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A B S T R A C T

In GPU-based embedded systems, the problem of computation and data mapping for multiple applications
while minimizing the completion time is quite challenging due to large size of the policy space. To achieve
fast competition time, a fine-grain mapping framework that explores a set of critical factors is needed for
heterogeneous embedded systems. In this paper, we present a theoretical framework that yields a sub-optimal
solution via three practical mapping algorithms with low time complexity. We evaluate such algorithms upon
StarPU with a large set of popular benchmarks. Experimental results demonstrate that algorithms proposed by
the original EMSOFT paper can achieve up to 30% faster completion time compared to state-of-the-art mapping
techniques, and can perform consistently well across different workloads. We further extend such algorithms
to minimize the completion time and enhance the runtime performance of complex heterogeneous applications
under resource-limited infrastructure. We also extend the evaluation by deploying StarPU under multiple setups
with an additional benchmark testing suite for simulating real-world runtime neural networks. Experimental
results demonstrate that our extended algorithm can achieve much faster completion time (averagely 30% to
37% under multiple resource-constraint scenarios) compared to the state-of-the-art mapping techniques.
1. Introduction

Graphics processing units (GPUs) are now commonly used as co-
processors in many embedded systems to accelerate general-purpose
applications. They are particularly capable of executing data-parallel
applications, due to their highly multi-threaded architecture and high-
bandwidth memory. Various embedded system domains can benefit
high performance and better energy efficiency from utilizing GPUs. For
example, GPUs can efficiently perform matrix operations such as factor-
ization on large data sets and multidimensional FFTs and convolutions.
Such operations are often seen in many embedded applications includ-
ing signal processing, imaging and video processing. By leveraging new
programming models, such as CUDA [1] and OpenCL [2], program-
mers can effectively develop highly data-parallel tasks to execute such
applications on GPUs.

By providing heterogeneous processing elements with different per-
formance characteristics in the same system, heterogeneous CPU/GPU
architectures are expected to provide more flexibility for better per-
formance compared to homogeneous systems. Fast completion time is
an imperative performance metric that needs to be optimized in most
embedded systems. For example, in a driver-assisted and autonomous
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vehicle, the video streaming and sensor data processing tasks need to
be completed in a rapid manner. In order to minimize the completion
time for running a set of workloads, the step that maps computations to
processing elements is critical. In this paper, we consider the mapping
problem in a heterogeneous system containing multiple CPUs and
GPUs. Our goal is to minimize the completion time.

This mapping problem is quite challenging due to a large size of
the policy space. First of all, applications may demonstrate (some-
times significantly) different performance characteristics when exe-
cuted on GPUs than CPUs. The mapping algorithm thus needs to
consider such heterogeneity when making prioritization and mapping
decisions. Moreover, most real world workloads are implemented using
rather complex task graphs, where a task graph contains a number
of data- or logical-dependent tasks. The precedence constraints among
tasks require the mapping algorithm to consider: (i) the task graph
structure and (ii) different data transfer costs among tasks if exe-
cuted on different processors. Furthermore, for data-intensive tasks,
data partitioning techniques need to be incorporated into the mapping
algorithm because partitioning a task into threads that can be run on
multiple devices in parallel improves the overall utilization.
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Without considering the above-mentioned factors, mapping algo-
rithms are unlikely to perform consistently well across different work-
loads. Prior work on heterogeneous CPU/GPU systems has focused on
new programming models and API extensions for supporting multiple
heterogeneous devices [3–5], automating the mapping processor [6–8],
enabling CPU and GPU sharing [9]. Different mapping heuristics have
been designed and applied in these work. However, since the fine-grain
mapping problem is not the major focus of these work, the existing
mapping heuristics make simplified mapping decisions based upon a
limited set of metrics (e.g., data locality or execution time).

In this paper, motivated by a number of measurements-based case
studies, we design three mapping algorithms, each of which explores a
specific set of factors that may affect the completion time performance.
We evaluated such algorithms by implementing them on a real hetero-
geneous system, i.e., containing a four-core CPU and two discrete GPUs
with different performance characteristics. Extensive experiments were
conducted using a set of popular benchmarks and workloads, such as
Cholesky factorization, Monte Carlo. Experimental results demonstrate
that our proposed algorithms can achieve much faster completion time
(up to 30% improvement) compared to the state-of-the-art mapping
techniques. By testing workloads with varying characteristics, experi-
ments show that the completion time performance under our mapping
algorithms is also consistent.

