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ABSTRACT
Automatic program understanding and generation techniques could
signi�cantly advance the productivity of programmers and have
been widely studied by academia and industry. Recently, the ad-
vent of pre-trained paradigm enlightens researchers to develop
general-purpose pre-trained models which can be applied for a
broad range of program understanding and generation tasks. Such
pre-trained models, derived by self-supervised objectives on large
unlabelled corpora, can be �ne-tuned in downstream tasks (such
as code search and code generation) with minimal adaptations. Al-
though these pre-trained models claim superiority over the prior
techniques, they seldom follow equivalent evaluation protocols, e.g.,
they are hardly evaluated on the identical benchmarks, tasks, or set-
tings. Consequently, there is a pressing need for a comprehensive
study of the pre-trained models on their e�ectiveness, versatility
as well as the limitations to provide implications and guidance for
the future development in this area. To this end, we �rst perform
an extensive study of eight open-access pre-trained models over
a large benchmark on seven representative code tasks to assess
their reproducibility. We further compare the pre-trained models
and domain-speci�c state-of-the-art techniques for validating pre-
trained e�ectiveness. At last, we investigate the robustness of the
pre-trained models by inspecting their performance variations un-
der adversarial attacks. Through the study, we �nd that while we
can in general replicate the original performance of the pre-trained
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models on their evaluated tasks and adopted benchmarks, subtle
performance �uctuations can refute the �ndings in their original
papers. Moreover, none of the existing pre-trained models can dom-
inate over all other models. We also �nd that the pre-trained models
can signi�cantly outperform non-pre-trained state-of-the-art tech-
niques in program understanding tasks. Furthermore, we perform
the �rst study for natural language-programming language pre-
trained model robustness via adversarial attacks and �nd that a
simple random attack approach can easily fool the state-of-the-art
pre-trained models and thus incur security issues. At last, we also
provide multiple practical guidelines for advancing future research
on pre-trained models for program understanding and generation.
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1 INTRODUCTION
The research tasks of program understanding and generation, e.g.,
code summarization, code generation, code search, and defect pre-
diction, have been increasingly studied for decades. Moreover,
the advent of deep learning and machine learning techniques has
strongly advanced the progress of such research domains [9, 25,
26, 50, 84]. Recently, a group of researchers have proposed natural
language (NL)-programming language (PL) pre-trained models to
provide general-purpose representations of the semantic connec-
tions between natural languages and program languages to support
various program understanding and generation tasks once and
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for all [3, 16, 18, 21, 27]. In contrast to conventional deep learn-
ing techniques which require task-speci�c feature extraction or
model selection, such NL-PL pre-trained models are usually de-
rived from self-supervised language modeling tasks on large un-
labelled program language corpora with simple modi�cation and
low-cost �ne-tuning. Speci�cally, they tend to adopt the popu-
lar transformer [69] architectures, e.g., BERT [15] and GPT [55],
for pre-training to facilitate the performance on program under-
standing and generation tasks. For instance, CodeBERT [18] is
pre-trained on millions of program functions and natural language
comments by two self-supervised tasks—Masked Language Mod-
eling (i.e., randomly masking input tokens) and Replaced Token
Detection [13] (i.e., randomly replacing input tokens) to predict
the masked/replaced tokens for input tokens. After pre-training,
the CodeBERT model is �ne-tuned on di�erent tasks. Moreover,
the recently proposed CodeX[12], a GPT-based model pre-trained
on massive code samples from Github, automatically �xed 28.8%
of programming problems in the HumanEval[12] dataset on the
automatic programming task.

Despite the e�ectiveness and versatility of the NL-PL pre-trained
models shown in their original papers, their performance evalu-
ations can nevertheless be susceptible to bias. Speci�cally, while
there are many potential tasks which the NL-PL pre-trained models
can be applied for [24, 54, 65, 66, 83], they hardly are applied for
fully identical tasks for comprehensive performance comparison
and analytics. Moreover, even for certain identical tasks they are
evaluated upon, they sometimes adopt diverse benchmarks such
that their performance can hardly be precisely compared either.
Furthermore, many studies have addressed that general-purpose
language models for NL are essentially defective. For instance, their
e�cacy can be hard to reproduce [6]. In addition, they are quite
sensitive to noises and attacks under a set of behavioral tests [59].
Such facts altogether can indicate a strong need of an extensive
study for the existing NL-PL pre-trained models.

In this paper, to our best knowledge, we conduct the �rst compre-
hensive study on the existing NL-PL pre-trained models to enhance
the understanding of their strengths and limitations. Speci�cally,
our objectives of the study include (1) validating the performance
of di�erent NL-PL pre-trained models, (2) comparing such models
with the previous domain-speci�c state-of-the-art (SOTA) models,
and (3) investigating the robustness of pre-trainedmodels. Note that
although the existing work, e.g., CodeXGLUE [43], also presents
experimental studies on NL-PL pre-trainedmodels, they hardly eval-
uate all studied models simultaneously on universal benchmarks
and fail to provide insightful analyses on them.

To this end, we �rst determine to extensively study the e�ective-
ness of the pre-trained models with expanded tasks and datasets
which have not been explored by any previous work. In particular,
we adopt eight mainstream pre-trained models, i.e., CodeBERT [18],
CodeGPT [43], CodeT5 [71], CodeTrans [16], ContraCode [27], Co-
TexT [53] GraphCodeBERT [21], and PLBART [3] as our studied
subjects mainly because they are publicly available SOTA mod-
els designed for a broad spectrum of the program understanding
and generation tasks. We then evaluate all the studied pre-trained
models on top of benchmark CodeXGLUE [43] because its inclusive
datasets have been widely adopted by many of the studied mod-
els and it also presents deterministic training/testing data split for

strengthening the fairness of their performance comparison. Mean-
while, we evaluate the e�ectiveness of the studied models against
the non-pre-trained SOTA techniques of individual program under-
standing and generation tasks on top of an extended benchmark.
Next, we further inspect the robustness of the studied models via
adversarial attacks with multiple existing approaches and a simple
random attack approach proposed in our paper.

Our study exposes multiple important and interesting insights
for designing and developing future NL-PL pre-trained models.
Speci�cally, we �nd that no pre-trained models can dominate the
other models on all studied downstream tasks and their validity
can be compromised. More speci�cally, while the performance
of our studied pre-trained models can be generally replicated on
their originally adopted benchmarks, subtle performance �uctua-
tions can refute the performance comparison results of the studied
models in their original papers. For instance, although PLBART
reports performance superiority over CodeBERT, our study indi-
cates that it cannot outperform CodeBERT for defect detection and
code search. We also �nd that there hardly exists a dominating
pre-trained model and pre-training with multiple objectives (e.g.,
the encoder-decoder-based models) potentially compromises the
pre-training power for individual objectives. Moreover, by com-
paring with the domain-speci�c SOTA techniques, we �nd that
the pre-trained models could enable prominent performance on
multiple studied tasks, e.g., CodeGPT improves 10.18% and 63.94%
on clone detection and code search over the datasets adopted in
the original papers of the corresponding SOTA techniques. At last,
we propose a new adversarial attack framework for evaluating the
robustness of the pre-trained models and demonstrate for the �rst
time that despite the presented excellent performance, the studied
models can be easily attacked by a simple random attack approach.
Interestingly, even though certain models, e.g., GraphCodeBERT,
enhances the performance over existing models, e.g., CodeBERT,
by injecting auxiliary information (i.e., DFG) for modeling, it is
even more vulnerable to adversarial attacks. Accordingly, our study
also reveals various practical guidelines for advancing NL-PL pre-
trained models in the near future.

To summarize, our paper makes the following contributions.

• Dataset. For the commonly studied tasks, we collect an exten-
sive dataset including a widely-used dataset CodeXGLUE and the
datasets from domain-speci�c techniques such that each task
is assigned with common and su�cient datasets for evaluating
multiple NL-PL pre-trained models.

