
Vectorizing Program Ingredients for Better JVM Testing
Tianchang Gao

College of Intelligence and
Computing, Tianjin University

China
gaotc090@tju.edu.cn

Junjie Chen∗
College of Intelligence and

Computing, Tianjin University
China

junjiechen@tju.edu.cn

Yingquan Zhao
College of Intelligence and

Computing, Tianjin University
China

zhaoyingquan@tju.edu.cn

Yuqun Zhang
Southern University of Science and

Technology
China

zhangyq@sustech.edu.cn

Lingming Zhang
University of Illinois
Urbana-Champaign

United States
lingming@illinois.edu

ABSTRACT
JVM testing is one of the most widely-used methodologies for
guaranteeing the quality of JVMs. Among various JVM testing
techniques, synthesis-based JVM testing, which constructs a test
program by synthesizing various code snippets (also called program
ingredients), has been demonstrated state-of-the-art. The existing
synthesis-based JVM testing work puts more efforts in ensuring
the validity of synthesized test programs, but ignores the influence
of huge ingredient space, which largely limits the ingredient ex-
ploration efficiency as well as JVM testing performance. In this
work, we propose Vectorized JVM Testing (called VECT) to fur-
ther promote the performance of synthesis-based JVM testing. Its
key insight is to reduce the huge ingredient space by clustering
semantically similar ingredients via vectorizing ingredients using
state-of-the-art code representation. To make VECT complete and
more effective, based on vectorized ingredients, VECT further de-
signs a feedback-driven ingredient selection strategy and an en-
hanced test oracle. We conducted an extensive study to evaluate
VECT on three popular JVMs (i.e., HotSpot, OpenJ9, and Bisheng
JDK) involving five OpenJDK versions. The results demonstrate
VECT detects 115.03%∼776.92% more unique inconsistencies than
the state-of-the-art JVM testing technique during the same testing
time. In particular, VECT detects 26 previously unknown bugs for
them, 15 of which have already been confirmed/fixed by developers.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Java Virtual Machine, Program Synthesis, JVM Testing, Test Oracle
∗Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598075

ACM Reference Format:
Tianchang Gao, Junjie Chen, Yingquan Zhao, Yuqun Zhang, and Lingming
Zhang. 2023. Vectorizing Program Ingredients for Better JVM Testing. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3597926.3598075

1 INTRODUCTION
Java Virtual Machine (JVM) is one of the important infrastructures
for the Java platform, and various Java applications require to be
processed by JVMs for execution [25, 26, 46]. Over the years, many
JVMs have been designed and developed by various organizations
and companies, such as HotSpot from Oracle [4], OpenJ9 from
IBM [5], GIJ from GNU [3], and Bisheng JDK from Huawei [1].
Although they are usually tested and maintained well, JVMs still
contain bugs due to their quite complicated functionalities and
huge code size [18]. In particular, JVM bugs could cause unexpected
behaviors for any Java applications (and the programs that are
written in other programming languages but can be compiled to
Java bytecode) processed by them. Therefore, guaranteeing the
quality of JVMs is definitely critical.

In the literature, some JVM testing techniques have been pro-
posed [17, 18, 58], among which synthesis-based JVM testing is
state-of-the-art and has outperformed the widely-studied mutation-
based JVM testing techniques as demonstrated by prior work [58].
Specifically, synthesis-based JVM testing constructs a test program
by synthesizing various code snippets, i.e., putting various ingredi-
ents extracted from historical bug-revealing test programs into a
new context provided by a given seed program. Although it opens a
promising direction for JVM testing, it is still in the initial stage and
suffers from a major limitation. Specifically, the current synthesis-
based JVM testing work puts more effort in ensuring the validity of
synthesized test programs, but ignores the influence of huge ingre-
dient space on the testing performance. Faced with huge ingredient
space, the current synthesis-based JVM testing just conducts ran-
dom search by treating each ingredient equally and individually,
which can limit the ingredient exploration efficiency as well as the
testing performance to a large extent.

To promote the performance of synthesis-based JVM testing,
in this work, we propose a novel technique, i.e., Vectorized JVM
Testing (called VECT). Its key insight is to improve the exploration
of the huge ingredient space by measuring the semantic similarity

526

https://doi.org/10.1145/3597926.3598075
https://doi.org/10.1145/3597926.3598075
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598075&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Tianchang Gao, Junjie Chen, Yingquan Zhao, Yuqun Zhang, and Lingming Zhang

among ingredients via program ingredient vectorization. Specifi-
cally, ingredients are small code snippets tailored from complete
test programs, and thus many of them are very likely to have similar
semantics, leading to similar bug-revealing capabilities. With this
intuition, VECT largely reduces the ingredient space by clustering
the ingredients with similar semantics to the same group. In this
way, ingredient selection from the huge space can be transformed to
group selection from the smaller space, thus improving the ingredi-
ent exploration efficiency and the testing performance. In particular,
VECT incorporates state-of-the-art code representations (e.g., Code-
BERT [23], InferCode [11], CodeT5 [49], and PLBART [8]) to encode
the ingredient semantics as vectors for ingredient clustering.

Although the search space can be largely reduced via ingredi-
ent vectorization and clustering, randomly selecting an ingredient
group for test program synthesis still limits the testing performance.
This is because different groups of ingredients can have different ca-
pabilities of generating bug-revealing test programs. Treating them
equally may lead to the frequent generation of useless test programs.
Hence, to make our proposed vectorized JVM testing technique
effective, VECT then designs a feedback-driven group selection
strategy based on the testing result after selecting an ingredient
group. It aims to learn which groups can facilitate the generation
of more bug-revealing test programs with fewer times of selection.
Finally, differential testing is always employed by synthesis-based
JVM testing as the test oracle, which compares the outputs of the
test program across several JVMs. However, it can hardly ensure
that the dependency between the ingredients and the output vari-
ables in the seed program is established after synthesis. Hence, it
could lead to missing the detection of the bugs that are triggered
by the synthesized test program but are not captured by the test
oracle (through the output variables). To make the synthesized test
programs really take effect for JVM testing, VECT monitors the
results of various intermediate variables in the synthesized test
program, and computes the checksum as the program output used
by differential testing.

To evaluate the effectiveness of VECT, we conducted an exten-
sive study on three popular JVM implementations (i.e., HotSpot [4],
OpenJ9 [5], and Bisheng JDK [1]) involving five OpenJDK versions.
The experimental results show that VECT can detect more unique
inconsistencies than the state-of-the-art synthesis-based JVM test-
ing technique (i.e., JavaTailor [58]) during the same testing time,
achieving 115.03%∼776.92% improvements across all the OpenJDK
versions. In particular, VECT detects 26 previously unknown bugs in
the latest HotSpot, OpenJ9, and Bisheng JDK, among which 15 bugs
have already been confirmed or fixed by developers. The results
demonstrate the effectiveness of VECT by vectorizing ingredients
for speeding up the ingredient exploration.

To sum up, our work makes the following major contributions:

• We propose Vectorized JVM Testing (i.e., VECT), which not
only reduces the huge ingredient space by semantically vec-
torizing ingredients via code representation but also en-
hances the ingredient selection process and test oracle.
• We conducted an extensive study on three popular JVM
implementations, demonstrating the effectiveness of VECT.
In particular, VECT detected 26 previously unknown bugs,
15 of which have been confirmed or fixed by developers.

public static void main(String[] var0) {
 test();
 System.out.println(CHECKSUM);
}
public static void test() {
 for(int var2 = 0; var2 < 100; ++var2) {
 for(int var3 = var2; var3 < 100; ++var3) {
 long var4 = 0;
 int var6;
 do {
 ++var4;
 long var5;
 var6 = (var5 = var4 - 100) == 0 ?
 0 : (var5 < 0 ? -1 : 1);
 CHECKSUM = Check.checksum(CHECKSUM , var4);
 } while(var6 < 0);
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Figure 1: HotSpot bug JDK-8290451

int i = 1;
args = new int[2];
if(i < args.length){
 args[i] = args[i] >> 15;
 i++;
}

int i = 1;
args = new int[3];
if(i < args.length){
 args[i] = args[i] << 15;
 i++;
}

1
2
3
4
5
6

1
2
3
4
5
6

Ingredient-1

Ingredient-2

if(var1 >= 997){
 test_2vi(...);
 var2 = 0;
} else {
 var2 = var2 + verify(...);
 var1++;
}

1
2
3
4
5
6
7

if(var1 >= 3){
 var2 = 0;
} else {
 var2 = var2 + verify(...);
 var1++;
}

1
2
3
4
5
6

Ingredient-3

Ingredient-4

Figure 2: Ingredient examples

• We developed a tool to implement VECT, and released it as
well as our experimental data at our project homepage [7]
for replication, future research, and practical use.

