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Abstract—With the advent of Software-as-a-Service (SaaS),
SaaS developers are facing many challenges associated with the
multi-tenancy and the dramatically increased number of users. In
order to achieve resource-optimized, on-demand dynamic scaling
across multiple tenants, and reduce costs, in this paper, a new
platform, named SmartVM, is created to enable SaaS developer
to create, customize, and deploy SaaS solutions in a multi-tier
microservice-based manner. We develop an e-commerce SaaS
prototype to evaluate effectiveness and efficiency of SmartVM.
The results show that the SmartVM deployments outperforms the
conventional monolithic and microservice deployments in smart
monitoring, cost reduction, and resource optimization.

I. INTRODUCTION

In recent years, SaaS (Software as a Service) has become

popular because it can significantly bolster software applica-

tions such that they do not have to be developed through a long

lifecycle as on-premise development. Nowadays, SaaS devel-

opments are increasingly conducted on top of microservices

and deployed on Docker containers, such as Jenkins [1]. Many

challenges for SaaS developments arise for the applications

featuring being real-time, automated, or batched where a minor

change might risk breaking the critical business processes.

These challenges include security and privacy, scalability,

resource optimization, availability and fault tolerance, and cost

[2].

Extensive research has focused on those challenges and

some well-known practices have also been concluded to deal

with them. However, they are not always suitable for config-

uration managements in SaaS environments for the following

reasons.

• SaaS deployment is often highly costly due to the unscal-

able usage of containers [3].

• Many SaaS applications do take timing constraints as

non-functional requirements that can be easily violated

under insufficient system resources.

• Conventional Docker monitoring tends to be expensive

by not taking business constrains (user specification, etc.)
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and container utilization into consideration and leads to

resource inefficiency.

In this paper, a new framework, namely SmartVM, is proposed

to bridge the gap between the best practices and the real-world

adoptions. SmartVM aims at resolving the issues of scalability,

monitoring, and cost in multiple-tenant SaaS developments

and deployments. In particular, SmartVM enables a multi-

layer structure that categorizes microservices to be business

and API microservices, where each of them is designed with a

separate load balancer. The higher-tier business microservices

is designed for implementing business logics, and the lower-

tier API microservices is designed for implementing resource-

aware APIs (e.g., to access database, to send emails, to

generate PDFs), which are further recognized to be CPU-,

Memory-, and/or IO- intensive.

To evaluate the efficacy of SmartVM on SaaS deployment,

we conduct a set of experiments for comparing SmartVM

deployment against two benchmarks : (1) the monolithic

deployment; (2) the uniform microservice deployment. More

specifically, the evaluation is conducted in terms of the fol-

lowing metrics:

• Resource metric measures the number of the invoked

Docker containers.

• Performance metrics measure the CPU, Memory and

I/O usage.

• Business Constraint measures the occurrence of business

violations or request timeouts.

The experiment results show that SmartVM outperforms the

conventional monolithic and uniform microservice deploy-

ments. In particular, SmartVM presents higher CPU, Memory

and I/O resource usage, fewer invoked Docker containers, and

fewer business violations. The experimental results also sug-

gest that Docker containers can achieve desirable performance

in terms of CPU workload and file I/O, which validates the

advantages of SmartVM.

The rest of this paper is organized as follows. Section II

introduces some related work of the proposed prototype. Sec-

tion III presents the proposed solutions of SmartVM. Section

IV evaluates the performances of SmartVM and compares it
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with the conventional monolithic and uniform microservice

deployments. Section V concludes the remarks in this paper.

II. RELATED WORK

Deploying SaaS has been a long-term research topic [4].

Switching to microservice-based deployments has been used

to solve numerous issues with traditional SaaS deployment.

However, there are still many issues with deploying SaaS,

such as scalability, monitoring, and cost. In this section,

we present the related work of those issues along with two

conventional deployments: the monolithic deployment and the

uniform microservice deployment.

Monolithic Deployment Dragoni et al. [5] defines a mono-

lithic system as a system which cannot be expressed into

independently executable modules or services. In monolithic

deployments, in order for a component to scale, a host has

to scale out/up and leads to decreased efficiency. It can be

observed that it ignores business requirement monitoring.

Moreover, it generates new Docker container(s) whenever

CPU, memory or I/O usage violation occur (e.g., the occur-

rence exceeds the preset threshold) . Hence, cost inefficiency

can be caused.

Uniform Microservice Deployment Thnes et al. [6] defines

microservices as small applications which can be deployed

independently, scaled independently and has only a single task

or function to accomplish. In this way, a distributed system

consists of numerous independent microservices . In a uniform

microservice deployment where each component is attributed

into an independent service using containers, hosts can shuffle

the containers amongst them and scale out/up. Dragoni et

al. [5] demonstrates that scaling a microservice architecture

does not imply duplicating its components. Instead, instances

of services can be deployed and disposed according to load

requirement. However, similar to the monolithic deployment,

the uniform microservice deployment does not consider the

business requirement violation or cost issues.