• Study. An extensive study with general-purpose NL-PL pre-
trained models on the proposed datasets which contributes on (1)
validating and calibrating performance of the original papers, (2)
comprehensive and standardized experimental studies compared
to the original papers, (3) adopting adversarial attacks for NL-PL
pre-trained models to study their robustness for the �rst time.

• Implications. This work reveals multiple implications including
(1) reliable and replicable experiments are essential before re-
leasing pre-trained models since subtle performance �uctuations
across multiple runs can easily override their performance com-
parisons; (2) proposing dominating general-purpose models can
be challenging—surprisingly, state-of-the-art encoder-decoder-
based models can compromise their encoder components and
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perform even worse than pure encoder-based models for mul-
tiple program understand and generation tasks; (3) pre-trained
models should be explored more since they tend to outperform
conventional SOTA technologies on multiple downstream tasks;
(4) as the �rst study for NL-PL pre-trained model robustness via
adversarial attacks, we �nd that the existing pre-trained mod-
els (even the ones with special strategies for improving model
robustness) are rather vulnerable.
Note that all our study data, code, and results are publicly avail-

able in [2].

2 BACKGROUND
2.1 Program Understanding&Generation Tasks
Automatic program understanding and generation could assist soft-
ware development and signi�cantly advance the productivity of
programmers. Following prior work [43], we now brie�y introduce
typical program understanding and generation tasks.

2.1.1 Program Understanding Tasks. Program understanding refers
to a set of tasks, e.g., classi�cation and ranking, where models are
required to �rst produce vectorized representations of programs
and then perform downstream tasks such as prediction or similarity
check.
Defect Detection [84]. This task detects whether a program con-
tains vulnerabilities, e.g., resource leaks and unsafe references.
Clone Detection [50]. This task estimates similarity between
two program fragments. Typically it can be realized by binary
classi�cation between code pairs and code retrieval respectively.
Code Search [24]. This task matches the semantics between natu-
ral language queries and programs.

2.1.2 Program Generation Tasks. A program generation task re-
quires to produce/generate a sequence of tokens/words either in
program languages (e.g., code generation, code repair, and code
translation) or natural languages (e.g., code summarization):
Code Summarization [25]. This task generates a short paragraph
describing the functionality of a code snippet such that program-
mers can promptly understand its function.
Code Repair [67]. This task aims to �x program bugs automati-
cally.
Code Translation [9]. This task translates code from one program
language to another.
Code Generation [26]. This task generates code by the given
natural language description or under the assistance of the pre-
de�ned policies or arti�cial intelligence techniques.

2.2 NL-PL Pre-Trained Models
A typical NL-PL pre-trained model refers to pre-training a large
model on massive unlabelled corpora by self-supervised objectives,
and �ne-tuning the model on downstream tasks (i.e., program un-
derstanding and generation tasks) with task-speci�c loss. Many NL-
PL pre-trainedmodels [3, 18, 21, 27] have been proposedwhere their
commonly adopted pre-trained schemes are presented in Figure 1.
Note that following prior work (e.g., CodeT5 [71] and PLBART [3]),
“Encoder” or “Decoder” essentially refers to the Transformer En-
coder/Decoder component [69] for simplicity. In particular, the
pre-training paradigm contains two stages—one for pre-training

…

Autoregressive Decoder

…

Bidirectional Encoder

(a) BERT (b) GPT
…[CLS] int main ; } [SEP]

[CLS] int [MASK] ; [MASK] [SEP] [CLS] int main ; }

int main } [SEP](
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…
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…
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…

Figure 1: Illustration for pre-training and �ne-tuning
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`

Figure 2: A Code example

and the other for �ne-tuning. In the pre-training stage, models are
trained by self-supervised objectives on large corpora. Here we take
two popular pre-training tasks, Masked language Modeling [15]
and Language Modeling [55] for illustration.

Let us know take Figure 2 as an example. Such code snippet will
be �rst �attened by removing all the indents, line breaks, etc., for
pre-processing, followed by inserting [CLS] and [SEP] in its front
and end position to form an input sequence. Next, in Figure 1a,
for the encoder-based models such as CodeBERT [18], Graph-
CodeBERT [21], and ContraCode [27], they randomly mask parts
of the input sequence (e.g., ‘main’, and ‘{’ are replaced by the
[MASK] token) where the objective of their models is to recover the
masked tokens (Masked language Modeling). Meanwhile, in Fig-
ure 1b, the decoder-based model such as CodeGPT [43] is trained
auto-regressively, i.e., each generated output will be extended into
the original input sequence for subsequent token generation until
it reaches an [SEP] (Language Modeling). The encoder-decoder-
based models such as CodeT5 [71], CodeTrans [16], CoTexT [53]
and PLBART [3] jointly train encoder and decoder for compre-
hensive modeling of the language. As illustrated in Figure 1c, the
encoder �rst encrypts the polluted (masked) input and injects the
features to the decoder which then reads the encoded features to
autogressively generate output tokens along with recovering the
masked input. Note that there can be more self-supervised tasks for
pre-training models [13, 30]. However, they are not our main focus
and thus not presented in this paper. Eventually, we can �ne-tune
the resulting pre-trained models on small datasets for speci�c tasks.

Although many NL-PL pre-trained models have been proposed
and studied, they are hardly studied on common benchmarks and
taskswhich can render the evaluation results in their original papers
rather biased. Moreover, they fail to comprehensively present per-
formance comparisons with the domain-speci�c non-pre-trained
SOTA techniques for validating their values. At last, limited re-
search work has deeply studied their robustness. While existing
work, e.g., CodeXGLUE [43], studies the performance of multiple
models, it fails to comprehensively evaluate all of them on universal
benchmarks and thus could not fully assess the studied models or
draw insights/guidelines for developing/enhancing them.
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Table 1: Pre-Trained Model Summarization
Models CodeBERT GraphCodeBERT ContraCode CodeGPT PLBART CodeTrans CoTexT CodeT5
Model Size 125M 125M 23M 124M 140M 220M 220M 220M

Architecture RoBERTa
(encoder)

RoBERTa
(encoder)

Transformer-Encoder
(encoder)

GPT2
(decoder)

BART
(encoder-decoder)

T5
(encoder-decoder)

T5
(encoder-decoder)

T5
(encoder-decoder)

Pretrain Dataset CodeSearchNet [24]
6.4M PL + 2.1M

CodeSearchNet [24]
2.3M PL + 2.3M

CodeSearchNet [24]
1.8M PL + 0.08M

CodeSearchNet [24]
1.1M/1.6M PL + few

self-collected
680M PL + 47M

CodeSearchNet [24] and
[11, 47, 58, 75]
5.9M PL + 32.4M

CodeSearchNet [24] and
BigQuery [1]

2.1M PL + 2.1M NL

CodeSearchNet [24] and
BigQuery [1]