2 MOTIVATING EXAMPLE
In this section, we use an example to motivate our work. Figure 1
shows a HotSpot bug (ID: JDK-8290451, which produces incorrect
results when switching to C2 on-stack replacement compilation
from C1) detected by our proposed technique (to be introduced
in Section 3). The bug-revealing test program is synthesized by
merging the ingredient (the code with blue shadow in Figure 1)
into the seed program (the code without shadow in Figure 1). Based
on the same seed program and ingredient pool, the state-of-the-art
synthesis-based JVM testing technique, i.e., JavaTailor [58], could
also generate the bug-revealing test program (without Lines 3 and
15 that are used for checksum calculation) if the proper ingredient
is selected. The main contribution of JavaTailor is to construct valid
test programs by fixing the broken syntactic and semantic con-
straints due to ingredient insertion, but it conducts random search
for the ingredient space. Due to the huge ingredient space, select-
ing the proper ingredient in a random way is definitely inefficient.
Moreover, the testing resource is limited, and thus poor efficiency
could lead to poor effectiveness (e.g., missing the detection of this
bug within a given testing time).

For ease of understanding, we simplifies the testing process by
assuming that there are five ingredients in the pool in total. Figure 2

527

Vectorizing Program Ingredients for Better JVM Testing ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

shows the other four ingredients (which cannot help construct the
bug-revealing test program), andwe call the bug-reveling ingredient
(shown in Figure 1) Ingredient-5. If we enumerate each ingredient
for test program synthesis, the selection times is five at the worst
case. However, JavaTailor randomly selects an ingredient with re-
placement, the selection times could be more than five. Through
observation, we can find that Ingredient-1 and Ingredient-2 are sim-
ilar while Ingredient-3 and Ingredient-4 are similar in semantics.
These ingredients with similar semantics are more likely to have
similar bug-revealing capabilities. Indeed, similar ingredients are
common in practice since ingredients are not complete programs
but small code snippets tailored from complete test programs. If we
can put the semantically similar ingredients into the same group,
the ingredient space can be largely reduced as the group space. In
this way, the testing efficiency can be improved. With this intuition,
the five ingredients can be divided into three groups: {Ingredient-1,
Ingredient-2}, {Ingredient-3, Ingredient-4}, and {Ingredient-5}. Then,
through enumeration, the selection times is just three from the
group space at the worst case. This motivates that clustering
semantically similar ingredients is an effective method of
reducing the ingredient space, thus improving the testing
efficiency.

Although the ingredient space can be reduced after clustering,
randomly selecting a group by treating them equally for test pro-
gram synthesis still limits the testing efficiency. For example, as-
suming that the random strategy selects the first group at the first
iteration, it cannot construct the bug-revealing test program. In-
tuitively, we prefer not to select this group at the next iteration.
However, the random strategy also has the same probability to
select this group at the next iteration. If we can utilize the selection
history to guide the subsequent selections (e.g., we assign a smaller
selection probability to this group at the next iteration according to
the testing result of the first selection), it could be more efficient to
select the bug-revealing one (i.e., the third group). Moreover, if we
find that some groups contain bug-revealing ingredients according
to the testing history, we should assign a larger selection probabil-
ity to the group at the next iteration, which may help enhance the
overall bug detection effectiveness. This motivates that taking
the selection and testing history as feedback can effectively
guide future group selections, thus improving the overall
testing efficiency.

Actually, even though JavaTailor is able to synthesize the bug-
revealing test program by giving enough testing time, it still cannot
detect this bug. This is because it determines whether a test pro-
gram detects a bug by comparing the results of the output variables
on several JVMs (including checking crashes). However, the orig-
inal seed program does not have any output variables, and thus
this bug cannot be captured via output comparison. Such a case is
common in practice, and meanwhile it is possible that there is no
dependency between the variables in the ingredient and the output
variables in the seed program, which may also cause that the trig-
gered bug is not captured via output comparison. In this example,
when monitoring the result of var4 at Line 15 (or its affected vari-
ables, i.e., var5 and var6), this bug can be captured via differential
testing. This motivates that due to the characteristics of test
program synthesis, it is necessary to monitor the results of

Ingredient
Pool

Semantic
Vectorization

Ingredient
Clustering

Ingredient
Selection

Seed Pool

Synthesis

Enhanced
Test Oracle

Putback Feedback

Inconsistency

report

Consistency

report

Figure 3: Overview of VECT

various intermediate variables for differential testing, thus
enhancing the bug capture capability of the test oracle.

3 APPROACH
In this work, we propose a novel Vectorized JVM Testing technique,
VECT, to promote the direction of synthesis-based JVM testing.
Figure 3 shows the overview of VECT. It first vectorizes the seman-
tics of ingredients through code representation (Section 3.1), and
then clusters the ingredients with similar semantics into the same
group (Section 3.2), which can largely reduce the search space for
ingredient selection. Next, VECT gradually learns which groups of
ingredients should be selected with higher probabilities based on
the group selection history and the testing results of generated test
programs during the testing process (Section 3.3). It can help guide
the subsequent ingredient selections in order to achieve better test-
ing performance. Finally, VECT designs an enhanced test oracle
through monitoring the results of various intermediate variables
in order to capture the JVM bugs triggered by the synthesized test
programs more sufficiently (Section 3.4).

3.1 Ingredient Semantic Vectorization
As demonstrated by the existing work [58], five categories of ingre-
dients have been considered by synthesis-based JVM testing and
they are indeed effective. They are Sequential Ingredients, If Ingre-
dients, Loop Ingredients, Switch Ingredients, and Try-Catch Ingre-
dients. A sequential ingredient refers to a sequence of instructions
without any branches in the test program, and the other categories
of ingredients correspond to the program structure of if-else,
loop (i.e., while, do-while, or for), switch, and try-catch, re-
spectively. Following them, VECT also considers the five categories
of ingredients for JVM test program synthesis. Due to the rich in-
gredient categories and a number of historical bug-revealing test
programs as the ingredient providers, a large number of ingredients
can be collected to form the huge ingredient space for JVM test
program synthesis. The huge ingredient space can limit the testing
performance, since it is challenging to select proper ingredients
from the huge space to synthesize bug-revealing test programs.

Although ingredient providers often have different semantics,
the ingredients (which are small code snippets tailored from com-
plete test programs) may share similar semantics with each other,

528

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Tianchang Gao, Junjie Chen, Yingquan Zhao, Yuqun Zhang, and Lingming Zhang

thus leading to similar bug-revealing capabilities. With this intu-
ition, VECT reduces the ingredient space by clustering the ingredi-
ents with similar semantics to the same group. That is, the huge
ingredient space can be reduced as the smaller group space. There-
fore, one key task in VECT is to precisely encode the semantics of
each ingredient.

Instead of manually designing code features to vectorize code
semantics, various code representation models have been proposed
and constructed in recent years [8, 11, 23, 49]. The existing studies
have demonstrated their effectiveness in many software engineer-
ing tasks, such as code search [11, 23, 27] and code clone detec-
tion [8, 11, 49]. Following the state-of-the-art practice, VECT also
adopts code representation to encode ingredient semantics as vec-
tors. In practice, there are a large number of advanced pre-trained
code representation models. For the sake of cost-effectiveness,
VECT directly borrows the power from the community of code
representation by utilizing these pre-trained models to solve our
task (i.e., ingredient semantic vectorization), similar to the existing
work [48]. That is, our work does not pay attention to designing a
new code representation method, but looks for a proper pre-trained
code representation model to help achieve our goal.