We further extend the original scheduling algorithms by including
the data transfer time, i.e., reducing the time consumption for data
transfer prediction. To evaluate our extended algorithm, we deployed
the original StarPU in a new heterogeneous system containing two
ten-core CPUs and four discrete GPUs with close setups. To further
verify the performance of all proposed scheduling algorithms, we im-
plemented an extended benchmark testing suite for simulating runtime
neural network applications in real-world scenarios. Experimental re-
sults demonstrate that our extended algorithm can achieve much faster
completion time (averagely 29% in more computing resource case
and averagely 37% in less computing resource case) compared to the
state-of-the-art mapping techniques.

The contributions of this paper are listed as follows.

• Idea and approach. We attempt to minimize the completion time
of generalized applications in heterogeneous systems by optimiz-
ing scheduling strategies via proposing a set of algorithms includ-
ing heterogeneity ratio-based mapping algorithm, structure rank based
heuristics algorithm and data partition algorithm [10].

• Evaluation. We conduct a set of experiments on a real-world
runtime system, e.g., StarPU to evaluate our proposed algorithms
and compare their performance with naive and state-of-the-art
scheduling algorithms.

• Extended Approach. We propose an extended algorithm, namely
heterogeneity ratio-based and data-partition optimizing scheduling, to
minimize the completion time and enhance the runtime perfor-
mance of deep-neural-network-based applications under resource-
limited infrastructure.

• Extended Evaluation. We conduct a set of experiments upon
StarPU with server-level setups to evaluate the runtime perfor-
mance of heterogeneity ratio-based and data-partition optimizing
scheduling and compare it to the naive, state-of-the-art, and the
originally proposed algorithms.

The rest of this paper is organized as follows. Section 2 presents the
background, system model and our theoretical framework. Section 3
describes the measurement-based and extensive case studies as our mo-
tivation. Section 4 presents the practical mapping algorithms and the
extended mapping algorithm for neural network acceleration. Section 5
describes our implementation. Section 6 discusses our experimental
results, including the experimental results for the extended algorithm in
both the original benchmarks and the extended benchmark. Section 7
2

describes related work. Section 8 concludes this paper. p
Table 1
Notation summary.
𝑁 Number of total tasks
𝑛 Number of applications
𝑚 Number of processors
𝜏𝑖 𝑖th application
𝜏𝑧𝑖 𝑧th kernel/task of application 𝜏𝑖
𝑀𝑖 𝑖th processor (either a CPU or a GPU)
𝐶𝑗
𝑖,𝑘 Execution time of 𝜏𝑗𝑖 on processor 𝑀𝑘

(𝜏𝑗𝑖 ) Set of successor kernels/tasks of 𝜏𝑗𝑖
(𝜏𝑗𝑖 ) Set of predecessor kernels/tasks of 𝜏𝑗𝑖
𝑒𝑗𝑘𝑖 Edge from 𝜏𝑗𝑖 to 𝜏𝑘𝑖
𝑇𝑞→𝑤(𝑒

𝑗𝑘
𝑖 ) Time taken to send data from 𝜏𝑗𝑖 to 𝜏𝑘𝑖

2. Background

In this section we give out a list of notations and definitions to help
us better formalize the proposed problem, and then we briefly describe
the general structure of heterogeneous schedulers.

2.1. System model

Let us consider the problem of mapping 𝑛 independent applications
𝛤 = {𝜏1, 𝜏2, 𝜏3,… , 𝜏𝑛} onto 𝑚 processors 𝑀 = {𝑀1,𝑀2,… ,𝑀𝑚}. Each
processor is either a CPU or a GPU.

Each application 𝜏𝑖 is composed by serial instructions and tasks,
where tasks represent computation operations. tasks of each application
are chained together according to the computation logic and may
have dependencies since data flows from one task to another. To be
specific, 𝜏𝑖 is modeled as a task graph that contains 𝑧𝑖 connected tasks
{𝜏1𝑖 , 𝜏

2
𝑖 ,… , 𝜏𝑧𝑖𝑖 }. Let 𝑁 denote the total number of tasks of applications

in 𝛤 . Each task 𝜏𝑗𝑖 has an execution time of 𝐶𝑗
𝑖,𝑘 if executed on processor

𝑝𝑘. The execution time ranges from milliseconds to hours, depending on
the specific application. Similar to prior work [3], we use the sampling
functionality of StarPU [11] to obtain the estimated execution time of
a task.