8.3M PL + 5.2M NL

Evaluation Tasks
Cloze Test
Code Search

Code Summarization

Clone Detection
Code Repair
Code Search

Code Translation

Clone Detection
Code Summarization

Type Inference

Code Completion
Code Generation

Clone Detection
Code Generation
Code Repair

Code Summarization
Code Translation
Defect Detection

Code Generation
Code Summarization

Commit Message Generation

Code Generation
Code Repair

Code Summarization
Defect Detection

Clone Detection
Code Generation
Code Repair

Code Summarization
Code Translation
Defect Detection

3 THE EXTENSIVE STUDY
3.1 Subjects and Dataset
3.1.1 Subjects. After CodeBERT was proposed in EMNLP’20, the
research on NL-PL pre-trained models (referred to as “pre-trained
models” or simply “models” in later sections) has become a hot spot
with multiple emerging models. While there can be many poten-
tial state-of-the-art pre-trained models to be studied, we choose
to �lter them for evaluating the models which are representative,
publicly available, and designed for a wide range of program under-
standing and generation tasks for an extensive study. For example,
CuBERT [31] only di�ers from CodeBERT in that CodeBERT addi-
tionally adopts the RTD (replaced token detection) [14] pre-training
objective. Moreover, TransCoder [60] is only designed for the code
translation task. Following prior work [18, 21, 71], we exclude
them from our study. As a result, we select eight recently proposed
pre-trained models as our studied subjects, i.e., CodeBERT, Graph-
CodeBERT, ContraCode (all as encoder-based models), CodeGPT
(decoder-based model), CodeT5, CodeTrans, CoTexT and PLBART
(all as encoder-decoder-based models).
CodeBERT [18]. Following the same architecture of BERT [15], i.e.,
the transformer-based encoder [69], CodeBERT employs Masked
Language Modeling [15] (as in Section 2.2) and Replaced Token
Detection [13] (i.e., randomly replacing tokens to train the model
for detecting whether the tokens are replaced) as pre-training tasks.
GraphCodeBERT [21]. GraphCodeBERT, proposed in ICLR’21,
adopts a transformer-based encoder architecture and incorporates
code graph structure information (i.e., data �ow graph) during pre-
training with Edge Prediction (i.e., masking the variables in data
�ow edges) and Node Alignment (i.e., predicting variable alignment
across source code and data �ow) as pre-training tasks.
ContraCode [27]. Inspired by contrastive learning [68], Contra-
Code, proposed in April 2021, augments the training data by per-
forming semantics-preserving transformations. In addition to the
Masked Language Modeling objective, it employs InfoNCE [68] loss
for contrastive training sample pairs for pre-training.
CodeGPT [43]. CodeGPT, proposed in NeurIPS’21, pre-trains a
transformer-based decoder language model GPT [55] on program-
ming languages. Its pre-training process follows the same scheme
as illustrated in Figure 1b.
PLBART [3]. PLBART, proposed in NACCL’21, is a transformer-
based encoder-decoder inspired by BART [33]. It follows the similar
pre-training tasks of BART including Token Masking, Token Dele-
tion, and Token In�lling.
CodeTrans [16]. CodeTrans, proposed in September 2020, is a
transformer-based encoder-decoder following the model settings

of T5 [56]. It adopts Span Masking [30] (i.e., randomly masking a
span of tokens as a whole rather than single element in Masked
Language Modeling) and Language Modeling (i.e., auto-regressive
language generation) as its objectives to train the model.
CoTexT [53]. CoTexT, proposed in NLP4Prog’21, is also built on
the same architecture as T5 [56]. It pre-trains the model with NL-PL
data on top of original T5 checkpoints.
CodeT5 [71]. CodeT5, proposed in EMNLP’21, follows the same
encoder-decoder architecture as T5 [56]. CodeT5 proposes a novel
identi�er-aware pre-training task to leverage code-speci�c struc-
tural information as well as a bimodal dual generation pre-training
task for augmenting NL-PL alignment.

Table 1 summarizes the features of our studied subjects. While
CodeSearchNet which contains six program languages with 2.3M
PL-NL function pairs is widely employed as the pre-training cor-
pus, di�erent models actually adopt quite divergent training data
subsets. For instance, CodeBERT only uses 2.1M PL-NL function
pairs while ContraCode selects 1.8M program functions and only
80K natural language comments. Furthermore, we can clearly ob-
serve that in their original papers, they do not adopt the common
dataset or tasks for evaluating their e�ectiveness, e.g., CodeBERT
is originally evaluated on CodeSearchNet [24], while ContraCode
incorporates varying data sources for type inference and code sum-
marization [4, 22] and also collects a dataset for clone detection.
Such facts indicate a pressing need to unify the evaluation protocols
for a fair comparison between them.

3.1.2 Datasets. We �rst aim to adopt a commonly-used bench-
mark where the studied pre-trained models can be all extensively
evaluated. In particular, we adopt the CodeXGLUE [43] dataset, a
benchmark constructed by Microsoft for program understanding
and generation tasks which collects 14 datasets from previous stud-
ies. Note that CodeXGLUE is selected because many of its inclusive
datasets have already been adopted for the performance evalua-
tion of multiple studied models in this paper. Moreover, it provides
deterministic training/testing data split scheme for all the mod-
els to strengthen the fairness of their performance comparison.
Speci�cally, we adopt BigCloneBench [65] and POJ-104 [54] for
clone detection, Devign [83] for defect detection, Bugs2Fix [66] for
code repair, CodeTrans [43] for code translation, CodeSearchNet-
AdvTest [24] for code search, and CodeSearchNet-Java [24] for
code summarization. Such datasets are adopted by both our stud-
ied subjects in this paper and their original papers and thus can
advance the replication of most original evaluations and further
extend the study of all the pre-trained models.

Furthermore, for performing a fair comparison between pre-
trained models and non-pre-trained SOTA models (illustrated later
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in Section 3.3.2), we include 4 datasets adopted for evaluating the
SOTA models in their original papers in addition to our CodeXGLUE
benchmark. As a result, the pre-trained models and the SOTA mod-
els can both be evaluated upon the originally adopted projects and
the extended projects. In particular, we add the Reveal [10] dataset
for defect detection, the POJ-15 [17] dataset for clone detection,
the DGMS-Java [34] dataset for code search, and Rencos-Java [79]
for code summarization.

3.1.3 Metrics. Note that many studied pre-trained models have al-
ready been evaluated under a set of metrics in their original papers.
We then retain all of them in our study for fair performance com-
parison. Speci�cally, we adopt �22DA02~ for defect detection, �1,
%A428B8>=, '420;; , and Mean Average Precision ("�% ) for clone de-
tection, andMean Reciprocal Rank ("'') for code search. We adopt
⌫!⇢* -4 for code summarization. For code repair, code translation,
and code generation, we adopt ⌫!⇢* -4, �22DA02~, and ⇠>34⌫!⇢* .
Note that while �22DA02~ can be adapted for diverse tasks, it essen-
tially denotes the proportion of testing samples whose prediction/-
generation results are precisely consistent with the target.

3.1.4 Implementation. We obtain the studied models from their
corresponding publicly available repositories. We also employ the
training/validation/test data splits and �ne-tuning procedure for
each dataset as in CodeXGLUE. Particularly for the understand-
ing tasks, the models are appended with a Fully-Connected (FC)
layer to project the embedding of tokens (e.g. [CLS], the last token)
into classes. For the generation tasks, the encoder models (Code-
BERT) are appended with a transformer decoder for generating
code regressively while the decoder (CodeGPT) or encoder-decoder
(PLBART) models directly generate code regressively. The newly
added FC layers or decoders during �ne-tuning are �rst initialized
randomly and then trained (i.e., �ne-tuned) in the corresponding
datasets of each task respectively.

3.2 Research Questions
We investigate the following research questions in our study:
• RQ1: How do pre-trained models perform for program understand-
ing and generation tasks? For this RQ, we extensively study the
performance evaluation between all the adopted pre-trained mod-
els upon the CodeXGLUE benchmark [43].

• RQ2: How do pre-trained models perform against non-pre-trained
models? For this RQ, we evaluate and compare the performance
between pre-trained models and domain-speci�c non-pre-trained
state-of-the-art (SOTA) models on multiple tasks.

• RQ3: Are the pre-trained models robust? For this RQ, we apply
semantics-preserving adversarial attack techniques to investigate
the robustness of the studied models.