Cost Espadas et al. [3] introduces a tenant-based model to

tackle over- and under- utilization of resources. The model

essentially isolates the execution of each tenant by assigning

it a tenant-based load balancer which distributes requests

based on tenant information. In addition, a tenant-based VM

instance allocator determines the number of instances required

for a certain workload or task. Experimental results suggest

a general reduction in over and underutilization; however,

statistical testing using t-test indicated that averages only for

underutilization were statistically improved. Khazaei et al.

[7] provides an efficiency analysis of the provisioning of

microservices on the cloud using Amazon EC2 and Docker

containers. Major gains can be obtained in efficiency and

resource optimization compared to a single system deploy-

ment. A common challenge is developing a cost model, which

calculates cost based on resource usage instead of resource

allocation.

Scalability Traditional deployments lack the ability to scale

in a non-uniform manner [5], [8]. According to [9], the effec-

tiveness of provisioning of services on the cloud is dependent

on the number and location of service facilities deployed

at various hosts. For example, when monolithic systems are

exposed to increasing load, it is difficult to isolate out which

component is stressed since the whole system runs as a single

process. Thus, although only a single component may be

experiencing an increased load, the whole system needs to

scale out. Smaragdakis et al. [9] propose a solution to migrate,

add or remove servers within a limited network scope, by

using only the local network and topology information. The

current methods to determine such information rely on data

centralization, gathering, and transmission of entire network

information, before deciding. This is impractical in large

networks and result in degraded performance.

Monitoring Stubbs et al. [10] claim that monitoring is

easier in a uniform and consolidated system compared to

a system, which is comprised and built by interconnecting

numerous functional units. Consequently, not only do we have

to deal with increased overhead when dealing with a dis-

tributed system, but also take into consideration the messaging

queues and the work flow systems in place. Stubbs et al. [10]

proposed a Serfnode solution aiming to deal with the problem

of service discovery while monitoring micro services running

in containers such as Docker. Later, Fazio et al. [11] highlight

the difficulty in monitoring and scheduling a microservice

based SaaS deployment, and emphasize on the need for custom

monitoring tools developed using cluster wide frameworks

such as Apache Spark, which could be implemented along

with general orchestration frameworks such as Kubernetes.

However, they fail to provide a demonstrable proposition.

Based on the analysis above, a smart platform is command-

ingly required to reduce cost, automate scaling, and finally

improve the SaaS deployment.

III. SMARTVM PLATFORM

In this section, we first introduce all the components in-

volved in SmartVM. Then, we explore the detailed solutions

of the SmartVM. Finally, a comparison between the SmartVM

deployment and the conventional monolithic and uniform

microservice deployment is presented. GlobalMonitor

The proposed SmartVM platform targets the mainstream

SaaS deployment practice, which is associated with Docker

containers that gains wide-spread popularity from many com-

panies including Amazon and Google [13]. SmartVM is de-

signed to enable multi-tier microservices and the associated

load balancers (i.e., two tiers in this paper), global monitors,

and distributed monitors. Fig. 1 demonstrates the working and

process flows of the SmartVM platform when deployed with

a microservice-based application using Docker containers. All

the components of SmartVM can be deployed with different

granularity (e.g., VM level or Docker container level). The

following lists all the components involved in the deployment

architecture.

• Business Microservice (BMS) The Business Microser-

vice (BMS) implements the business logics. For each

BMS, SmartVM provides a BMS service, which is re-

sponsible for messaging and communicating between
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Fig. 1: The proposed SmartVM Platform.

BMSs and the underlying API Microservices (AMS), and

between BMSs and distributed monitors (DMs). For each

BMS, SmartVM also provides a Docker container to host

it and its associated composed service.

• API Microservices (AMS) The API Microservice (AMS)

implements the resource-aware library functions. It can

be further separated into CPU-, I/O- or memory- in-

tensive AMS. For each AMS, SmartVM allocates an

AMS service, which is responsible for messaging and

communicating between AMSs and BMSs, and between

AMSs and distributed monitors (DMs). Each AMS runs

its independent process using a Docker container, i.e.,

each AMS runs in a separate Docker container.

