scope of this paper and are omitted in our model.

The composition problem view of the system specifies the
system to be composed, including a “Description” class, the
“Initial Condition set” class, the “System Exception set” class,
the “Regular Functionality set” class, and the “Exception Goal
set” class. The “Regular Functionality set” includes one or
more “Functionality” of the system and each “Functionality”
consists of one or more “Goal” subclasses. The “Exception
Goal set” also consists of one or more “Goal” subclasses. The
“Workflow” class specifies the workflow that, starting from

the initial conditions, can achieve the functionalities of the
system. Before composition, the Workflow is null. After
composition, the workflow is grounded to a concrete one. Next,
we define the composition domain in the System model.

Definition 3 The composition domain can be defined as a
tuple < >, where is the set of all the services
available for compositions in the domain and is the -th
service in . is the set of terms (literals, etc.) used by the
services and the composition problems to define the relevant
states, such as those used in preconditions, effects, exceptions,
input and output data types, etc., of services.

In Definition 4, we define the tuple that specifies the
relevant attributes for a specific composition problem in the
System model under a composition domain.

Definition 4 A target system to be composed under the
composition domain < > can be defined by a tuple
< >, where is the initial condition set
for the target system. is the set of regular functionalities for
the target system and , where is the
number of functionalities to be achieved and is the -th
functionality in . can be considered as a goal state, It
could have conjunctive and/or disjunctive goal clauses. Since
modern planners can plan for any form of the goal state, we
consider as one integrated goal.

 is the set of exceptions that may be raised in the system
and is the -th exception in . Note that is defined
after the regular composition (without exception) is defined.

 is the set of goals for the exceptions that are not in
and is the -th goal in . is supposed to be
composition independent, but may be defined or validated
after regular composition definition to ensure that there are no
missing goals under exceptions.

 is the set of workflows defined during the composition
process for the target system.

Note that the literals used in the definition of
 are defined in .

In this paper, our discussion only involves a single
composition problem under one composition domain. Thus,
we do not specify which composition domain and which target
system the tuples are for.

There are a few semantics in the “System” model that need
to be clarified and also compared with the “Service” model.
First, consider the initial conditions of the system, which
have a quite different semantics from the pre-conditions of a
service in the holistic composition model. Note that the
workflow being constructed should be able to handle all
possible initial conditions. Essentially, the initial conditions of
the system can be viewed as the effects of a special service,
which takes “True” as the precondition and generates effects
equivalent to the initial conditions of the system. Thus, similar
to the effects of a service, the initial conditions should be
represented in a disjunctive normal form. Each conjunctive
clause in the predicate becomes an “Initial Condition” in .

Now consider the regular system functionalities. The
“Functionality set” includes one or more functionalities to be
achieved by the system. These functionalities can be achieved

Domain Problem
Service

Set

System

Service*

System
Ontology Term*

Description

Initial Condition
Set

Initial
Condition*

System
Exception Set Exception*

Regular
Function Set Function*

Exception Goal
Set Goal*

Workflow

599

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:44:21 UTC from IEEE Xplore. Restrictions apply.

separately by separate branches in the system workflow, but
each of them has to be achieved. This is different from the
“Effect set” specification in the service model. Consider the set
of system functionalities . Also, consider
the effect set of a service , ,
where is the number of effects has. is expressed as:

But the goals for the functionalities of the system do not have
the same semantics as service effects. If we consider the
multiple functionalities as , then it will lead to
the derivation of a workflow that only satisfies one of the
system functionalities. Neither can the system functionalities
be specified as because it is not the intention
that the multiple system goals are satisfied at the same time
(and it may not be possible to satisfy these multiple
functionalities at the same time). A closer semantics for the
system functionalities may be described as

 If < > then
 elsif < > then
 …
 else

where each < > is independent and can be any condition
to be derived in the holistic workflow or to be set as a user
selection point.

Also, each individual effects in the effect set of a service has
to be a conjunctive clause while an integrated goal for a regular
functionality or a special goal for some exceptions can be any
logic predicates.