3.3 Results and Analysis
3.3.1 RQ1: How Do the Pre-trained Models Perform for Program
Understanding and Generation Tasks? While the studied pre-trained
models investigate diverse program understanding and generation
tasks, we determine to evaluate the tasks which have been studied
by more than one of our studied subjects, i.e., the listed tasks in
Section 2.1, under the �ne-tuning process provided in prior work
CodeXGLUE [43] for extensively studying and comparing their

Table 2: Evaluation results on program understanding tasks
Task Defect Detection Clone Detection Code Search
Dataset Devign BigCloneBench POJ-104 AdvTest
Metrics Acc Precision Recall F1 MAP MRR
CodeBERT 63.68 95.53 96.94 96.22 86.78 27.16
GraphCodeBERT 63.35 95.80 96.99 96.38 89.97 30.79
ContraCode 58.42 95.04 96.93 95.96 45.65 14.34
CodeGPT 63.49 95.33 96.93 96.09 71.22 26.06
PLBART 60.77 96.30 96.21 96.25 62.26 10.89
CodeTrans 63.03 90.56 95.80 92.93 61.88 22.26
CoTexT 61.48 90.96 95.74 93.29 58.72 17.19
CodeT5 63.62 92.44 95.60 93.98 55.50 24.65

Gap Color Bar

performance. Note that considering the model randomness, we run
all our experiments for 5 runs as recommended by prior work [52]
and present the average results, while all our studied pre-trained
models do not clearly indicate their number of runs in their original
papers.

Tables 2 and 3 demonstrate the average experimental results in
program understanding and generation tasks respectively on top of
benchmark CodeXGLUE. Speci�cally, we adopt dataset BigClone-
Bench for evaluating clone detection as a classi�cation problem [8,
17, 43], i.e., determining whether a pair of code snippets are cloned,
where %A428B8>=, '420;; , and �1 are used as the evaluation metrics.
We also adopt dataset POJ-104 for evaluating clone detection as a
retrieval problem [43, 51], i.e., retrieving the cloned samples of a
given code snippet from the whole testing set, where"�% is used
as the evaluation metric. Moreover, for code repair, we adopt two
datasets of di�erent sizes (labeled as small with 58350 samples and
medium with 65454 samples from [43]) in Table 3 for evaluating
how they impact the studied models. We also evaluate bi-directional
code translation tasks, i.e., translating from Java to C# and from
C# to Java. Meanwhile, by comparing our evaluation results with
the corresponding results presented in their original papers, we
mark their numerical variations in terms of color gradients as il-
lustrated by “Gap Color Bar” of Table 2, where the color gradients
represent the di�erence magnitude of our study results subtracting
the original results. For instance, the �1 score of GraphCodeBERT
under clone detection drops 0.72 in our study and is represented as
light yellow in Table 2. Moreover, the ⌫!⇢* -4 score of CodeTrans
under code summarization is increased by 0.20 in our study and
represented as light green in Table 3. Note that the rest unmarked
statistics refer to our extended evaluation results which are not
included by their corresponding original papers.

We �nd that most of our results can be consistent with the
original results. For instance, the �1 score is 96.38 in our study and
97.10 in the original paper of GraphCodeBERT for clone detection
under BigCloneBench. Moreover, the ⌫!⇢* -4 score is 20.39 in our
study and 20.19 in the original paper of CodeTrans under code
summarization. Meanwhile, the average absolute di�erence of our
experimental results and the original results is 1.37%, indicating
that our experimental results are not signi�cantly di�erent from
the original results, and we can overall replicate the performance
of the studied models as their original papers.

However, multiple performance comparison results in our study
can be reversed compared with their original papers. Speci�cally,
Figure 3 presents the average �1 and min-max variations across
5 runs of clone detection under BigCloneBench. We notice that
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Table 3: Evaluation results on program generation tasks
Task Code Summarization Code Repair Code Translation Code Generation
Dataset Java Small Medium Java to C# C# to Java Concodel
Metrics BLEU-4 BLEU-4 Acc(%) CodeBLEU BLEU-4 Acc(%) CodeBLEU BLEU-4 Acc(%) CodeBLEU BLEU-4 Acc(%) CodeBLEU BLEU-4 Acc(%) CodeBLEU
CodeBERT 18.72 74.36 17.19 78.73 88.56 10.15 88.35 78.48 58.40 83.05 74.79 59.90 80.52 34.20 19.60 35.30
GraphCodeBERT 19.10 74.05 17.21 78.37 88.60 10.27 88.38 79.82 59.70 83.93 71.60 56.30 77.95 34.82 20.25 35.79
ContraCode 14.04 57.92 7.42 54.40 65.26 0.21 54.90 44.06 26.60 55.40 35.83 24.60 49.16 17.31 2.25 20.35
CodeGPT 14.77 71.97 19.64 75.74 86.71 12.12 86.28 82.83 63.30 86.65 78.73 65.80 83.69 33.51 19.80 34.54
PLBART 19.02 76.77 17.55 76.06 88.33 9.64 85.95 82.95 63.00 86.77 78.19 63.40 83.67 37.75 20.20 40.63
CodeTrans 20.39 72.09 22.55 74.69 86.99 13.74 86.31 82.71 63.20 86.70 79.22 66.40 84.95 33.45 22.45 34.45
CoTexT 19.37 77.62 20.27 77.53 84.06 7.45 82.54 77.15 59.50 79.70 72.66 60.70 77.66 32.14 20.60 38.33
CodeT5 20.38 77.68 21.25 77.87 89.07 13.57 86.70 83.78 65.60 87.50 79.88 66.90 85.29 39.54 21.40 42.71

Figure 3: Min-max F1 variations of clone detection under
BigCloneBench

the performance discrepancies of all the executions cause non-
negligible impact on performance comparison among di�erent
models. For example, CodeGPT incurs the largest performance
variance, i.e., it can outperform all the other pre-trained models
in one run and underperform them in another run. Moreover, Al-
though PLBART reports 0.7 �1 advantage over CodeBERT in its
original paper, the min-max gap of PLBART in our study, i.e., 0.84
in Figure 3, may easily make such results untenable. Additionally,
Table 2 presents that the defect detection accuracy of CodeBERT
and PLBART is 63.68 and 60.77 respectively in our study while
62.08 and 63.18 respectively in the PLBART paper. Although such
�uctuations appear to be minor/limited, they can easily reverse the
performance comparison results and potentially compromise the
strength of PLBART (and some other models).

Finding 1: The performance of all studied models can overall
be replicated on their original benchmarks. However, subtle
performance �uctuations can result in the untenable �ndings
in their original papers, e.g., PLBART fails to outperform Code-
BERT in defection detection and clone detection.

Program understanding tasks.We observe from Table 2 that the
encoder-based CodeBERT and GraphCodeBERT can generally pro-
vide the optimal performance among all studied pre-trained models.
Speci�cally, GraphCodeBERT outperforms CodeT5 by 24.91% and
62.11% for code search and clone detection under POJ-104 respec-
tively. On the other hand, for clone detection under BigCloneBench
and defect detection, the encoder-decoder-based models achieve
similar performance with CodeBERT and GraphCodeBERT, i.e.,
around 1% performance variance. Note that such results concep-
tually correspond to the �ndings in the research domain of nat-
ural language models [33, 56]—while encoder-based models can
in general outperform encoder-decoder-based models in language
understanding, their performance di�erence in certain tasks (e.g.,
Stanford Sentiment Treebank and Quora Question Pairs [33]) can
be rather limited.

Program generation tasks. We observe from Table 3 that in
general, the encoder-decoder-based pre-trained models can out-
perform other models on most program generation tasks. Speci�-
cally, CodeT5 and CodeTrans enable the optimal performance on
code summarization, translation, and generation. Interestingly, we
also �nd that on speci�c generation tasks, encoder-decoder-based
models barely outperform encoder-based models. Speci�cally, for
code repair, CodeBERT and GraphCodeBERT enable the optimal
⇠>34⌫!⇢* under the Small and Medium dataset respectively (i.e.,
78.73 and 88.38). For code generation, CodeBERT and GraphCode-
BERT slightly outperform CodeTrans and CoTexT under ⌫!⇢* -4,
i.e., 34.20 and 34.82 v.s. 33.45 and 32.14. For code summarization,
GraphCodeBERT performs similarly with PLBART and CoTexT, i.e.,
19.10 v.s. 19.02 and 19.37.