Specifically, we investigated four state-of-the-art pre-trained
code representation models in VECT for ingredient semantic vec-
torization, and conducted an experiment to explore their influ-
ence on the performance of VECT, which will be presented in Sec-
tion 4.5.1. They are CodeBERT [23], InferCode [11], CodeT5 [49],
and PLBART [8]. In particular, we carefully considered their diver-
sity during selection, e.g., (1) InferCode transforms code as AST
for representation, while the other three take code as token stream
for representation; (2) they are based on different neural network
structures. In detail, CodeBERT is based on the RoBERTa struc-
ture [37] and employs Masked Language Modeling [20] and Re-
placed Token Detection [19] as pre-training tasks. InferCode is an
AST-based self-supervised pre-training model based on the TBCNN
structure [38] by taking AST subtree prediction as the pre-training
task. CodeT5 [49] is based on the T5 structure [41] and designs a
novel identifier-aware pre-training task. PLBART [8] is based on
the BART structure [34] and takes Token Masking, Token Dele-
tion, and Token Infilling as pre-training tasks. More details about
these models can be found in the corresponding papers. Indeed, it
is hard to guarantee that there exists the optimal one for our task
among the four models, and meanwhile VECT is not specific to the
four models. Hence, in the future, we can investigate more code
representation models in VECT to further improve its performance.

Regardless of code representation models, it can encode the
semantics of an ingredient as a vector (called semantic vector in
our paper). Since ingredients can be extracted at the Java-code or
Jimple-code level (e.g., JavaTailor extracts ingredients from Jimple
code), VECT should convert them to the Java-code level before code
representation. This is because these code representation models
are not trained with Jimple code data (but with Java code data) and
meanwhile Java code and Jimple code differ significantly. Therefore,
we can forecast that these pre-trained models cannot represent the
semantics of Jimple code precisely.

3.2 Ingredient Clustering
Based on these semantic vectors of ingredients, VECT then clus-
ters the ingredients with similar semantics into the same group.
That is, the ingredients belonging to the same group are more
likely to have the same (or similar) bug-revealing capabilities for
synthesizing test programs. In VECT, we adopted the hierarchical
clustering algorithm (i.e., AGNES [32], AGglomerative NESting) to
achieve the task of ingredient clustering. In fact, there are many
clustering algorithms, but we choose AGNES due to the following
three reasons: (1) The distribution of ingredients is extensive, and
thus it is almost impossible to know the number of clusters in ad-
vance. Hence, the clustering algorithms that require to pre-define
the number of clusters are not applicable, such as the widely-used
K-means algorithm [28]. (2) The number of ingredients is large, and
thus the clustering algorithms that perform not well on the large
number of samples are not applicable, such as the density-based
algorithms (e.g., DBSCAN [22]). (3) AGNES has a smaller number of
parameters to be set than many widely-used clustering algorithms
(e.g., K-means and DBSCAN), which makes it more easy-to-use in
practice.

Given a set of ingredients denoted as I = {𝑖1, 𝑖2, ..., 𝑖𝑛} (𝑛 refers
to the number of ingredients) and the corresponding semantic
vectors denoted as V = {𝑣1, 𝑣2, ..., 𝑣𝑛}, VECT adopts AGNES to
produce a set of groups denoted as G = {𝑔1, 𝑔2, ..., 𝑔𝑟 }, where 𝑔𝑖
consists of 𝑛𝑖 ingredients with similar semantics and 𝑟 refers to the
total number of groups. Specifically, AGNES utilizes the bottom-up
aggregation strategy for clustering, which is an iterative process.
In the initial stage, it regards each ingredient as a group, i.e., 𝑟 is
equal to𝑛. Then, in each iteration, it calculates the distance between
each pair of groups and merges the two closest groups into one
group, until all the ingredients are put into the same cluster (i.e., 𝑟
is equal to 1). The clustering process can be regarded as the process
of building a hierarchical nested clustering tree from leaf nodes
(the initial set of groups) to the root node (the group containing all
the ingredients). Finally, it outputs the set of groups at a hierarchy
in the tree with the highest quality as the final clustering result.

During the iterative clustering process, there are two core steps:
(1) measuring the distance between two groups, and (2) measuring
the quality of a set of groups at a hierarchy in the tree. Regarding
the former, VECT calculates the average distance between each
pair of ingredients from the two groups as shown in Formula 1.

𝑑𝑎𝑣𝑔 (𝑔𝑖 , 𝑔 𝑗) =
∑

𝑣𝑥 ∈𝑔𝑖
∑

𝑣𝑦 ∈𝑔𝑗 𝑑𝑖𝑠𝑡 (𝑣𝑥 , 𝑣𝑦)
|𝑔𝑖 | |𝑔 𝑗 |

(1)

where 𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗) calculates Euclidean distance between the seman-
tic vectors corresponding to a pair of ingredients from 𝑔𝑖 and 𝑔 𝑗 .
Regard the latter, VECT adopts Silhouette Coefficient [43] as the
metric following the existing work [44]. It measures how similar
a sample is to its own group (cohesion) compared to other groups
(separation). The closer its value is to 1, the higher the clustering
quality is. Its definition is shown in Formula 2.

𝑆𝐶 =
1
𝑛

𝑛∑︁
𝑘=1

𝑏𝑘 − 𝑎𝑘
𝑚𝑎𝑥{𝑎𝑘 , 𝑏𝑘 }

(2)

529

Vectorizing Program Ingredients for Better JVM Testing ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Algorithm 1: Ingredient Selection
Input: G: As set of groups obtained from ingredient clustering
Output: 𝐼 : The selected ingredient

1 Function IngredientSelection(G):
2 W← [] ; /* The list of weights for groups */
3 for 𝑔𝑖 𝑖𝑛 G do
4 W .add(weight(𝑔𝑖)) ;
5 P ← [] ; /* The list of probabilities for groups*/
6 for 𝑤𝑖 𝑖𝑛W do
7 P .add(𝑤𝑖/

∑𝑟
𝑗=1 𝑤𝑗) ;

8 𝑔← SelectGroup(G, P) ;
9 𝐼 ← RandomIngredient(𝑔) ; /* randomly select an ingredient

from g*/
10 return 𝐼 ;

11 Function SelectGroup(G, P):
12 index← 0 ;
13 𝑟 ← random(0, 1) ;
14 for 𝑝𝑖 𝑖𝑛 P do
15 if 𝑝𝑖 > 𝑟 then
16 return G.get(index) ;
17 else
18 𝑟 ← 𝑟 - 𝑝𝑖 ;
19 index← index + 1 ;

where 𝑛 refers to the total number of ingredients, 𝑎𝑘 represents
the average distance between the ingredient 𝑖𝑘 and the other ingre-
dients in the same group, and 𝑏𝑘 represents the average distance
between the ingredient 𝑖𝑘 and the ingredients in the other groups.
With this metric, VECT can obtain the clustering result with the
highest quality (closest to 1).

3.3 Ingredient Selection
After clustering, VECT requires to select ingredients for synthesiz-
ing new test programs. Although the ingredient space is reduced as
the group space, random group selection is still a less efficient strat-
egy. To improve the testing performance, VECT designs a feedback-
driven group selection strategy. VECT considers two criteria in the
selection strategy: (1) Bug-revealing capability. The groups that can
facilitate to synthesize bug-revealing test programs should be se-
lected with larger probabilities. (2) Diversity. The groups that were
selected more rarely should be selected with larger probabilities.
Algorithm 1 formally illustrates the selection process of VECT.

Based on the two criteria, VECT records which group is selected
for generating a new test program and whether the test program
detects a JVM inconsistency, in order to guide subsequent group
selections along with the testing process. Specifically, it calculates
the weight that a group is selected for test program synthesis as
shown in Formula 3 (Lines 2-4 in Algorithm 1).

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔𝑖) =
𝑡𝑖 + 1
𝑠𝑖 + 1

(1 ≤ 𝑖 ≤ 𝑟) (3)

where 𝑠𝑖 represents the total number of times that the group 𝑔𝑖
is selected during the testing process, and 𝑡𝑖 represents the total
number of times that the generated test program after selecting
𝑔𝑖 triggers a JVM inconsistency. Here, the “1” on the numerator

and denominator indicates that the initial selection weight of each
group is 1.

Then, VECT normalizes the selection weight of each group based
on the Roulette Wheel algorithm [47] to balance the scale of dif-
ferent weights (Lines 5-7). Formula 4 presents the normalization
process.