Between any two connected tasks is an edge, which implies that
precedence constraints exist between these two tasks. If task 𝜏𝑗𝑖 has an
outgoing edge 𝑒𝑗𝑘𝑖 to task 𝜏𝑘𝑖 , then 𝜏𝑘𝑖 cannot start execution until it
eceives the data produced by 𝜏𝑗𝑖 . Let (𝜏𝑗𝑖 ) denote the set of predecessor
asks of 𝜏𝑗𝑖 , i.e., tasks that have outgoing edges to 𝜏𝑗𝑖 . Similarly, let (𝜏𝑗𝑖 )
enote the set of successor tasks of 𝜏𝑗𝑖 , i.e., tasks that have incoming
dges to 𝜏𝑗𝑖 . Let 𝑇𝑞→𝑤(𝑒

𝑗𝑘
𝑖 ) denote the time for 𝜏𝑗𝑖 executed on processor

𝑞 to send its produced data to its successor 𝜏𝑘𝑖 (connected by edge 𝑒𝑗𝑘𝑖 )
xecuted on processor 𝑝𝑤. A summary of important notation is given
n Table 1. We use the term task to represent a task combining with its
eeded data. For readability, in the rest of this paper, we will use task
nd task interchangeably.

efinition 1. We define the depth of a task to be the number of tasks
n the longest path between this task and a task of the corresponding
ask graph that has no predecessors. tasks with no predecessors have a
epth of 1. Let 𝐷(𝜏𝑧𝑖 ) denote depth of task 𝜏𝑧𝑖 in the task graph of 𝜏𝑖.

reemptive vs. non-preemptive execution On GPUs, executions are
ften non-preemptive [12]. That is, once a task starts execution on
GPU, it cannot be preempted by other tasks until its completion.
n CPUs, executions can be preemptive. However, preemptions may

ncur significant amount of overheads at runtime such as context switch
verhead and migration overhead [13]. To ensure the efficiency, as
ell as simplify the formalism and algorithms, we thus assume in this

aper non-preemptive executions on CPU as well.
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Fig. 1. General structure of heterogeneous schedulers.

Fig. 2. Task dependency graph.

2.2. General structure of heterogeneous schedulers

As shown in Fig. 1, the general structure of a heterogeneous sched-
uler is implemented upon three types of queues: the application queue,
𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 and device queue. Initially, the to-be-executed applications
are assigned to the application queue. Secondly, applications get into
the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 to be ready for execution. Then, proper applications
are selected in the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 and push into the device queues corre-
sponding to different devices. Finally, the applications exit the queues
under the terminated executions while they are pushed back to the
𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 for the subsequent scheduling process under abnormally
terminated executions.

3. Case studies: What to consider for making mapping decisions

In this section, we present several measurements-based case studies
that motivate the design of our mapping algorithms. We measured the
completion time of executing a vector add application 𝜏1(𝜏𝑖 is the 𝑖th
application) and a matrix multiplication application 𝜏2 on a hetero-
geneous system configured with one Intel Core i7 CPU and NVIDIA
GeForce GTX660 GPU. 𝜏1 can be expressed as (𝑣1 + 𝑣2) ∗ 𝜋, where 𝑣1
and 𝑣2 are vectors and 𝜋 is a constant. 𝜏2 can be expressed as (𝑎 ∗
𝑏) + (𝑐 ∗ 𝑑), where 𝑎, 𝑏, 𝑐, 𝑑 are four input matrices. These applications
are commonly seen in scientific computing. The corresponding task
graphs are illustrated in Fig. 2. Specifically, 𝜏1 contains two tasks 𝜏11 (𝜏𝑧𝑖
is the 𝑧th task/task of application 𝜏𝑖) and 𝜏21 , where 𝜏11 is a vector add
task and 𝜏21 is a vector scale task. 𝜏2 contains three tasks 𝜏12 , 𝜏22 , and
𝜏32 , where 𝜏12 and 𝜏22 are two matrix multiplication tasks, and 𝜏32 is a
matrix add task. For the generated input data, 𝑣1 and 𝑣2 have a size
of 50000 elements each. 𝑎, 𝑏, 𝑐, and 𝑑 are four matrices with a size
of 1024 ∗ 1, 1 ∗ 1024, 1024 ∗ 1024, and 1024 ∗ 1024, respectively.
Through profiling, the execution time of each task is listed in Table 2.
We have conducted various experiments based upon this system setup
and recorded the corresponding mapping sequences and completion
time under different strategies. Among the obtained results, we have
identified several factors that may significantly affect the mapping
performance.

Observation #1: task-level mapping or application-level mapping?
In this case study, our observation is that for applications that contain
multiple dependent tasks, treating tasks as the mapping entity yields
3

Fig. 3. (a) Application level mapping (b) task level mapping (c) Different map order
(d) Data Partition (e) Bad data partition.

Table 2
Execution time of tasks.