We can summarize from such results above that encoder-based
pre-trained models can achieve similar or even superior perfor-
mance over encoder-decoder-based models on speci�c program
generation tasks (e.g., code repair), i.e., the encoder-based models
can be potentially as general-purpose as encoder-decoder-based
models. Such fact seems to be overlooked by previous studies [3, 33,
56] which believe the encoder-decoder architecture is optimal for
general-purpose pre-trained models. Note that for decoder-based
CodeGPT, it fails to enable optimal performance on any task. We
thus infer that only adopting decoder architecture is inadequate for
building general-purpose pre-trained models.

Finding 2: Encoder-based pre-trained models can achieve sim-
ilar or even superior performance over encoder-decoder-based
models on speci�c program generation tasks.

Interestingly, Tables 2 and 3 both present that for the tasks evalu-
ated via multiple metrics, the studied models incur quite �uctuating
performance under all the adopted metrics. Especially for code re-
pair, the optimal performance under the 3 metrics are achieved by
3 di�erent models. Also, for program understanding tasks, Code-
BERT, the �rst of its kind, still outperforms later proposed CodeT5
and PLBART which declare their performance gain on CodeBERT
in their original papers.

We further attempt to analyze why there can hardly be a dominat-
ing pre-trained model for all the tasks. Recall that the encoder-based
models like CodeBERT, GraphCodeBERT can in general outper-
form encoder-decoder-based models CodeT5, CoTexT, CodeTrans,
PLBART for program understanding tasks, and vice versa for pro-
gram generation tasks. To illustrate, we revisit Figure 1 where an
encoder-based model employs a bi-directional architecture, i.e.,
each token is allowed to inspect the whole sentence for computing
its context-aware representation. Therefore, such representation
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typically re�ects rich information to understand a sequence and
is favored for program understanding tasks. On the other hand,
encoder-decoder-based models only take advantage of the infor-
mative encoder representations to advance its decoder to generate
�uent and meaningful sequences, i.e., they do not fully explore
the potential power of their program understanding capabilities.
Consequently, the performance of encoder-decoder-based models
on program understanding tasks are hindered by the generation
objective, i.e., enhancing program generation performance is in fact
at the cost of program understanding tasks. Note that such trade-o�
is also well recognized in the NLP domain [33, 56]. Accordingly,
we derive that it is challenging or even impractical to develop an
almighty model which rules all the tasks with current pre-training
objectives, e.g., Masked Language Modeling and auto-regressive
loss.

Finding 3: There exists no dominating pre-trained models. One
main reason is that the current SOTA encoder-decoder models
largely overlooked the fact that di�erent training objectives
(for program understanding and generation) can potentially
compromise each other. We call for future research on more
inclusive encoder-decoder models.

3.3.2 RQ2: How Do Pre-trained Models Perform against Non-pre-
trained Models? Pre-trained models are expected with prominent
performance because they can e�ectively capture rich knowledge
(e.g., syntax and semantics) from massive pre-training data com-
pared with non-pre-trained models (e.g., training corpora size by
millions for pre-trained models in Table 1 v.s. by tens of thousands
for non-pre-trained models in Table 4). Such data are implicitly
encoded via a huge number of parameters, which can eventually
facilitate a variety of downstream tasks [74]. For validating such
initiative, it is essential to compare the performance between the
pre-trained models and the domain-speci�c non-pre-trained SOTA
approaches. To this end, we search the most recently published
papers in top academic venues for identifying all the tasks which
are presented that they can outperform a number of well-known
previously published techniques. Accordingly, we also attempt for
generalized SOTA techniques such that the performance compari-
son can be limited within the identical scope. Eventually, we adopt
the following domain-speci�c SOTA techniques.
Reveal [10]:Chakraborty et al. conduct a study over deep-learning-
based defect detection in TSE’21. They investigate the de�ciency of
the existing defect detection datasets and propose a more re�ned
dataset. Meanwhile, they propose a graph neural network (GNN)
approach Reveal which leverages program structure information,
i.e., AST and CFG, and signi�cantly outperforms the previous SOTA
approaches in both precision (by 33.57%) and recall (by 128.38%).
FCDetector [17]: Fang et al. propose FCDetector to extract syntax
and semantic information from source code for clone detection
in ISSTA’20. In particular, FCDetector joins di�erent functions in
programs through caller-callee relationships and then applies its
own fusion embedding techniques[17] to learn hidden syntactic
and semantic features of the whole programs. It can signi�cantly
outperform previous SOTA approaches. Meanwhile, they also con-
struct a smaller code clone dataset (with 15 label types) based on
POJ-104 which is named as POJ-15 in this paper.

DGMS [37]: Ling et al. propose a code search approach DGMS in
TKDD’21. DGMS leverages GNN and program structure informa-
tion and also extracts structure information of natural language
query for natural code search. Their evaluation results demonstrate
that the DGMS model signi�cantly outperforms SOTA models in
"'' (up to 31.53%). Furthermore, we also adopt their code search
dataset as one of our extended datasets for a fair comparison.
Rencos [79]: Rencos is a retrieval-based code summarization ap-
proach proposed in ICSE’20 which can take advantage of both
neural and retrieval-based techniques. Previous studies [62, 79]
have shown that Rencos outperforms other non-pre-training SOTA
approaches. Meanwhile, we also adopt their code summarization
dataset as one of our extended datasets for a fair comparison.

To the best of our knowledge, such approaches are so far the lat-
est and highly regarded work in their domains. On the other hand,
we could not �nd a proper non-pre-trained model for code genera-
tion, code repair, and code translation. In particular, the SOTA code
generation approach NL2Code [73] relies on external knowledge,
e.g., API documentation of speci�c program language, to gener-
ate code, and the SOTA code repair approaches [20, 44] require
precise fault localization [40, 80] information, and thus can hardly
be extended to the CodeXGLUE dataset. While we can trace back
to earlier domain-speci�c techniques, i.e., CONCODE [26], CODE-
TRANS [67], which adopt RNN-based seq2seq models, previous
studies [21, 28, 60] have shown that pre-trained models using the
transformer architecture can largely outperform them in program
generation tasks. For code translation, the latest research work [60]
also demonstrates that the pre-trained models can outperform non-
pre-trained domain-speci�c techniques.

Table 4 presents the performance comparison results of pre-
trained and non-pre-trained SOTA models. Note that we adopt
POJ-15 for evaluating clone detection as a classi�cation problem
corresponding to BigCloneBench in Table 2, while POJ-104 is used
for retrieval-based clone detection. By comparing the clone de-
tection results under BigCloneBench, we observe that the perfor-
mance of CodeBERT and GraphCodeBERT cannot be generalized
to the extended POJ-15 dataset. In particular, GraphCodeBERT
achieves the optimal "�% of 89.97 under dataset POJ-104 and
achieves 96.38 �1 under dataset BigCloneBench for clone detec-
tion. However, its �1 score drops to 66.80 under the POJ-15 dataset.
Such dramatic performance degradation also occurs for CodeBERT
(from 96.22 to 55.46), ContraCode (from 95.96 to 50.47), and Code-
Trans (from 92.93 to 66.73). The above results may be due to the
fact that the hyperparameters adopted directly from their original
papers are not all optimal for our dataset, e.g., it is more suitable for
above models under BigCloneBench rather than POJ-15. We thus
infer that even for the pre-trained models which are supposedly
general-purpose for various benchmarks may incur severe perfor-
mance degradation, i.e., the pre-trained models are data-dependent.

Finding 4: General-purpose pre-trained models can incur dra-
matic performance variance.