𝑝𝑖 =
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔𝑖)∑𝑟
𝑗=1𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔 𝑗)

(4)

where 𝑟 is the number of groups and 𝑝𝑖 represents the selection
probability of the group 𝑔𝑖 .

According to the selection probability of each group, before
constructing a test program, VECT first selects a group (Line 8).
However, an ingredient (rather than a group) is required by test
program synthesis, and thus VECT should further select an ingre-
dient from the group. Since the ingredients in the same group have
similar semantics, VECT randomly selects one ingredient from it as
the one used for test program synthesis (Line 9). Here, we do not fix
an ingredient as the representative of a group for test program syn-
thesis, since repeatedly using one ingredient in the selected group
could lead to less diversity than the random ingredient selection
method.

After selecting an ingredient through the feedback-driven strat-
egy, VECT constructs a new test program by synthesizing the in-
gredient into the given seed program. Due to the complex syntactic
and semantic constraints involved in a program, the synthesis could
break those constraints (e.g., incurring undefined variables), leading
to an invalid test program. To generate a valid test program, VECT
adopts the constraint fixing strategy proposed in JavaTailor.

3.4 Enhanced Test Oracle
The existing JVM testing techniques (including the state-of-the-art
JavaTailor) employ differential testing as the test oracle [17, 18, 58].
Specifically, they compare the outputs of the same test program
on several JVMs (e.g., HotSpot and OpenJ9). If the outputs are dif-
ferent, it indicates that the test program triggers an inconsistency
among JVMs. They consider two kinds of outputs: (1) The exception
messages or crash messages when the test program terminates ab-
normally; (2) The execution results (produced based on the output
variables in the test program) when the test program terminates
normally. However, when synthesizing an ingredient into a seed
program, the ingredient is very likely to have no dependency with
the output variables in the seed program. Therefore, the incon-
sistency triggered by the synthesized test program could be not
captured by the current widely-used test oracle. That is, when an
inconsistency is triggered and captured by the variables in the in-
gredient, it may be not propagated to the output variables due to
without dependency between them.

To improve the performance of synthesis-based JVM testing,
VECT enhances the test oracle by considering the characteristics
of test program synthesis. That is, the enhanced test oracle, instead
of just observing the results of the output variables in the seed
program, monitors the results of various intermediate variables
in the synthesized test program. In this way, the program states
affected by the ingredient can be also reflected from the outputs for
differential testing. Specifically, instead of instrumenting a number

530

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Tianchang Gao, Junjie Chen, Yingquan Zhao, Yuqun Zhang, and Lingming Zhang

of print statements for recording the results of intermediate vari-
ables (which can incur extra I/O overheads), VECT calculates the
checksum of intermediate variables in the synthesized test program
as the outputs inspired by the existing work [54].

In fact, adding extra checksum calculations could negatively af-
fect the execution efficiency of synthesized test programs. Hence,
VECT designs some compromises in the enhanced test oracle to bal-
ance the testing effectiveness and efficiency. First, VECT considers
all the global and local variables with primitive types for checksum
calculation, but ignores the variables with reference types. This is
because the fields of a reference-type variable could be other refer-
ence types, which would cause recursive access until finding primi-
tive types. When the reference-type dependency is long/circular,
this process could be costly, even causing StackOverFlowError.
Second, the value of each variable tends to be updated several times
in a test program and thus performing checksum calculation for
each update could be costly. Hence, VECT identifies the last ac-
cess for each variable through static analysis and then performs
checksum calculation by using the final value of each variable. In
addition, some variables involve non-determinism, such as random-
ness and timestamps, which can incur inaccuracies to the enhanced
test oracle and thus lead to false positives. Therefore, VECT dis-
cards them from checksum calculations by analyzing the depen-
dency between variables and non-deterministic instructions (e.g.,
System.currentTimeMillis and Random().nextInt).

With the enhanced test oracle, when the synthesized test pro-
gram terminates normally, VECT can better capture the triggered
inconsistency through checksum outputs. Moreover, same as the ex-
isting practice [58], when the test program terminates abnormally,
VECT also captures the inconsistency according to the exception
messages or crash messages. Despite our best effort for reducing
noise in differential testing (such as filtering out non-deterministic
outputs), we still manually analyze whether a found inconsistency
is a real bug or a false positive before reporting it to JVM’s devel-
opers. If an inconsistency is a false positive, we then design a rule
accordingly and incorporate it in VECT to improve the accuracy
of subsequent JVM testing. If a synthesized test program does not
detect any inconsistency and terminates normally, VECT puts it
into the seed pool for high-order synthesis.

4 EVALUATION
In the study, we aim to address the following research questions:
• RQ1: Which code representation model is the most effective
to VECT?
• RQ2: How does VECT perform in detecting JVM bugs?
• RQ3: Can VECT achieve higher JVM code coverage?
• RQ4: Does each main component in VECT contribute to its
overall performance?

4.1 JVMs, Seed Programs, and Ingredients
JVMs. In the study, we adopted three popular JVMs as subjects,
including the widely-studied ones in the existing work [17, 18, 58]
(i.e., HotSpot [4] and OpenJ9 [5]) and an emerging JVM in recent
years (i.e., Bisheng JDK [1]). For fair comparison with the state-of-
the-art synthesis-based JVM testing technique (i.e., JavaTailor), we
used the same versions for HotSpot and OpenJ9 as the evaluation

Table 1: Studied JVM versions

OpenJDK

Version

JVM

Implementation
Version

OpenJDK8

HotSpot
bulid 25.0-b70

build 25.345-b01

OpenJ9
bulid openj9-0.8.0

build openj9-0.32.0

Bisheng JDK
build 25.302-b13

build 25.332-b11

OpenJDK11

HotSpot
bulid 11+2

build 11.0.16+8

OpenJ9
build openj9-0.12.0

build openj9-0.32.0

Bisheng JDK
build 11.0.12+13

build 11.0.15+11

OpenJDK12
HotSpot build 12+33

OpenJ9 build openj9-0.13.0

OpenJDK13
HotSpot build 13+33

OpenJ9 build openj9-0.16.0

OpenJDK14
HotSpot build 14+36-1461

OpenJ9 build openj9-0.20.0

Shadow represents the used new build of the corresponding JVM.

of JavaTailor. As shown in Table 1, we considered five OpenJDK
versions for them. Specifically, for each OpenJDK version, we first
used the old builds for differential testing, since these old builds
tend to contain more bugs that can help obtain more significant
comparison results in statistics. Then, to investigate whether VECT
can detect previously unknown JVM bugs, we also used OpenJDK-
8 and OpenJDK-11 as the representative, and then applied VECT
to the new builds of the two OpenJDK versions for differential
testing, respectively. Since Bisheng JDKwas not used by the existing
study [58], we selected an old build and the latest build for OpenJDK-
8 and OpenJDK-11, respectively. Please note that Bisheng JDK does
not release builds for OpenJDK-12, OpenJDK-13, and OpenJDK-14.

To sum up, we performed seven differential-testing experiments
amongHotSpot, OpenJ9, and Bisheng JDK in total: (1) five differential-
testing experiments on old builds of these JVMs due to five OpenJDK
versions; (2) two differential-testing experiments on new builds of
these JVMs for OpenJDK-8 and OpenJDK-11. Table 1 shows the
specific version/build information in our study.