CPU GPU

𝜏11 5.68 × 102 μs 4.22 × 102 μs

𝜏21 1.52 × 103 μs 2.42 × 102 μs

𝜏12 4.41 × 104 μs 5.6 × 103 μs

𝜏22 8.74 × 102 μs 8.44 × 102 μs

𝜏32 4.40 × 102 μs 4.20 × 102 μs

better performance than mapping each entire application to a process-
ing unit. Fig. 3(a) shows the schedule of performing application-level
mapping. The dash lines in this figure represent the final completion
time. The (tiny) space among task execution blocks represents the delay
due to necessary data transfer. Fig. 3(b) shows the schedule of perform-
ing task-level mapping, in which we can see that the completion time is
shortened. The main performance acceleration comes from the parallel
executions of multiple tasks on two processing units. Intuitively, for
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systems that support multiple applications, task-level mapping is a
better choice because it can better utilize the hardware resources.

Observation #2: heterogeneity matters. Fig. 3(c) shows the schedule
of a task mapping policy with a different task ordering scheme than
the mapping policy shown in Fig. 3(b). The applied mapping policy
considered in this case prioritize tasks by considering the heterogeneity.
Intuitively, a task that has a faster execution time on a specific type of
processor (either CPU or GPU) should preferably be assigned to that
type of processor. As shown in Table 2, tasks 𝜏21 , and 𝜏12 have much
shorter execution time on GPU compared to CPU. Thus, by prioritizing
such tasks over other tasks (such as 𝜏11 and 𝜏22 ), they have higher
possibilities to be assigned to their favorite processors, as observed in
Fig. 3(c). This case study highlights the fact that for CPU/GPU systems,
the heterogeneity reflected by hardware and application characteristics
must be considered in the mapping algorithm.

Observation #3: data partitioning—is it always beneficial? As seen
in Table 2, 𝜏12 is the most computation-intensive task. Fig. 3(c) shows
that 𝜏32 cannot start execution because 𝜏12 completes late, which causes
esource under-utilization and longer completion time. By partitioning
he input matrix of 𝜏12 into two slices, we are able to reduce its execution
ime by running the task with partial data on both CPU and GPU in
arallel. Let (𝜏12 )1 and (𝜏12 )2 denote the resulting two tasks each with half
ata. The resulting schedule with reduced completion time is shown in
ig. 3(d). However, data partitioning is not free. It incurs additional
ata transfer overhead because data need to be sent to both (𝜏12 )1 and
𝜏12 )2, and the corresponding results need to be merged and then sent
o 𝜏32 . Since the data size is not very large in this case, the performance
ain due to data partitioning overwhelms the penalty due to additional
ata transfer. Nevertheless, when we increase the input matrix size
or 𝜏12 to 16384 * 16384, the negative impact due to additional data
ransfer under partitioning becomes obvious, as illustrated in Fig. 3(e).
ur observation herein is that data partitioning may be beneficial only
hen the input data size is reasonably small.

In summary, it is clear from these case studies that the completion
ime performance heavily depends on the mapping algorithm, which
eeds to consider a number of influential factors including the task
tructure, heterogeneity, task prioritization, and data partitioning.

. Practical mapping algorithms

In this section, we present three practical online algorithms for
apping tasks in a heterogeneous platform consisting of multiple CPUs

nd GPUs. Our algorithmic design is motivated by the observations as
iscussed in Section 3. Specifically, the proposed mapping algorithms
onsider heterogeneity, task graph structure, and data partitioning. The
irst algorithm (we call it the baseline algorithm) mainly factors hetero-
eneity into making mapping decisions (besides considering traditional
actors such as data locality and earliest completion time). The second
lgorithm considers task structure when prioritizing tasks. The third
lgorithm extends the baseline algorithm by taking advantages of data
artitioning. As seen in Section 6, these three algorithms yield differ-
nt performance under different experimental scenarios, depending on
pecific application characteristics.

.1. Baseline algorithm: Heterogeneity ratio-based mapping

As discussed in Section 3, without considering heterogeneous work-
oad characteristics on CPUs and GPUs, the mapping algorithm is
nlikely to efficiently utilize the heterogeneous resources. Our pro-
osed baseline algorithm takes heterogeneity into consideration when
aking mapping decisions. Before describing the algorithm, we first

ive several definitions.
4

G

efinition 2. The favorite ratio 𝐹 𝑗
𝑖,𝑘 of a task 𝜏𝑗𝑖 executed on processor

𝑘 is defined to be

𝑗
𝑖,𝑘 =

𝑚𝑎𝑥𝑚ℎ=1(𝐶
𝑗
𝑖,ℎ)

𝐶𝑗
𝑖,𝑘

(1)