We can observe that for most tasks, the pre-trained models can
signi�cantly outperform the domain-speci�c SOTA models. In par-
ticular, for defect detection, CodeBERT and CoTexT achieve the
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Table 4: Pre-trained and non-pre-trained SOTA models evaluated on the extended datasets
Task Defect Detection Clone Detection Code Search Code Summarization
Dataset CodeXGLUE Reveal Dataset POJ-104 POJ-15 DGMS Dataset CodeXGLUE Rencos Dataset
Metrics Acc MAP Precision Recall F1 MRR BLEU-4
CodeBERT 63.68 89.57 86.78 51.55 60.03 55.46 84.28 18.72 20.82
GraphCodeBERT 63.35 90.15 89.97 50.23 99.70 66.80 89.01 19.10 21.35
ContraCode 58.42 89.75 45.65 50.61 50.32 50.47 76.87 14.04 12.98
CodeGPT 63.49 89.79 71.22 100.00 100.00 100.00 86.51 14.77 20.85
PLBART 60.77 89.09 62.26 100.00 100.00 100.00 64.24 19.02 21.55
CodeTrans 63.03 89.62 61.88 50.08 99.97 66.73 80.57 20.39 18.17
CoTexT 61.48 90.72 58.72 50.40 99.06 66.86 85.83 19.37 24.80
CodeT5 63.62 85.97 55.50 53.76 92.38 67.97 83.16 20.38 26.55

Not Pre-trained SOTA Reveal FCDetector DGMS Rencos
56.97 87.23 27.49 95.69 86.32 90.76 52.77 15.32 28.96

optimal �22DA02~ of 63.68 and 90.72 respectively under CodeXGLUE
and Reveal. Such performance can outperform the SOTA technique
Reveal by 11.78% and 4.00% respectively.

For clone detection under POJ-104 (illustrated in Section 3.3.1),
GraphCodeBERT achieves a"�% of 89.97 and largely exceeds non-
pre-trained SOTA model FCDetector which obtains 27.49. Mean-
while, for clone detection under POJ-15 with the same setting as
the FCDetector paper, CodeGPT and PLBART strongly outperform
FCDetector by achieving 100 in terms of �1, Precision, and Re-
call. Note that POJ-15 (introduced in FCDetector) is a smaller and
simpler dataset compared with BigCloneBench, i.e., 1510 vs. 9126
code fragments. Moreover, POJ-15 incurs a data leakage issue [61],
i.e., part of the testing samples can be seen during training, while
BigCloneBench incurs no such issue [43]. As a result, CodeGPT
and PLBART can achieve excellent performance on POJ-15 while
others cannot due to the data-dependency issue (Finding 4).

Note that for code summarization, SOTA Rencos outperforms
GraphCodeBERT by 35.64% under the dataset adopted in its original
paper and underperforms it by 19.79% in the CodeXGLUE dataset.
We assume such performance may be caused since Rencos can
be quite data-dependent. Speci�cally, when summarizing target
programs, Rencos �rst retrieves similar code snippets from the
training dataset, and regards them as part of the input to its adopted
neural network for code summarization. Therefore, it can achieve
superior performance in the dataset which contains substantial
duplicate samples across training and testing datasets.

To summarize, we infer that pre-trained models generally out-
perform non-pre-trained SOTA models in program understanding
tasks. Since they enable powerful performance gain, establishing
domain-speci�c SOTA techniques by gradually upgrading the ex-
isting ones can take a long way to go. Therefore, we recommend
researchers to make more e�orts in studying pre-trained models.

Finding 5: Pre-trained models could be more promising than
non-pre-trained models and more research e�orts should be
devoted to this direction.

3.3.3 RQ3: Are the Pre-trained Models Robust? Finding 4 reveals
that pre-trained models can enable quite inconsistent performance
under di�erent datasets which implies the potential model robust-
ness issues. Such issues can severely hinder the practical usage of
pre-trained models especially when they can be easily manipulat-
ed/fooled. Take defect detection as an example, a shrewd developer
may cheat the anti-defect system via semantics-preserving edit

(demonstrated in Table 5) for avoiding additional code review pro-
cess. Such tricks may increase the threats of program crashes or
deadlocks. The cheating process can be considered as adversarial
attack to the pre-trained models [63, 76]. Therefore, we determine
to apply semantics-preserving adversarial samples to attack the
pre-trained models for inspecting their robustness.

Algorithm 1: CodeAttack
Input: % , : , =, B40A2⌘, CA0=B 5 >A<0C8>=
Result: % 0

1 14BC_% 0  % ;
2 B8C4B  Identify the sites that can be edited in % by �3E⇠⌧ ;
3 :_B8C4B  B40A2⌘(B8C4B , :);
4 for B8C4 in :_B8C4B do
5 %_;8BC  CA0=B 5 >A<0C8>=(B8C4 , 14BC_% 0, =);
6 14BC_% 0  evaluate each % 0 in %_;8BC + 14BC_% 0 and get the

best % 0;
7 if 14BC_% 0 can fool the model then
8 return 14BC_% 0;
9 end

10 end
11 return 14BC_% 0

However, to the best of our knowledge, there exists no adver-
sarial attack approach speci�cally designed for NL-PL pre-trained
models before this study. In particular, in programming language
area, while the previous attacking approaches [63, 76] for program-
ming languages employ one-hot embedding [76], all existing NL-PL
pre-trained models adopt continuous vector embedding [48] which
renders the one-hot embedding attacking inapplicable. As for ad-
versarial attacks in natural languages, models are allowed to modify
every word in sentence. Simply following such unconstrained oper-
ation in NL-PL pre-trained models may edit key words of programs,
e.g., “for” and “while”, and thus possibly break program semantics
and fail program executions. To safely conduct adversarial attacks
which preserve program semantics and syntax for pre-trained mod-
els, we propose a new framework based on AdvCG [63] (originally
designed for non-pre-trained models to search and �nd sites which
are safe to be modi�ed in programs) and attacking approaches from
NLP [19, 29, 35, 45, 46] (adversarial attack approaches that modify
the sites with optimal perturbations). As illustrated in Algorithm 1,
for a program % , we initialize the best perturbed % 0 as % (Lines 1).
AdvCG is employed to analyze the code and identify sites that can
be safely edited without changing the program semantics, e.g.,
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Table 5: Evaluating robustness under defect detection and code summarization
Performance under
adversarial attack

Defect Detection Code Summarization
Original BAE BERT-Attack LSH Hard-Label TextFooler Random Original BAE BERT-Attack LSH Hard-Label TextFooler Random

CodeBERT 63.68 26.91 27.06 48.44 29.63 22.90 22.71 18.72 4.06 2.64 11.59 1.69 2.36 2.30
GraphCodeBERT 63.35 18.03 9.93 39.55 4.98 9.18 6.47 19.10 3.08 1.79 11.68 0.58 1.44 1.31
ContraCode 58.42 9.26 7.29 25.06 1.64 4.61 3.75 14.04 4.55 4.03 8.96 2.61 3.52 3.37
CodeGPT 63.49 38.48 36.65 45.17 36.51 35.28 34.76 14.77 4.58 3.51 10.25 6.99 3.47 3.40
PLBART 60.77 18.33 15.17 34.54 18.88 12.86 12.64 19.02 2.88 1.53 9.89 1.43 1.70 1.57
CodeTrans 63.03 25.28 23.27 39.41 23.12 20.33 18.92 20.39 5.98 4.23 14.44 8.80 4.66 4.57
CoTexT 61.48 22.12 22.34 40.97 24.72 21.30 20.37 19.37 5.97 4.82 13.90 9.58 5.34 5.55
CodeT5 63.62 31.90 27.40 48.66 41.12 26.91 26.13 20.38 6.93 4.42 15.20 12.30 5.31 4.87
Avg num queries / 128.51 106.22 27.29 925.51 133.37 130.46 / 145.32 121.54 22.65 814.53 157.56 156.51

Table 6: Attack approaches
Approach Search Method Transformation Method
BAE [19] Word Importance Rank Word Swap Language Model BAE
BERT-Attack [35] Word Importance Rank Word Swap Language Model BERT
LSH [46] Word Importance Rank Word Swap WordNet
Hard-Label [45] Genetic Algorithm Word Swap Embedding
TextFooler [29] Word Importance Rank Word Swap Embedding
Random Random Random
WIR-Random Word Importance Rank Random
Random+ Random Random+

local variables and function parameters (Lines 2). Then, a search
method is applied to select up to : sites which can potentially lead
to optimal perturbation (Line 3). For each resulting candidate site,
a transformation method, which replaces the original token in the
site with another word, is employed = times and results in = per-
turbations of the program % (Lines 4-5). Such = perturbations are
evaluated and the one which can best fool the pre-trained model
is selected as new program % 0 for iterative operations (Lines 6-
9). Note that the program semantics and syntax are ensured to
be unchanged since all the modi�cations are performed only on
safe sites identi�ed by AdvCG which is widely used by attack ap-
proaches [57, 76] for programming languages.