We also need to clarify the exception scopes in the system
model. Some exceptions are specific to individual services,
some exceptions are common to many services, and yet some
exceptions may be raised by the system itself. For example, a
“timeout” exception may be raised by all services with
interactions to users. An “interrupted” exception may be raised
by the system to stop the current workflow in execution. This
can happen, for example, when the system offers a cancel
button which can be clicked by the user at any time, resulting
in the termination of the current service in execution. An
exception that is common to multiple services should have a
single specification and should be associated to the individual
services that have this exception. This can avoid duplicated
derivations of the exception handling workflows. System
exceptions should be associated to the system, not to services.

As discussed earlier, each exception should be associated to
some goals. The goals of an exception, namely, =
{ }, should satisfy the following constraints:

For all , , and the semantics for
 should be . Specifically, each

goal in the goal set of can be from the goals for regular
functionalities of the system or the special goals for exceptions.
The exception handling workflow for handling exception
just needs to achieve one goal predicate in ’s goal set.

2.4 Handling Multiple Methods
The goal for automated service composition is to derive a

“system”, not just a “plan”. Thus, it should consider not only
multiple functionalities of the system, but also alternative ways

for achieving some of the functionalities. One way to derive a
system workflow to cover alternative methods for achieving a
functionality is to let the composition reasoning algorithm find
all possible paths for achieving a functionality and incorporate
them in the workflow. However, not all alternative paths are
desirable choices to be included in the system workflow and it
is difficult to automatically determine which choices should be
incorporated. Thus, we consider to incorporate multiple
method choices as multiple functionalities at the system design
time and use multi-functionality composition reasoning to
derive the alternative paths in the workflow.

Generally, one goal predicate is specified for a system
functionality. For the choices of different methods for
achieving a system functionality, we add additional method-
related predicates in its goal predicate. For the purchasing
process example, the functionality goal predicate is

“items delivered” “payment succeed”
The alternative delivery methods can be specified by

method-related predicates such as “home delivery”, “store
pickup”, etc. Thus, the new functionality set of the
purchasing process would include = “home delivery”
“items delivered” “payment succeed” and = “store
pickup” “items delivered” “payment succeed”, etc.

Generally, the IOPE definitions of many services have
already incorporated the method-related predicates to support
flexible workflow derivations. Thus, the above method can
derive a workflow with multiple branches for using multiple
methods to achieve the same functionality. When we just want
to achieve a functionality via any method, then we only need
to specify the goal predicate for the functionality. For the
purchase process example, if we specify the goal as “items
delivered”, then only one of the methods will be selected by
the reasoning process. If we need to achieve a functionality
with method choices, then the goal specification for the
functionality should include both the method-related goal
predicate and the functionality-related goal predicate.

3 Reasoning for Holistic Composition
Based on the service composition models defined in Section

2, we leverage traditional planning approach and develop new
composition reasoning algorithms to achieve automated
holistic service composition. The service composition problem
we discuss in this Section is < > under the
domain < >. In section 3.1, we focus on building the
basic workflow for the system with multiple goals. In section
3.2, we provide a systematic approach to handle exceptions
(external ones). In section 3.3, we discuss the planning
algorithm for the multiple functionality service composition
problem.

3.1 Basic Multi-Functionality Reasoning
First, we discuss the algorithm for construction a workflow

 for the basic multi-functionality problem. In ,
multiple functionalities will be reached with branching paths,

600

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:44:21 UTC from IEEE Xplore. Restrictions apply.

but it does not consider exceptions. The steps of the algorithm
are sketched as follows.

1. The first step is to identify the functionality set for the
system to be composed. The goal predicate for each desired
functionality is added to . For each functionality in , if
it is desirable to consider alternative methods to achieve ,
then combine the method-related predicates with as new
goal predicates, i.e., add , for all , to , and remove
the original from , where is the predicate for the -
th alternative method for achieving functionality .

2. Consider the initial condition . If has a single clause,
then it will be used as the initial state. If has multiple
disjunctive clauses, then construct an “initial service” and
add into the service set . Service should have its
precondition set to predicate “Initial” and its effects

 is set to . is then set to “Initial”. Predicate “Initial”
should be unique so that it does not duplicate with the pre-
conditions or effects of any service in . The purpose of
doing so is to let the multi-conditional initial state to be
processed uniformly as a multi-effect service, instead of
having to have a separate special processing method for it.