Seed Programs. For fair comparison, we used the same bench-
marks as the evaluation of JavaTailor [58]. Table 2 shows the basic
information of these benchmarks. Each of the first six benchmarks
contains only one seed program (i.e., the classfile including the main
function). The latter two benchmarks contain more test programs,
which are the historical bug-revealing test programs collected from

531

Vectorizing Program Ingredients for Better JVM Testing ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 2: Benchmarks

ID Project #Size #Inst #Time

P1 avrora 1 294 39,017 s
P2 eclipse 1 2,057 144,000 s
P3 pmd 1 806 86,400 s
P4 jython 1 369 120,783 s
P5 fop 1 186 17,168 s
P6 sunflow 1 305 34,809 s
P7 HotSpot-tests 563 116,427 3 days
P8 OpenJ9-tests 653 246,370 3 days

the repositories of HotSpot and OpenJ9, respectively. Since the en-
hanced test oracle of VECT calculates checksum of intermediate
variables, the seed programs involving the multi-thread mechanism
were removed from the benchmarks. Hence, the number of seed
programs in the latter two benchmarks is smaller than that used in
the evaluation of JavaTailor. In Table 2, Column #inst represents the
total number of Jimple instructions of the seed programs in each
benchmark and Column #time represents the testing time spent on
each benchmark set by the existing work for evaluating JavaTai-
lor [58]. For fair comparison, we also ran each studied JVM testing
technique for the same testing time by taking the corresponding
benchmark as the seed programs.
Ingredients. Same as the existing work [58], we also extracted five
categories of ingredients from the P7 benchmark (a set of historical
bug-revealing test programs for HotSpot) as the ingredient pool in
our study. In total, there are 31,571 ingredients, including 16,973
Sequential ingredients, 8,362 If ingredients, 5,812 Loop ingredients,
397 Try-Catch ingredients, and 27 Switch ingredients

4.2 Compared Techniques
Since VECT also belongs to synthesis-based JVM testing, we com-
pared it with the state-of-the-art synthesis-based technique, i.e.,
JavaTailor. JavaTailor randomly selects an ingredient from the
ingredient pool to synthesize a new test program and then adopts
differential testing based on the output variables in the seed pro-
gram (also including exception or crash messages when the test
program terminates abnormally) as the test oracle. Although there
are some other JVM testing techniques, such as classming [17],
the evaluation of JavaTailor has demonstrated the superiority of
JavaTailor over them. Moreover, our evaluation shares the same ex-
perimental setting as that of JavaTailor. Hence, we did not consider
the other techniques in our study.

To answer RQ1, we compared the performance of VECT with
different code representation models. As presented in Section 3.1,
we investigated four typical code representation models, i.e., Code-
BERT, InferCode, CodeT5, and PLBART. That is, we constructed
four instantiations of VECT. For ease of presentation, we call them
VECTCodeBERT, VECTInferCode, VECTCodeT5, and VECTPLBART,
respectively. Then, we used the most effective instantiation as the
default VECT in the experiments of answering the other RQs and
the practical use.

To answer RQ4, we constructed three variants of VECT to in-
vestigate the contribution of different components (i.e., our in-
gredient representation and clustering component, our feedback-
driven ingredient selection component, and our checksum-based

test oracle). For ease of presentation, we call them VECTnoCluster
(removing our ingredient representation and clustering compo-
nent), VECTnoFeedback (removing our feedback-driven ingredi-
ent selection component, but randomly selecting an ingredient
group after clustering for synthesizing a new test program) and
VECTnoChecksum (removing our checksum-based test oracle).

4.3 Measurements
Number of known unique inconsistencies. In the differential-
testing experiments on old builds of JVMs, each studied technique
may detect a number of inconsistencies during the same testing time.
As presented before, an inconsistency may be a real bug or a false
positive, and thus we further ran the test program triggering the
inconsistency on the latest builds of JVMs in order to check whether
the inconsistency still exists or not till now. If this inconsistency
disappears, we regarded it as a known bug that has been fixed before
the latest builds; Otherwise, we further manually investigated it
to obtain the conclusion of the inconsistency and reported the
potential bug to the developers of JVMs.

Through the above method, we can obtain a set of inconsisten-
cies corresponding to known bugs, but these inconsistencies may
be duplicate. Hence, we further de-duplicated them in two ways
according to different inconsistency types. For the inconsistencies
with exception or crash messages, we used the corresponding mes-
sages for de-duplication following the existing work [58]. For the
inconsistencies detected when test programs terminate normally
(e.g., those detected through the checksum outputs), we adapted
the Correcting Commit method [13] for de-duplication. That is, it
identifies the first build that fixes the bug (making the test program
not produce the inconsistency again). If the same build is identified
for two inconsistency-triggering test programs, we regarded that
they detected the same known bug. Although this method may not
be perfect (a threat in our study), the existing study has demon-
strated its accuracy and meanwhile it is the only automatic method
for de-duplication in the area of compiler testing. With the above
methods, we can measure the number of unique inconsistencies
corresponding to known bugs from a number of inconsistencies
detected by a JVM testing technique.
Number of previously unknown bugs. In the differential-testing
experiments on new builds of JVMs, each studied technique may
also detect inconsistencies during the same testing time. Here, we
used the same new builds as the evaluation of JavaTailor for fair
comparison, which aims to avoid the influence that the JVM builds
under test are immune to JavaTailor. That is, they may be not the
latest build. Therefore, we further reproduced these inconsistencies
on the latest build, in order to obtain a set of inconsistencies that
still exist on the latest builds, which may be caused by previously
unknown bugs. For these inconsistencies, the above-mentioned
automatic method cannot be applied to determine whether they are
real bugs or false positives. Hence, we manually analyzed them and
then reported potential bugs to the developers of JVMs. Finally, we
can measure the number of previously unknown bugs according to
the developers’ feedback.
Test coverage of JVM. We also measured the test coverage of
JVM achieved by each technique during the same testing time in
order to further understand the performance difference between

532

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Tianchang Gao, Junjie Chen, Yingquan Zhao, Yuqun Zhang, and Lingming Zhang

Table 3: Comparison results of VECT under different code
representation models

Model InferCode CodeBERT CodeT5 PLBART

#Unique
Inconsistencies 28 15 26 45

them. Following the existing work [58], we measured line coverage,
branch coverage, and function coverage, respectively.

4.4 Implementation and Environment
We implemented VECT in Java and Python. We adopted the pre-
trained code representation models released by the corresponding
work [8, 11, 23, 49] in VECT. We adapted the AGNES clustering
algorithm to our task based on the sklearn library [6]. Regarding
the code representation models and the clustering algorithm, we
used their default parameters. For fair comparison, we ran each
studied technique on each benchmark for the same testing time,
and set the testing time budget on each benchmark following the
existing work [58] as shown in the last column in Table 1.

In particular, we have developed a tool for VECT and released
it as well as our experimental data on our project homepage [7], for
replication, future research, and practical use. All our experiments
were conducted on a sever with Intel(R) Xeon(R) CPU E5-2620 v4
@ 2.10GHz and 128GB RAM, running Ubuntu 16.04 LTS (64 bit).

4.5 Results and Analysis
4.5.1 RQ1: Influence of Different Code Representation Models. This
experiment aims to select the best code representationmodel (among
the four studied models) for VECT. Here, we used OpenJDK-11 and
the P7 benchmark as the representative due to the large costs of
running each instantiation of VECT on all the versions and bench-
marks. Table 3 shows the comparison results among VECTCodeBERT,
VECTInferCode, VECTCodeT5, and VECTPLBART in terms of the num-
ber of unique inconsistencies. We found that VECTInferCode (28)
and VECTPLBART (45) detect more unique inconsistencies than
VECTCodeBERT (15) and VECTCodeT5 (26) during the same testing
time. The main reason may be that the two pre-trained models (i.e.,
PLBART and InferCode) learn the Java code semantics better than
the remaining two (i.e., CodeBERT and CodeT5). Specifically, the
size of Java code training data for PLBART and InferCode is 470M
and 16M respectively, while that for CodeT5 and CodeBERT is just
1.6M and 1.5M respectively. In general, the quantity and quality
of training data can largely affect the performance of the trained
models [57]. Moreover, the pre-training task of InferCode may be
more suitable to our task than the other three, since it considers the
code structure information with AST analysis (besides textual in-
formation). Therefore, InferCode can achieve similar performance
with PLBART even though the size of Java code training data for
the former is significantly smaller than that for the latter. To sum
up, we selected PLBART as the default code representation model in
VECT due to its effectiveness.

4.5.2 RQ2: Performance of VECT in JVM Bug Detection. We com-
pared VECT with JavaTailor in terms of the number of unique
inconsistencies (corresponding to known bugs) and the number of
previously unknown bugs to answer RQ2.

Comparison in terms of unique inconsistencies. Table 4 shows
the comparison results between VECT and JavaTailor in terms of
unique inconsistencies from differential-testing experiments on old
builds. First of all, all the detected inconsistencies by JavaTailor
are due to exceptions or crashes (i.e., the test programs terminate
abnormally), which is consistent with the conclusion from the ex-
isting work [58]. That is, the output variables in the seed programs
are ineffective to capture the bugs triggered by the synthesized test
programs. In contrast, VECT can detect both the inconsistencies
due to exceptions or crashes and the inconsistencies due to out-
puts from normal executions. In particular, the number of unique
inconsistencies for the latter on all the benchmarks is significant
(ranging from 62 to 123 in the five differential-testing experiments).
This results demonstrate the contribution of our enhanced test
oracle through checksum calculation, which largely improves the
effectiveness of synthesis-based JVM testing.