Note that the search method is designed to select the optimal  
perturbations sites from a prede�ned set, and the transformation
method is designed to perturb a given program while preserving
its semantics based on the selection results from the search method.
Table 6 summarizes the details of the search and transformation
methods [19, 29, 35, 45, 46]. For the search methods, Word Impor-
tance Rank (WIR) [49] algorithm is employed to rank each site
according to the output magnitude di�erence before and after re-
naming the site to “UNK” token, while Genetic Algorithm [45] �nds
the optimal combination of sites and transformations by mutation
and crossover of di�erent perturbations. For the transformation
methods, all of them aim to �nd a suitable token to replace the
original one in a given site. Word Swap Embedding [49] returns a
synonym via extra embedding model. Word Swap WordNet [46] re-
turns a synonym via aWordNet model.Word Swap LanguageModel
BERT [35] returns a new token generated by an extra BERT model.
An attack approach can be composed by di�erent search methods
and transformation methods, as described in TextAttack [49]. In
addition, we also design a simple random attack approach (namely
Random approach) by randomly selecting attack sites and then
renaming each selected site with a random new word. Note that the
random selection is also semantics-preserving following Lines
2-3 of Algorithm 1 as the safe sites have been selected and we
only randomly select/replace them. We also design a WIR-Random

approach (introduced later) to further study the e�ectiveness of
di�erent search methods.

Next, due to the page limit, we only present the attack results of
defect detection for program understanding and code summariza-
tion for program generation to evaluate model robustness, since
they are mostly studied by our studied models and also studied
by previous adversarial attack study on program languages [63].
Table 5 presents the attack results. We can observe that the over-
all model performance degrade signi�cantly via most attack ap-
proaches, e.g., the CodeBERT performance signi�cantly drops 64.34%
and 87.71% for defect detection and code summarization with the
Random approach respectively. Such results indicate that pre-trained
models are vulnerable against semantics-preserving edits.

Finding 6: We demonstrate for the �rst time that NL-PL pre-
trained models are not robust. They are highly vulnerable
against semantics-preserving adversarial samples.

In addition, CodeT5 and CodeGPT are relatively more robust
than other pre-trained models. For instance, the performance of
CodeT5 drops 58.93% for defect detection under the Random attack,
less than 69.98% of CodeTrans and 66.87% of CoTexT which both
build on the same T5 architecture. The superiority of CodeT5 could
be caused by its unique identi�er tagging pre-training task, i.e.,
identifying whether a code token is an identi�er and advancing
CodeT5 to ignore odd attack tokens. Meanwhile, CodeGPT enables
optimal robustness under defect detection, e.g., dropping 45.25%
under the Random attack. Such superiority may come from its
special decoder-only architecture. Nevertheless, we still need more
research to determine the impact of di�erent models, pre-training
tasks, and training data on the model robustness. Unfortunately,
such issues are not intensively discussed in the existing literature.
To our best knowledge, ContraCode is the only model that mentions
and attempts to this issue via contrastive learning with semantics-
preserving and non-semantics-preserving samples. However, its
robustness even underperforms other models as in Table 5.

Interestingly, while GraphCodeBERT is expected to be more ro-
bust than CodeBERT since it includes additional DFG information
for pre-training, it actually performs worse. Therefore, we further
attempt to understand how GraphCodeBERT captures tokens and
DFG by accessing its attention which can be derived by executing
transformer. Such attention represents how the model considers
the importance of each input token and can be widely visualized
for model interpretability [32]. Speci�cally, we extract the attention
weights of the �rst layer for the GraphCodeBERTmodel where such
weights can indicate how much attention GraphCodeBERT pays to
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27
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29

SXbOLc ILQaO YRLd VHWSXbVcULSWLRQ (SXbVcULSWLRQ V) ^
...
    ObMHcWHHOSHU.UHTXLUHNRQNXOO( V, "V LV QXOO");
    LI (JHW() == 0 && cRPSaUHAQdSHW(0, 1)) ^
        SXbVcULSWLRQ a = acWXaO;
        LI (a != QXOO && caQcHOOQRHSOacH) ^
            a.caQcHO();
...
` 
<dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ>
<dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ><dIJ>

Figure 4: GraphCodeBERT attention weight example

Figure 5: Attention paid on code tokens

the input. As presented in Figure 4, we mark the attention weights
under colors, where darker red indicates more attention paid to
the associated words. We can observe that, GraphCodeBERT pays
more attention to program tokens, e.g., “Null” and “scription”.
Such words, which are part of this code snippet, can advance more
to code search than other words. In fact, GraphCodeBERT does not
pay much attention to the inclusive DFG information, as presented
by the colors of “<dfg>” tokens (indicating di�erent DFG nodes).
Note that such cases are widespread. Figure 5 further shows the
attention ratio of each attention head of GraphCodeBERT for pro-
gram tokens. We �nd that most attention heads pay most of their
attention (around 90% averagely) to program tokens, indicating
that the attention for DFG is rather limited, i.e., the DFG informa-
tion is inadequately leveraged for enhancing pre-trained models.
Therefore, we call for future research to better leverage the power
of integrating more information for pre-training.

Finding 7: Current strategies for improving the robustness of
pre-trained models, e.g., considering advanced learning strate-
gies or additional code semantics, have limited e�ectiveness.
We call for future research on more robust pre-trained models.

We then compare the performance variance across di�erent
attack approaches. Interestingly, we �nd that the Random approach
can achieve the optimal attack performance in 6 of 8 studied models
for defect detection, while for the other models, it also enables
rather strong performance, e.g., 6.47 v.s. 4.98 on GraphCodeBERT.
For code summarization, the Hard-Label approach outperforms
the Random approach on several subjects, e.g., the ⌫!⇢* -4 results
of CodeBERT and GraphCodeBERT on code summarization (2.30

Table 7: Attack approach study
Performance under
adversarial attack

Defect Detection Code Summarization
WIR-Random Random+ WIR-Random Random+

CodeBERT 21.30 13.94 2.15 1.24
GraphCodeBERT 5.95 2.16 1.10 0.41
ContraCode 3.61 2.27 3.45 1.69
CodeGPT 34.35 33.38 3.31 2.87
PLBART 12.42 7.21 1.29 0.96
CodeTrans 18.51 13.53 4.36 2.83
CoTexT 19.55 15.28 5.24 3.88
CodeT5 25.80 16.21 4.99 4.59
Avg num queries 129.18 583.11 154.09 762.27

and 1.31 of the Random approach v.s. 1.69 and 0.58 of the Hard-
Label approach). We observe that the average query number, i.e.,
the number of searching the optimal perturbance, of the Hard-
Label approach largely exceeds the Random approach (i.e., 925.51
and 814.53 v.s. 130.46 and 156.51 in terms of defect detection and
code summarization). Thus, we hypothesize that the superiority
of the Hard-Label approach over the Random approach is caused
by generating and evaluating more perturbations. Accordingly, we
attempt to improve the Random approach by adopting a larger =
in Algorithm 1 which allows more perturbations for each site. In
this way, the Random approach outperforms all the other attack
approaches in 14 of 16 subjects as in “Random+” of Table 7.