3. For each service in , if has multiple effects,
decompose it into virtual services , , … and replace

 in by its virtual services , , ….
4. Formulate the planning problem as .

Here is the updated set of services (updated in Steps 2 and
3). is the initial state, which could be the predicate “Initial”.

 is constructed in Step 1.
5. Use DMFP (discussed in 3.3) to reason for and obtain

the multiple-functionality plan, which is a weak plan in the
sense that some conditional branches have not been considered
yet. Convert the plan into the first workflow draft . During
plan to workflow conversion, we need to consider the branches
due to the multiple functionalities . These
functionalities are multiple choices offered to the users and a
user interface should be constructed to allow users to make the
choices. Let denote the list of
services used in . Let be the services
after which there are multiple branches for reaching some of
the functionalities in and assume that is closest to the
beginning of the workflow among , for all . We create a
user interface service with output for
choosing among and insert right after

, i.e., the first branching point. Also, after each , we
insert a conditional node in to test to see whether
it is equal to the corresponding functionality of the branch.

6. This step handles the conditional branches needed due to
multiple effects of some services in , where is initialized
to 1 and increased in each round.

6a. Let denote the bag of
services used in (not ordered). For each , if is
a virtual service, and is constructed from a concrete service

, and has virtual services , , …, then add ,
, … into , where is the bag of virtual services that has

not been processed. Since each has already been

processed (i.e., a subworkflow has been constructed for to
reach the goal or to reach a state in), remove from .

6b. For each virtual service in (where is a
virtual service of), formulate the planning problem

to obtain the sub-workflow for ’s conditional
branch to reach the goal. and are defined earlier. Here
we derive for all .

Let denote the state before in is executed.
From the initial state, there may be one or more paths in
that reach and let , denote these paths. Let

 be the sequence of services
forming path , , for all . Also, let
denote the state before is executed. For each , we
have and

, . Then, , for all , can be
derived. Subsequently, we can obtain the state before is
executed, i.e., .

Let denote the effect state after executing in
and . Finally, we
have . Next, or can be used to
reason for to obtain the sub-workflow .

6.c. After 6b, all virtual services in
have been processed, i.e., if is a virtual service of , then
the sub-workflows for all ’s virtual services , for
all , to reach the goals have been constructed. Now merge

 into by:
For each in and is a virtual service of :
(i) Replace by , and
(ii) Add the following conditional branch
 if = then .
 after for each virtual service of .

Let the new workflow constructed from this step be .
7. Note that all virtual services in have been processed.

But there still may be unprocessed virtual services in if
there are virtual services in . Thus, we have to continue
the virtual service processing. Now set to +1 and go back to
Step 6a till the new from is empty.

8. Let denote the basic plan constructed after exiting
the loop above. Also, is the set of all the services in .
It is possible that a service in is used more than once. In this
case, we consider them as different services in because
they will be treated differently when handling their exceptions.

3.2 Process Exceptions
From the workflow constructed up to now, services

that have the potential of raising external exceptions can be
identified based on their exception set definitions (). Also,
at design time, the sets of system exceptions and the set
of exception goals should have been defined. At this
stage, manual intervention can be introduced if desirable to
ensure that the system exceptions in have been properly
identified. Also, with the identified exceptions, now the

601

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:44:21 UTC from IEEE Xplore. Restrictions apply.

designer can check whether the corresponding exception goal
set is complete and if not, complete it. Moreover, manual
decisions on exception goals can be made for some exceptions
as desired because some exceptions may have their known
goal sets. For each exception , if its goals are known, then
define the goal set for them, where

. Otherwise, by default, the goal set for is .
We now perform composition reasoning for each exception

 raised by service with effect . We construct
the sub-workflow and merge it into as follow.

1. Formulate the planning problem

to obtain the workflow to handle exception , where
 is given in the specification of and can be

determined in a similar way as the initial state derivation for
conditional branches discussed in Section 3.1 and

.
2. Use a traditional planner to reason for and obtain the

sub-workflow .
3. Apply Step 6 in Section 3.1 repeatedly to handle all the

conditional branches for multi-effect services in and
obtain the final sub-workflow .