In terms of the number of unique inconsistencies due to ex-
ceptions/crashes, VECT also outperforms JavaTailor in all the five
differential-testing experiments. During the same testing time, the
average number across the five experiments of VECT is 80.8, while
that of JavaTailor is 51.2. The improvement of VECT over JavaTailor
ranges from 43.93% to 223.08% in the five experiments. The results
demonstrate that VECT speeds up the detection of JVM bugs com-
pared with JavaTailor through reducing the ingredient space with
code representation and clustering and designing a feedback-driven
ingredient selection strategy.

Overall, during the same testing time, VECT detects 115.03%
∼ 776.92% more unique inconsistencies (including both exception
inconsistencies and output inconsistencies) than JavaTailor in the
five differential-testing experiments.

Comparison in terms of previously unknown bugs.We fur-
ther compared VECT with JavaTailor in terms of the number of
previously unknown bugs from the differential-testing experiments
on new builds. As demonstrated by the existing work [58], JavaTai-
lor detected 6 previously unknown bugs (confirmed or fixed by
developers) at that time of evaluating JavaTailor. Since we used
the same JVM builds under test as the evaluation of JavaTailor, our
experimental results further confirmed the conclusion of JavaTailor
(i.e., the same 6 bugs). During the same testing time, all the 6 bugs
were also detected by VECT, and meanwhile VECT detected 26
additional new bugs, 15 of which have been confirmed or fixed by
developers. Table 5 shows the information of the 15 confirmed/fixed
previously unknown bugs. Among them, 7 bugs are captured due
to the inconsistencies based on exceptions/crashes. In theory, if
we ran JavaTailor for enough time, they can be also detected by
it since we used the same seed programs and ingredient pool for
both VECT and JavaTailor. That further demonstrates that VECT
is able to largely improve the efficiency of synthesis-based JVM
testing. The remaining 8 bugs are captured by VECT due to the in-
consistencies of checksum results, and thus they cannot be detected
by JavaTailor even if longer testing time is provided. That further
demonstrates that VECT is also able to improve the effectiveness
of synthesis-based JVM testing.

Besides the bug used in Section 2, we further used another pre-
viously unknown bug detected by VECT as an example for further
illustration. Figure 4 shows a simplified synthesized test program

533

Vectorizing Program Ingredients for Better JVM Testing ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 4: Comparison results of JavaTailor and VECT in terms of the number of unique inconsistencies

ID
OpenJDK8 OpenJDK11 OpenJDK12 OpenJDK13 OpenJDK14

J.T. VECT J.T. VECT J.T. VECT J.T. VECT J.T. VECT

E.D. E.D. C.D. E.D. E.D. C.D. E.D. E.D. C.D. E.D. E.D. C.D. E.D. E.D. C.D.

P1 11 11 0 0 0 0 1 3 0 0 0 0 0 0 0
P2 10 15 0 1 1 0 0 1 0 1 0 0 1 14 0
P3 7 13 1 0 2 1 2 2 1 0 2 0 0 0 0
P4 6 7 0 0 1 0 0 1 0 0 0 0 0 0 0
P5 3 3 0 0 0 0 0 2 0 0 0 0 0 0 0
P6 2 9 54 1 1 52 2 6 55 1 3 38 0 1 66
P7 42 55 37 12 14 31 10 14 5 2 8 16 3 5 52
P8 92 136 31 14 22 23 14 15 3 9 15 8 9 22 9

Total 173 249 123 28 41 107 29 44 64 13 28 62 13 42 72

J.T. : JavaTailor E.D. : Exception/Crash Difference C.D. : Checksum Difference

Table 5: Previously confirmed or fixed bugs detected by VECT

Bug ID JVM
Affected
OpenJDK Status Type

Bug#14716 OpenJ9 8,11,17,18 Fixed Exception
Bug#15166 OpenJ9 8,11,17,18 Fixed Exception
Bug#15500 OpenJ9 8,11,17,19 Confirmed Checksum
Bug#16202 OpenJ9 11,17 Confirmed Exception
JDK-8290451 HotSpot 8,11,17,19,20 Fixed Checksum
JDK-8290705 HotSpot 8,11,17-20 Fixed Checksum
JDK-8293044 HotSpot 8,11,17-20 Fixed Checksum
JDK-8294889 HotSpot 11,17 Confirmed Exception
JDK-8294938 HotSpot 8 Confirmed Exception
Bug#I5IBSU Bisheng JDK 8,11 Confirmed Checksum
Bug#I5HV0D Bisheng JDK 8,11 Confirmed Checksum
Bug#I5HDPU Bisheng JDK 8,11 Confirmed Checksum
Bug#I5IBSU Bisheng JDK 11 Confirmed Checksum
Bug#I5XRFM Bisheng JDK 8 Confirmed Exception
Bug#I5XRFS Bisheng JDK 11 Confirmed Exception

public static int[] src = new int[1];
public static int[] dst = new int[536870913];
public static int CHECKSUM = 0;
public static void main(String[] var0) {
 for(int var1 = 0; var1 < 20000; ++var1) {
 test();
 }
 System.out.print(CHECKSUM);
}
public static void test() {
 ...
 int var0 = 536870912;
 System.arraycopy(src, 0, dst, var0, 1);
 System.arraycopy(dst, var0, src, 0, 1);
 CHECKSUM = Check.checksum(CHECKSUM , var0);
 ...
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Figure 4: OpenJ9 bug #15500

triggering a JIT optimization bug in OpenJ9. This bug is detected
via checksum comparison. In this example, VECT inserts an in-
gredient containing two invocations to the built-in array API (i.e.,

System.arraycopy) before Line 16, and inserts the checksum cal-
culation of the intermediate variable introduced by the ingredient
(i.e., var0) at Line 15. The ingredient and the checksum calculation
statement (Lines 12-15) are identified as hot code and thus trigger
JIT optimizations, since the function test they belong to is repeat-
edly executed 20,000 times at Line 6. However, OpenJ9 incorrectly
assumes that the second arraycopy at Line 14 will trigger a bound
check failure during local value propagation optimization, and thus
removes all the statements after Line 14. The wrong optimization
makes OpenJ9 produce incorrect checksum results compared to
Hotspot. The developers of OpenJ9 have confirmed this bug and
assured to fix it in the next release. Note that this bug cannot be
detected by JavaTailor, since JavaTailor cannot observe the state of
intermediate variables.

4.5.3 RQ3: Performance of VECT in JVM Code Coverage. To better
understand why VECT detects more bugs than JavaTailor during
the same testing time, we further compared them in JVM coverage
achieved by them by taking OpenJDK-11 build 11+2 of HotSpot as
the representative. Here, we collected JVM line coverage, branch
coverage, and function coverage through the widely-used cover-
age collection tool (i.e., Gcov [2]). Due to the space limit, we just
reported the comparison results in terms of line coverage as shown
in Figure 5, and all the results can be found at our project home-
page. Indeed, the conclusions from line coverage, branch coverage,
and function coverage are consistent. In Figure 5, the x-axis repre-
sents each benchmark while the y-axis represents the line coverage
achieved by each technique when taking the corresponding bench-
mark as the seed programs. From this figure, VECT achieves higher
JVM line coverage than JavaTailor on each benchmark during the
same testing time. That demonstrates the performance of VECT in
terms of JVM coverage.

We further analyzed the coverage growth trend with the testing
process proceeding, to better understand the efficiency superiority
of VECT. Here, we used the P5 benchmark as the representative
(which has the moderate improvement of VECT over JavaTailor
in Figure 5). Figure 6 shows the trend, where the x-axis repre-
sents the testing time while the y-axis represents the achieved line

534

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Tianchang Gao, Junjie Chen, Yingquan Zhao, Yuqun Zhang, and Lingming Zhang

Figure 5: Line coverage Figure 6: Line coverage trend on P4 Figure 7: VECT v.s. VECTnoFeedback

coverage. From this figure, except at the very early stage, VECT
always achieves higher JVM line coverage than JavaTailor, and the
superiority of VECT becomes more obvious after one hour. This
is because at the very early stage, the feedback-driven ingredient
selection strategy does not learn too much for guiding the test-
ing process. With the testing process proceeding, this strategy can
receive more and more feedback and meanwhile the superiority
of the reduced ingredient space becomes obvious gradually, and
thus VECT achieves better results in terms of JVM line coverage
accordingly. That demonstrates the high efficiency of VECT.