• Load Balancers In SmartVM, we design load balancers

of two tiers. The first-tier load balancer adopts the con-

cepts of the traditional load balancing which serves as

a gateway between users and the underlying applica-

tions. The first-tier load balancer employs a dispatcher

that is connected with Global Monitor and BMS. The

dispatcher keeps track of how many BMS containers

(i.e., the Docker containers hosting BMSs) are available

and implements a round-robin fashion load balancing

mechanism for simplicity and efficiency. It acts as an

API gateway to balance loads between the user requests

and microservices. The dispatcher receives the tasks from

the users (in this paper, the users request are simulated

as loads by using a load generator) and pushes them into

a queue. The requests in the queue are then distributed

to BMS containers for processing. The second-tier load

balancer is used between BMS and AMS. Each BMS can

invoke multiple resource-aware AMSs, the requests from

BMSs to AMSs are handled similarly with the first-tier

load balancer by a dispatcher. However, the dispatcher is

designed in a different manner where it can be customized

and optimized for the specific deployment environment

between BMS containers and AMS containers (i.e., the

Docker containers hosting AMSs). In this paper, the

dispatcher for the second-tier load balancer is designed in

a round-robin fashion such that it can be fully aware of

how many AMS containers are available and connected

to the global monitor (GM).

• Global Monitor The global monitor (GM) primarily aims

at connecting each distributed monitor to keep track of

the status of AMS and BMS containers. Additionally, a

GM is responsible for scaling AMS or BMS containers

to new containers in the existing cluster of VMs or a new

cluster of VMs when detecting resource usage violations

for AMSs (e.g., CPU/Memory/IO usage exceeds preset

thresholds) or BMSs (e.g., violating preset timing con-

straint). Specifically, the GM collects status and resource

usage data of all containers on each VM. Depending on

these data, GM controls when to scale container, what

type of container to scale and what VM the container will

scale in. Then it send orders to DM to implement scaling.

Ideally, we envision the availability of a cluster of GMs,

with one or multiple GMs dedicated to a cluster of docker

containers reserved for AMS and BMS. In this paper, a

GM is created as a single instance for simplicity and it

is deployed in the VM (i.e., control VM) that contains

first-tier load balancer and application webserver.
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• Distributed Monitor The distributed monitor (DM) can

be deployed to either AMS/BMS containers or individual

VMs(i.e. work VMs) according to the factors, such as

complexity of AMS and BMS, physical environment set-

tings (e.g., whether the target SaaS application needs to be

deployed to different physical data centers, the available

bandwidth). In this paper, we deploy one DM for every

single container. For each BMS, a DM keeps track of

the occurrence of business violations. When it exceeds

a preset threshold (i.e., 5 in this paper), the DM would

send requests to the GM for scaling the associated BMS.

For each AMS, a DM keeps track of system resource

usage (e.g., CPU, Memory), and when the occurrence of

resource violations exceeds a preset threshold(i.e., 3 in

this paper), the DM would send requests to the GM to

scale out for the associated AMS.

• Scale Out Manager In SmartVM, a BMS scale out

manager is designed and deployed to every single VM. A

BMS scale out manager is connected to a GM to generate

requested BMS containers (in this paper, each time the

scale out command generates one Docker container) and

reports to the GM the unique identifier of the newly

generated BMS containers. Similarly, an AMS scale out

manager is designed and deployed to every single VM

in a similar manner where it is connected to GM to

generate AMS containers as requested. Note that in this

paper we only focus on the scenarios that need scaling

out. The scale out manager efficiently executes scale-

out script to generate new containers and report their

registry information to GM. The DM monitors business

violation of BMS and usage violation of AMS in a host

VM. It reports violation data to GM when violation is

detected. The GM recieves violation information from

DM and scale out manager. In the future work we will

make these information visualized. After analyzing these

information, the GM generates scale-out order and sends

it to specific host VM.

IV. EVALUATIONS

We conduct a set of experiments that evaluates the effi-

cacy of the monolithic deployment, the uniform microser-

vice deployment, and the SmartVM deployment. The eval-

uation simulates a typical retail SaaS application that receives

and processes user requests. The evaluation application can

simulate various retail business functions such as browsing

through shopping items and checking out. We generate the

user requests through a real-time load generator based on

user number and the deployment type. The real-time load

generator can simultaneously simulate a specific number of

active users to send requests to the evaluation application

over a period of time. For each user request, the monolithic

deployment platform has exactly one request. The application,

upon receiving per-user request, executes 30 distinct business

functions. For each user request, the microservice deployment

issues 30 distinct business function calls. For each user request,

the SmartVM deployment also issues 30 distinct business

service calls. For each business function/service, at least one

of CPU-, memory-, or I/O-intensive API calls is required. .

The experiment aims at collecting statistics of the following

metrics

• Resource Utilization (CPU, Memory, I/O)

• Number of active microservices (reflected by containers)

at a given time.

• Occurrence of business violations (request timeouts)

A. Experiment Settings

The deployment environment consists of 15 Virtual Ma-

chines or hosts running CentOS7 Linux. Each VM has the

following configuration: a. Hypervisor VMware; b. CPU Intel

Xeon E5-2690v4 @ 2.60Ghz, 2 Cores; c. RAM2vGB; d.