4. Merge , for all , into for handling .
The above procedure should be performed for all exceptions

of all services in the workflow . Let denote the final
workflow constructed that can handle all the exceptions
defined in for all services .

Next, we perform composition reasoning for each system
exception in . System exceptions are defined globally and
may be raised at any time during workflow execution. Thus,
we need to consider the state when it is raised in order to
support proper exception handling. Also, generally each
system exception would have a clearly defined goal set

. Similar to the exceptions for the
services, we can construct the sub-workflow for each
exception and merge it into . Since the
construction of , , is similar to the steps defined
above, we do not repeat all the steps, but only discuss the step
that is different, namely, Step 1, below.

1. Formulate the planning problem

Assume that is in execution or to be invoked when

exception is raised. Let denote the state before is
executed and , for all , can be derived the same way as
discussed in 6b of Section 3.1. We need to ensure that
is reached no matter when is raised so we have

 (here we assume that if is in execution and gets
interrupted by , will clean itself up).

Let denote the workflow derived based on and
after processing all the exceptions in . In other words,

 is the workflow that can handle all the exceptions.

3.3 The MFP Algorithm
We have constructed the multi-functionality composition

problem and now we discuss how to efficiently derive the
multi-functionality plan. In traditional planners, only one goal
predicate is considered (the goal can have multiple
propositions composed conjunctively and/or disjunctively).
From the initial state, applicable actions are applied to generate
a new state and form a plan graph. The expansion continues
till the goal can be satisfied by the current state. Then, a
backward search is performed to find the sequence of actions
that can actually lead to the goal state.

If the multi-functional goals (MFG) is one predicate, then it
can be treated the same as the classical planning problem. For
example, if MFG is in fact composed disjunctively, then,
during graph expansion, we simply check whether the goal
predicate for one of the functionalities is satisfied. If MFG is
composed conjunctively, then we check whether the current
state can satisfy all the goals of all the functionalities. However,
in the correct way, we can have one functionality of MFG
satisfied in one state and another functionality satisfied by
another state. MFP is designed based on this principle.

In MFP, the goals of multiple functionalities is tentatively
considered in disjunctive form. Thus, during graph expansion,
the planner breaks as long as one of the functionalities is
satisfied. After the first break, backward search is performed
from the goal state till it reaches the initial state. Now the first
plan is formed. Next, we remove the already achieved
functionality from MFG and continue graph expansion from
the last state (where the planner breaks) till one of the
remaining functionalities in MFG is satisfied. After the new
break, backward search is again performed, but from the new
goal state, till it reaches any state in the existing plan or the
initial state. If it reaches the initial state, then the final
workflow start the branching from the initial state. If it reaches
a state in the existing plan, then the workflow branches at that
point. Graph expansion and backward search continues till all
the functionalities are satisfied.

4 An Example Case

Figure 4. Goal hierarchy for the online cleaning service.

Consider the case about the online cleaning system. The
system provides different functionalities, like “carpet floor
cleaning”, “tile floor cleaning” and “hardwood floor cleaning”.
For each cleaning function, there are two ways to achieve the
goal, book the profession cleaning service or rent the
equipment and do self-cleaning. These two ways should be

602

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:44:21 UTC from IEEE Xplore. Restrictions apply.

presented as user choices. Thus, as discussed in Step 1 of
Section 3.1, we add two additional predicates, “self cleaning”
and “professional cleaning” to the goal. By doing so, our
approach can treat them as multiple functionalities and plan
paths for them. If the user chooses to rent the equipment, she
may pick up the equipment by herself or wait for the equipment
to be delivered.

The overall goal set for the case study is shown in
Figure 4. Some sample goals in are given as follows.

=“self cleaning” “equipment delivery” “deposit
refund” “carpet cleaned”

=“professional cleaning” “carpet cleaned”
=“self cleaning” “equipment return” “deposit

refund” “tile cleaned”

Figure 5. Automatically generated workflow for the online

cleaning services case study.