4.5.4 RQ4: Contribution of Each Main Component in VECT. We
investigated the contribution of three main components in VECT by
comparing VECTwith VECTnoCluster, VECTnoFeedback, VECTnoChecksum,
and taking OpenJDK11 and the P7 benchmark as the representative.
Table 6 shows the comparison results among them in terms of the
number of unique inconsistencies. From Table 6, we found that
VECT performs better than all of the three variants, and they are
all superior to JavaTailor. The results demonstrate the contribution
of each component to the overall performance of VECT. The per-
formance of VECTnoChecksum is relatively poor since VECT without
checksum-based test oracle can only find the unique inconsistencies
due to exceptions/crashes.

Figure 7 further shows the comparison results between VECT
and VECTnoFeedback, where the x-axis represents the testing time
while the y-axis represents the number of unique inconsistencies
detected by each technique within the corresponding testing time.
From this figure, VECT detects more unique inconsistencies than
VECTnoFeedback during the entire testing process. With the testing
process proceeding, the superiority of VECT over VECTnoFeedback
becomes more and more obvious. This is as expected, since there
is no too much feedback that can be used by our feedback-driven
selection strategy during the early stage, but the feedback informa-
tion can be gradually accumulated. The results further demonstrate
the contribution of our feedback-driven selection strategy in VECT.

5 DISCUSSION
5.1 Future Work
In the future, we can improve VECT from two aspects. First, VECT
applies code representation to encode Java code semantics as vec-
tors. Actually, Jimple code can be also treated as the test inputs

of JVMs, and VECT converts Jimple code to Java code for seman-
tic vectorization. The conversion process can incur extra costs. In
the future, we may fine-tune the pre-trained code representation
models with Jimple code so as to better fit this form of ingredients.
Second, despite our best efforts for improving the bug detection
accuracy of VECT, it still reports a few false positives. There are
two main reasons: (1) Some contents in the OpenJDK specification
are general, causing that different JVMs have different implemen-
tations for the same specification. However, they all believe that
they conform the specification via communication. In the future,
we will try to communicate with the designers of the specification,
in order to further handle these cases. (2) The dependent packages
(e.g., java.lang.Math) by the synthesized test programs may in-
volve randomness, which can affect the accuracy of checksum com-
parison. Although VECT identifies non-deterministic instructions
inside the test programs, it is non-trivial to identify such instruc-
tions inside all the dependent packages in advance. Therefore, after
coming across this kind of issues, we designed and programmed
some rules in VECT to avoid similar issues in future testing. In the
future, we will incorporate advanced program analysis methods to
more elegantly address this problem.

5.2 Threats to Validity
The internal threat to validity mainly lies in the implementation of
VECT and JavaTailor. To reduce this threat, we directly adopted the
implementation of JavaTailor released by the existing work [58].
VECT was implemented based on some mature libraries and pre-
trained code representation models released by the corresponding
work [8, 11, 23, 49]. Two authors have carefully check all our source
code.We also released our implementation for replication. Note that,
we designedmore filtering rules (e.g., some implementations among
JVMs are different but all correct, which may produce different
exceptions for the same cases) and applied them to VECT and
JavaTailor for obtaining more accurate results.

The external threats to validity mainly lie in the seed programs
and ingredients used in our study. For fair comparison with JavaTai-
lor, we adopted almost the same seed programs and ingredients
as the existing study [58]. Here, we discarded the seed programs
and ingredients involving the multi-thread mechanism to ensure
the accuracy of the test oracle. In the future, we will use more seed
programs and ingredients to further reduce these threats.

535

Vectorizing Program Ingredients for Better JVM Testing ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 6: Comparison among JavaTailor, VECT, and VECT’s variants

Method VECT VECTnoCluster VECTnoFeedback VECTnoChecksum JavaTailor

#Unique
Inconsistencies 45 30 34 17 12

The construct threats to validity mainly lie in randomness and
the method of identifying duplicate inconsistencies detected by
normal execution outputs. To reduce the threat of randomness, we
conducted five differential-testing experiments instead of repeating
one experiment several times. Indeed, we obtained the consistent
conclusions from the five experiments. Regarding the latter threat,
we have discussed it in Section 4.3.

6 RELATEDWORK
JVM Testing. Our work is the most related to JVM testing. Besides
the compared technique (i.e., JavaTailor) in our study, there are
some other JVM testing techniques [10, 18, 42, 55, 56]. For example,
Chen et al. proposed two mutation-based techniques, i.e., class-
fuzz [18] and classming [17], which design some mutation rules
(e.g., changing the modifier or type of a variable) to minorly change
the given seed program for generating a new test program. Zhang et
al. [56] proposed JAttack, which generates test programs by filling
holes in the template classes with randomly generated expressions
and values. Hwang et al. [30] proposed JUSTGen, which designs a
domain-specific language for the JNI specification and identifies
unspecified cases in the specification to generate test programs.

Different from them, our work proposes Vectorized JVM Testing
to promote the performance of synthesis-based JVM testing. Its
key insight is to improve the ingredient exploration by vectorizing
ingredients for clustering and guiding the ingredient selection based
on the selection and testing history.
Compiler Testing. Our work is also related to compiler test-
ing [12, 15, 16, 45], since both of them take programs as inputs.
Here, we briefly introduce the related work on compiler testing [14].
For example, Yang et al. [54] proposed Csmith, which is a grammar-
based C program generator. Lidbury et al. [36] proposed CLsmith
based on Csmith, which designs sixmodes to generate test programs
for OpenCL compilers. Le et al. [33] proposed Equivalence Modulo
Inputs (EMI) for testing C compilers, which constructs equivalent
programs under a set of inputs through programmutation. Windsor
et al. [51] proposed C4, which generates multi-thread C programs
and the corresponding post-conditions to test the concurrency be-
haviours of C compilers. Donaldson et al. [21] proposed GLFuzz,
which designs semantics-preserving program transformations to
generate test programs for shader compilers. Holler et al. [29] pro-
posed a synthesis-based JS program generation technique, but like
JavaTailor, it randomly combines code fragments by treating them
equally and individually.

Different from them, our work targets JVM testing by vectorizing
ingredients (via code representation) to improve synthesis-based
JVM testing. This idea is also novel in compiler testing, and in the
future we can extend VECT to this area.
Code Representation. VECT borrows the power from the area of
code representation. In recent years, code representation has been
used to solve some software engineering tasks, e.g., code search [9,

35], API recommendation [31, 52], code clone detection [24, 50], and
program repair [39, 53]. Different from them, our work is the first
to incorporate code representation to JVM testing (i.e., encoding
ingredient semantics for improving synthesis-based JVM testing).
Besides our studied code representation models, there are some
other models that were pre-trained and released, e.g., CoTexT [40]
and GraphCodeBERT [27]. In the future, we can evaluate their
effectiveness in our task to improve the performance of VECT.

7 CONCLUSION
To promote the performance of synthesis-based JVM testing, in this
work, we propose a novel technique (called VECT) by vectorizing
program ingredients. It aims to reduce the huge ingredient space
by clustering semantically similar ingredients based on semantic
vectors. Then, VECT designs a feedback-driven ingredient selec-
tion strategy to more efficiently explore the reduced space, and
enhances the existing test oracle by monitoring the results of vari-
ous intermediate variables in the synthesized test program to more
sufficiently capture the triggered bugs. The results on three popular
JVMs (i.e., HotSpot, OpenJ9, and Bisheng JDK) demonstrate the su-
periority of VECT over the state-of-the-art JavaTailor. In particular,
15 of 26 previously unknown bugs detected by VECT have been
confirmed/fixed by developers.

ACKNOWLEDGMENTS
We thank all the ISSTA anonymous reviewers for their valuable
comments. We also thank all the JVM developers for analyzing and
replying to our reported bugs. The work has been supported by the
National Natural Science Foundation of China under Nos. 62232001
and 62002256. This work is also sponsored by CCF-Huawei Populus
Grove Fund.