Finding 8: A simple random attack approach can already be
rather powerful for attacking NL-PL pre-trained models.

We further analyze the di�erence of the performance impact
between the search and transformation method. For the transfor-
mation method, the NLP attack approaches tend to preserve the
semantics at the natural language level by adopting synonyms for
substitution, i.e., selecting the semantically similar words with extra
embedding model. On the other hand, program semantics can be
preserved even when the variable names are changed. Therefore,
unnecessary restrictions can decrease the transformation method
e�ectiveness. Subsequently, to analyze the impact of the search
method, we build WIR-Random approach that combines the Word
Importance Rank (WIR) search method and Random transformation
method. Then, by comparing the WIR-Random result in Table 7
and the Random result in Table 5, we �nd that the WIR search
method enables limited advantage over the Random search method.
From such result we can infer that transformation methods incur a
greater impact on attack performance than search methods. While
in the NLP domain, the search methods may incur more perfor-
mance signi�cant impact as discussed in [77], because there are
more attackable sites in natural statements than programs.

Finding 9: Transformation methods tend to impact more on
attack performance than search methods for NL-PL pre-trained
models.

4 IMPLICATIONS AND DISCUSSIONS
Our study reveals the following important practical guidelines for
future research on pre-trained models.
Pre-training for code is promising. Our study results show that
the pre-trained code models can outperform the non-pre-trained
SOTA techniques upon almost all the evaluation tasks. Therefore,
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we strongly recommend applying pre-trained models for various
program understanding and generation tasks.
More rigorous evaluations are needed. Considering the stochas-
tic nature of neural networks and the small performance deviations
between di�erent models on some tasks (Finding 1), we recom-
mend researchers to replicate experiments when validating their
techniques to prevent over-claiming their advantages.
Multi-objective v.s. single-objective pre-training Our study
demonstrates that it can be rather challenging for researchers to
propose general-purpose pre-trained models for dominating both
program understanding and generation tasks. Speci�cally, it is hard
because the models targeting multi-objective optimization tasks
can potentially compromise their e�cacy compared with the ones
targeting single-objective optimization task.
Model robustness shall be further explored. Our experimen-
tal results show that the existing pre-trained models encounter
signi�cantly decreased performance even under random attacks.
Moreover, so far, simply incorporating program semantics fails to
enhance their robustness. Therefore, we recommend researchers to
put more e�orts to enhance robustness of pre-trained models.

5 THREATS TO VALIDITY
Threats to Internal Validity. The threats to internal validity
mainly lie in the potential bugs in our implementation. To reduce
such threats, we directly obtain the original source code from the
GitHub repositories of the studied techniques. Also, we adopt the
same hyperparameters as their original papers. The authors also
carefully reviewed the experimental scripts to ensure the correct-
ness. Meanwhile, while re-pretraining a model can be essentially
helpful for our study, most of the studied models do not provide
their pre-training code and dataset which prevent us from realiz-
ing such options. To reduce such threat, we design three research
questions for evaluating their provided pre-trained models from
multiple dimensions for assessing their characteristics.
Threats to External Validity. The threats to external validity
mainly lie in the benchmark and techniques adopted in this study.
To reduce such threats, we not only use the CodeXGLUE benchmark
studied in many original pre-trained model papers, but also include
more datasets to construct an extended benchmark. Meanwhile,
through an exhaustive literature review, we believe that the pre-
trained models adopted in this study are su�ciently representative
and in�uential in this domain, and we also assure that the non-pre-
trained models adopted in this study are the SOTA techniques for
their respective tasks.
Threats to Construct Validity. The threats to construct validity
mainly lies in the adoptedmetrics in our evaluations. To reduce such
threats, following the prior CodeXGLUE work, we adopt multiple
widely-used metrics to evaluate the performance of the studied
approaches, i.e.,�22DA02~, �1, %A428B8>=,'420;; ,"�% ,"'', ⌫!⇢* -
4, and ⇠>34⌫!⇢* . Meanwhile, for some tasks, we apply more than
one metrics to evaluate their performance. To further reduce the
threats, we also perform case studies to validate our hypothesis.

6 RELATEDWORK
Pre-trained language models have been shown to be e�ective in
NLP [15, 33, 39, 55]. BERT [15] is one of the most representative

works of its kind, a multilayer transformer-based encoder, which
achieves SOTA results on several natural language understanding
(NLU) tasks. By investigating the BERT, Liu et al. [39] �nd that
BERT was signi�cantly undertrained, and a �ne-grained selection
of hyperparameters can dramatically improve the performance of
BERT. However, noticing that BERT-based pre-trained language
models are not suitable for natural language generation (NLG) tasks,
the decoder structure was introduced (e.g, BART [33], T5 [56]) to
cope with both NLG and NLU tasks. With the remarkable success
of pre-trained models in NLP, multi-modal pre-trained models have
also been proposed. Such models can learn implicit alignments be-
tween di�erent modal inputs and thus can be used for cross-domain
tasks, e.g., ViLBERT [42] for language and image, VideoBERT [64]
for language and video, and SpeechT5 [7] for language and speech.

In recent years, researchers have explored various techniques
in the intersection of software engineering and machine learn-
ing [5, 8, 23, 36, 41, 70, 72, 78, 81, 82]. Program understanding and
generation bring together various program-related tasks, such as
defect detection, clone detection, code search, code summarization,
code generation, etc. Such tasks can be well transformed into ma-
chine learning problems. For instance, Alon et al. [5] applied neural
network techniques for generating distributed representations of
code. Bui et al. [8] proposed InferCode to learn program represen-
tations by predicting subtrees sampled from program ASTs. Hoang
et al. [23] proposed CC2Vec to learn a representation of commits
by commit messages and commit code changes. Meanwhile, pre-
trained language models have also been applied to various program
understanding and generation tasks. In addition to our studied mod-
els, Kanade et al. [31] apply BERT model to learn the contextual
embedding of source code. Liu et al. [38] pre-trained a BERT model
for code completion. Lachaux et al. [60] pre-trained a transformer
on source code from open source projects for code translation, and
such a model can achieve high accuracy under code translation task
between C++, Java, Python functions. Futhermore, Chen et al. [12]
proposed an enormous program language GPT-3 model with up
to 12 billion parameters and introduced its commercial application
GitHub Copilot. In this paper, we conduct the �rst comprehensive
study on multiple SOTA pre-trained models upon universal bench-
marks with in-depth analysis to advance future research. Note that
CodeXGLUE [43] with its leaderboard mainly presents a bench-
mark and evaluates baselines with limited analytical results and
hardly evaluates all studied models simultaneously on universal
benchmarks.

7 CONCLUSIONS
In this study, we have extensively investigated the e�ectiveness and
limitations of NL-PL pre-trained models for program understanding
and generation tasks. We �rst discover the performance �uctuation
of di�erent pre-trained models over di�erent tasks and datasets,
which indicates that it can be challenging to propose an almighty
pre-trained model across task types and it is essential for reliable
experiments to demonstrate the superiority of proposing new mod-
els. Furthermore, we also validate the superiority of pre-trained
models over conventional/previous SOTA methods on di�erent
downstream tasks. Finally, we perform the �rst study for NL-PL
pre-trained model robustness via adversarial attacks and �nd that
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the existing pre-trained models are rather vulnerable, e.g., they
can be easily attacked by a simple random attack approach, and
current strategies for improving the robustness of pre-trained code
models have limited e�ectiveness. Therefore, researchers should
make more e�orts on proposing integration schemes of additional
information with pre-training.
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