We use MFP to derive the multi-functionality workflow as
shown in Figure 5 (some sub-workflows are omitted). Note
that the automated workflow generation based on the
algorithm given in Section 3.1 will not include the choices
(purple diamonds) which are added after further processing
steps. Also, exception handling processes are added to the
workflow after applying the algorithm discussed in Section 3.2.

5 Conclusion
We have presented a model for formally specifying systems

requiring holistic service composition procedures and have
developed an efficient reasoning algorithm for obtaining a

holistic workflow for such applications. Our model extends
existing models to enable more comprehensive composition
requirement specifications, considering systems with multiple
functionalities, offering users more choices, and handling
exceptions. The reasoning procedure augments existing
planning methods to address the need for holistic composition.
A case study is presented to show the resulting workflows
generated from our reasoning procedures.

Future research directions include: (1) Incorporate methods
to enable the system to continuously evolve by autonomously
identifying new functionality requirements and compose
services rapidly for them. (2) Support real time composition of
services to handle newly emerging unexpected operational
conditions. (3) Investigate planning algorithms to further
enhance the composition procedure to meet optimality goals of
the multi-functionality systems.

6 References
[1] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D.

Wu and F. Yaman, "SHOP2: An HTN planning system," Journal
Of Artificial Intelligence, pp. 379-404, 2003.

[2] M. Klusch, A. Gerber and M. Schmidt, "Semantic web service
composition planning with owls-xplan," in AAAI 2005.

[3] L. A. da Costa, P. F. Pires, M. Mattoso, "Automatic composition
of web services with contingency plans," in ICWS, 2004.

[4] D. Berardi, D. Calvanese, G. D. Giacomo and M. Mecella,
"Composition of services with nondeterministic observable
behavior," in ICSOC 2005.

[5] A. L. Blum and M. L. Furst, "Fast planning through planning
graph analysis," Artificial Intelligence, pp. 281-300, 1997.

[6] J. Hoffmann, "FF: The Fast-Forward Planning System," AI
magezine, pp. 57, 2001.

[7] A. Gerevini and I. Serina, "LPG: A planner based on local search
for planning graphs with action costs," in ICAPS 2002.

[8] J. Fu, V. Ng, F. B. Bastani and a. I.-L. Yen, "Simple and fast
strong cyclic planning for fully-observable nondeterministic
planning problems," in IJCAI 2011.

[9] A. Cimatti, M. Pistore, M. Roveri and P. Traverso, "Weak;
strong; and strong cyclic planning via symbolic model
checking," Artificial Intelligence, pp. 35-84, 2003.

[10] H. Yang, X. Zhao, C. Chao and Z. Qiu, "Exploring the
connection of choreography and orchestration with exception
handling and finalization/compensation," in FORTE 2007.

[11] K. Christos, V. Costas and G. Panayiotis, "Enhancing BPEL
scenarios with dynamic relevance-based exception handling," in
ICWS 2007.

[12] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S.
McIlraith and S. Narayanan, "OWL-S: Semantic markup for web
services," 2004. [Online].

[13] J. Domingue, D. Roman and M. Stollberg, "Web service
modeling ontology (WSMO) - An ontology for semantic web
services," W3C Workshop on Frameworks for Semantics in Web
Services, 2005.

[14] N. Milanovic and M. Malek, "Search strategies for automatic
web service composition," in IJWSR 2006.

[15] A. Mediratta and B. Srivastava, "Applying planning in
composition of web services with a user-driven contingent
planner," IBM Research, 2006.

Overall workflow

CP
cleaning

 Hardwood floor cleaning (HF)
 Tile floor cleaning (TF)
 Carpet cleaning (CP)
 Self carpet cleaning (SCP)
 Full carpet cleaning (FCP)

 Choices with UI

 Exception
HF

cleaning
TF

cleaning

CP cleaning workflow

Schedule SCP
equip. rental

Schedule FCP
service

Delivery
truck

self/full self

available SCP equip
schedule

failed
unavailable

SCP equip
delivery

SCP equip
pickup

Pay deposit

 Payment
failure

CP/HF/TF

full

. . .

SCP

. . .

SCP equip return

Pay remaining

Exception Handling

 Payment
failure

Cancel cleaning
service

 Refund

603

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:44:21 UTC from IEEE Xplore. Restrictions apply.