HDD64 GB. The 15 VMs are deployed on 4 physical nodes.

One physical node supports three to 4 VMs. Each VM runs

on the same VLAN with four 10GbE nertwork interfaces.

B. Evaluation Applications

To simulate a typical scenario, the deployment is tested

as three evaluation applications: 1) Evaluation application

1 (E1) simulates a monolithic deployment; 2) Evaluation

application 2 (E2) is the E1 rebuilt in the uniform microservice
deployment; 3) Evaluation application 3 (E3) simulates the

proposed SmartVM deployment. The user requests (loads) are

simulated by a load generator.

(a) CPU Usage (b) Memory Usage (c) I/O usage

Fig. 2: Resource Usage

C. Resource Usage

Figs. 2a, 2b, and 2c show the statistics of average CPU

usage, average memory usage and average I/O usage for

the three evaluation applications. In general, the proposed

SmartVM architecture outperforms the conventional mono-

lithic and microservice-based architectures.

More specifically, from Fig. 2a, we can see that with the

increase of the number of active users, the average CPU usage

of E1 is similar to the average CPU usage of E2. Their CPU

usage lies between 10% and 20%. In contrast, the usage of

CPU is much higher in E3, which is generally above 30%. In

particular, the fewer active users, the higher usage of CPU.

When the number of users is fewer than 50, the average CPU

usage is around 50%. The reason of the situation is that, in E1

there is only one CPU container at first. During the increase of

active users and requests, CPU usage in the container increases

and reaches the scale limit. Then new CPU containers will be

scaled out, which leads to the decrease of the average CPU

usage of all CPU containers. The average usage of CPU in E1

is much higher than E2 and E3, which means that E1 can make

use of CPU resource better and has higher efficiency than E2
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and E3. Therefore, this justifies that the proposed SmartVM

deployment optimizes the CPU usage.

From Fig. 2b, it can be observed that E1 and E2 present

similar memory usage with the increasing number of active

users. Their memory usage lies between 14% and 18%.

However, the memory usage of E3 lies between 20% and 30%
and is much higher than E1 and E2 when the number of active

users is fewer than 100. The resaon for rise and fall of memory

usage is similar to the above discussion about CPU usage.

With the increasing number of active users, the memory usage

of E3 shows much better results than E1 and E2. Therefore,

this justifies that the proposed SmartVM deployment optimizes

the memory usage.

From Fig. 2c, we see that E1 and E2 present similar usage

in the I/O when the number of active users increases. Their

average I/O usage is between 4% and 7%. In contrast, the

usage of I/O is much higher in E3. When the number of active

users increases, E3 still shows better I/O usage compared with

E1 and E2. Therefore, this justifies that the proposed SmartVM

deployment optimizes the I/O usage.

D. Business Violation

Each user request contains a parameter ‘timeout’ that means

user wants to get response in an expected period of time.

If BMS cannot generate response within the ‘timeout’, it

results in a business violation. Fig. 3a shows the number of

business violations against the number of active users. We can

see that, E1 and E2 cause 400 to more than 1600 business

violations with the generally increasing number of active users.

In contrast, the number of business violations in E3 is much

fewer than 200. Therefore, this justifies that the proposed

SmartVM deployment can reduce business violations.

(a) Business Violations (b) totalContainers

Fig. 3: Business Violations & Total number of Containers
E. Number of Containers Used

Fig. 3b shows the total number of docker containers used

against the number of active users in E1, E2, and E3. From

the figure, we can see that, for E1 and E2, the number of

business containers increases with the number of active users.

Moreover, the increasing curves for E1 and E2 are almost

the same. The number of docker containers used for E3 is 4
when the number of users increased to 50 while the number

of docker containers used for E1 and E2 is 7, it shows

42% improvement. When the number of users increased to

more than 200, the number of docker container in E3 is

6 while the total number for E1 and E2 climbs up to 14,

the improvement is 57%. This clearly shows the great cost

saving of SmartVM as compared with monolithic and uniform

microservice deployment.

V. CONCLUSION AND FUTURE WORK

The proposed SmartVM SaaS deployment platform provides

a solid although barebones prototype to effectively deploy

SaaS applications. Based on the complexity of the target SaaS

application and deployment environment, SmartVM can be

customized to create a highly scalable, flexible, cost effective

deployment environment based on Docker containers. The

experiment results justify the outperformance of the SmartVM

architecture in load balancing and auto scaling. In the future,

we will develop a cost mechanism which bills based on the

amount of resources currently in use, it would achieve optimal

resource utilization, reduce precious resource wastage such as

unused processing, memory or storage and at the same time

reduce costs−for the customers as well as the cloud provider.
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