REFERENCES
[1] 2022. Bisheng. https://www.openeuler.org/zh/other/projects/bishengjdk.
[2] 2022. Gcov. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[3] 2022. GIJ. https://web.archive.org/web/20070509055923/http://gcc.gnu.org/java.
[4] 2022. HotSpot. http://openjdk.java.net.
[5] 2022. OpenJ9. https://www.eclipse.org/openj9.
[6] 2022. scikit-learn. https://scikit-learn.org/stable/.
[7] 2022. VECT. https://github.com/gaotravor/VECT
[8] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.

2021. Unified pre-training for program understanding and generation. arXiv
preprint arXiv:2103.06333 (2021).

[9] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning
distributed representations of code. Proc. ACM Program. Lang. (2019).

[10] Inc. Azul Systems. 2018. AzulSystems/JavaFuzzer: Java* Fuzzer for Android*.
https://github.com/AzulSystems/JavaFuzzer

[11] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Infercode: Self-supervised
learning of code representations by predicting subtrees. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 1186–1197.

[12] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie.
2017. Learning to prioritize test programs for compiler testing. In Proceedings of
the 39th International Conference on Software Engineering.

[13] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,
and Bing Xie. 2016. An empirical comparison of compiler testing techniques. In
Proceedings of the 38th International Conference on Software Engineering.

536

https://www.openeuler.org/zh/other/projects/bishengjdk
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://web.archive.org/web/20070509055923/http://gcc.gnu.org/java
http://openjdk.java.net
https://www.eclipse.org/openj9
https://scikit-learn.org/stable/
https://github.com/gaotravor/VECT
https://github.com/AzulSystems/JavaFuzzer

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Tianchang Gao, Junjie Chen, Yingquan Zhao, Yuqun Zhang, and Lingming Zhang

[14] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. ACM Comput. Surv.
(2020).

[15] Junjie Chen and Chenyao Suo. 2022. Boosting Compiler Testing via Compiler
Optimization Exploration. In TOSEM.

[16] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu
Zhang, and Bing Xie. 2021. Coverage Prediction for Accelerating Compiler
Testing. IEEE Trans. Software Eng. (2021).

[17] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep differential testing of JVM
implementations. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 1257–1268.

[18] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of JVM implementations. In proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 85–99.

[19] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. 2020.
Electra: Pre-training text encoders as discriminators rather than generators. arXiv
preprint arXiv:2003.10555 (2020).

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[21] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.
Automated testing of graphics shader compilers. Proc. ACM Program. Lang.
(2017).

[22] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.. In
kdd.

[23] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[24] Yi Gao, Zan Wang, Shuang Liu, Lin Yang, Wei Sang, and Yuanfang Cai. 2019.
TECCD: A Tree Embedding Approach for Code Clone Detection. In 2019 IEEE
International Conference on Software Maintenance and Evolution, ICSME 2019,
Cleveland, OH, USA, September 29 - October 4, 2019.

[25] Vincenzo Gervasi and Roozbeh Farahbod. 2009. JASMine: Accessing java code
from CoreASM. In Rigorous Methods for Software Construction and Analysis.

[26] Matthias Grimmer, Manuel Rigger, Roland Schatz, Lukas Stadler, and Hanspeter
Mössenböck. 2014. Trufflec: Dynamic execution of c on a java virtual machine.
In Proceedings of the 2014 International Conference on Principles and Practices of
Programming on the Java platform: Virtual machines, Languages, and Tools.

[27] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

[28] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the royal statistical society. series c (applied
statistics) (1979).

[29] Christian Holler, Kim Herzig, Andreas Zeller, et al. 2012. Fuzzing with Code
Fragments.. In USENIX Security Symposium.

[30] Sungjae Hwang, Sungho Lee, Jihoon Kim, and Sukyoung Ryu. 2021. JUSTGen: Ef-
fective Test Generation for Unspecified JNI Behaviors on JVMs. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30
May 2021.

[31] Yuning Kang, Zan Wang, Hongyu Zhang, Junjie Chen, and Hanmo You. 2021.
APIRecX: Cross-Library API Recommendation via Pre-Trained Language Model.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (Eds.).

[32] Leonard Kaufman and Peter J Rousseeuw. 2009. Finding groups in data: an
introduction to cluster analysis.

[33] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. ACM Sigplan Notices (2014).

[34] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv preprint arXiv:1910.13461 (2019).

[35] Zongjie Li, Pingchuan Ma, Huaijin Wang, Shuai Wang, Qiyi Tang, Sen Nie, and
Shi Wu. 2022. Unleashing the Power of Compiler Intermediate Representation
to Enhance Neural Program Embeddings. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022.

[36] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
2015. Many-core compiler fuzzing. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015.

[37] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[38] Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang. 2014. TBCNN: A tree-based
convolutional neural network for programming language processing. arXiv
preprint arXiv:1409.5718 (2014).

[39] Vinicius Paulo L. Oliveira, Eduardo Faria de Souza, Claire Le Goues, and Celso G.
Camilo-Junior. 2018. Improved representation and genetic operators for linear
genetic programming for automated program repair. Empir. Softw. Eng. (2018).

[40] Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James Anibal, Alec Peltekian,
and Yanfang Ye. 2021. Cotext: Multi-task learning with code-text transformer.
arXiv preprint arXiv:2105.08645 (2021).

[41] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn.
Res. (2020).

[42] Inc. Red Hat. 2018. shipilev/JavaFuzzer: Java* Fuzzer for JVM. https://github.
com/shipilev/JavaFuzzer

[43] Peter J Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathematics
(1987).

[44] Ketan Rajshekhar Shahapure and Charles Nicholas. 2020. Cluster quality analysis
using silhouette score. In 2020 IEEE 7th International Conference on Data Science
and Advanced Analytics (DSAA).

[45] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs.
In 29th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering.

[46] Jim Smith and Ravi Nair. 2005. Virtual machines: versatile platforms for systems
and processes. Elsevier.

[47] Suvrit Sra, Sebastian Nowozin, and Stephen J Wright. 2012. Optimization for
machine learning.

[48] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein,
and Tegawendé F Bissyandé. 2020. Evaluating representation learning of code
changes for predicting patch correctness in program repair. In 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE).

[49] YueWang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

[50] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, Singapore, September 3-7, 2016.

[51] Matt Windsor, Alastair F. Donaldson, and John Wickerson. 2021. C4: the C
compiler concurrency checker. In ISSTA ’21: 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, Denmark, July 11-17,
2021.

[52] Rensong Xie, Xianglong Kong, Lulu Wang, Ying Zhou, and Bixin Li. 2019. HiRec:
API Recommendation using Hierarchical Context. In 30th IEEE International
Symposium on Software Reliability Engineering, ISSRE 2019, Berlin, Germany,
October 28-31, 2019.

[53] Chen Yang. 2021. Accelerating redundancy-based program repair via code repre-
sentation learning and adaptive patch filtering. In ESEC/FSE ’21: 29th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Athens, Greece, August 23-28, 2021.

[54] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation. 283–294.

[55] Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. 2003. Random Pro-
gram Generator for Java JIT Compiler Test System. In 3rd International Conference
on Quality Software (QSIC 2003), 6-7 November 2003, Dallas, TX, USA.

[56] Zhiqiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi. 2022. Compiler
Testing using Template Java Programs. CoRR (2022).

[57] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An extensive study on pre-trained models for program under-
standing and generation. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 39–51.

[58] Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun
Zhang, and Lingming Zhang. 2022. History-driven test program synthesis for JVM
testing. In Proceedings of the 44th International Conference on Software Engineering.
1133–1144.

537

https://github.com/shipilev/JavaFuzzer
https://github.com/shipilev/JavaFuzzer

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Ingredient Semantic Vectorization
	3.2 Ingredient Clustering
	3.3 Ingredient Selection
	3.4 Enhanced Test Oracle

	4 Evaluation
	4.1 JVMs, Seed Programs, and Ingredients
	4.2 Compared Techniques
	4.3 Measurements
	4.4 Implementation and Environment
	4.5 Results and Analysis

	5 Discussion
	5.1 Future Work
	5.2 Threats to Validity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