For any task 𝜏𝑗𝑖 , a larger 𝐹 𝑗
𝑖,𝑘 value implies 𝜏𝑗𝑖 is more suitable to be

xecuted on 𝑀𝑘. That is, 𝜏𝑗𝑖 may have a shorter execution time if
xecuted on 𝑀𝑘 compared to other processors.

efinition 3. The heterogeneity ratio of a task 𝜏𝑗𝑖 is defined to be
𝑗
𝑖 = 𝑚𝑎𝑥𝑚𝑘=1(𝐹

𝑗
𝑖,𝑘) (2)

or any task 𝜏𝑗𝑖 , a large heterogeneity ratio implies that it may be more
eneficial to execute 𝜏𝑗𝑖 on one of its favorite processors 𝑀𝑘 where 𝐹 𝑗

𝑖,𝑘
s large.

xample. Considering the example system described in Section 3, the
avorite ratio of 𝜏11 (when 𝜏11 is executed on processor 1 (CPU)) is 𝐹 1

1,1 =
𝑎𝑥(𝐶1

1,1, 𝐶
1
1,2)∕𝐶

1
1,1 = 5.68∕5.68 = 1, and the favorite ratio of 𝜏11 (when

1
1 is executed on processor 2 (GPU)) is 𝐹 1

1,2 = 𝑚𝑎𝑥(𝐶1
1,1, 𝐶

1
1,2)∕𝐶

1
1,2 =

.68∕4.22 = 1.35. The heterogeneity ratio of 𝜏11 can be calculated by
1
1 = 𝑚𝑎𝑥(𝐹 1

1,1, 𝐹
1
1,2) = 𝐹 1

1,2 = 1.35.

efinition 4. Let 𝑀𝐷𝐴𝐶(𝜏𝑗𝑖 ,𝑀𝑞) denote the Max Data Transfer Time
f 𝜏𝑗𝑖 if 𝜏𝑗𝑖 is assigned on 𝑀𝑞 , which is defined as the maximum time for
ransferring data from any of 𝜏𝑗𝑖 ’s predecessor tasks to 𝜏𝑗𝑖 . Specifically,
𝐷𝐴𝐶(𝜏𝑗𝑖 ,𝑀𝑞) is given by

𝐷𝐴𝐶(𝜏𝑗𝑖 ,𝑀𝑞) = max
𝜏𝑘𝑖 ∈(𝜏𝑗𝑖 )

𝑇𝑔→𝑞(𝑒
𝑘𝑗
𝑖 ) (3)

here 𝑡𝑎𝑢𝑘𝑖 is executed on 𝑀𝑔 .

efinition 5. Let 𝐸𝐹𝑇 (𝜏𝑗𝑖 ,𝑀𝑞) denote the Earliest Finish Time of 𝜏𝑗𝑖
f 𝜏𝑗𝑖 is assigned on 𝑀𝑞 . It is defined as:

𝐹𝑇 (𝜏𝑗𝑖 ,𝑀𝑞) = 𝑇𝐴𝑣𝑎𝑖𝑙(𝑀𝑞) +𝑀𝐷𝐴𝐶(𝜏𝑗𝑖 ,𝑀𝑞) + 𝐶𝑗
𝑖,𝑞 (4)

here 𝑇𝐴𝑣𝑎𝑖𝑙(𝑀𝑞) is the earliest time at which processor 𝑀𝑞 is available,

In Definition 5, we define 𝑇𝐴𝑣𝑎𝑖𝑙(𝑀𝑞) as the earliest time at which
rocessor 𝑀𝑞 is available. Each device is pre-calibrated before running
o that we can know exactly how long per fine-grained tasks run on
hem. And we can know the number and type of the remaining fine-
rained tasks in the device queue in a given device. Based on such
nformation, we can infer 𝑇𝐴𝑣𝑎𝑖𝑙(𝑀𝑞).

Our proposed baseline algorithm prioritizes tasks based on their het-
rogeneity ratio. The intuition is to give tasks with larger heterogeneous
atios higher possibilities to be assigned on their favorite processing
nits. Computing each task’s heterogeneity ratio at runtime may incur a
onsiderable amount of overheads. To avoid such overheads, in our im-
lementation, we maintain a lookup table for each task, which records
ts historical sampling information. For instance, for the matrix multi-
lication task, each entry in the lookup table contains data size, average
xecution time, processing unit to which it is assigned, heterogeneity
atio, hash value, etc. Thus, at runtime, we only need to check the
ookup table to figure out the needed information (e.g., heterogeneity
atio). After prioritizing tasks, the algorithm selects the best processing
nit for executing each task in turn based on the earliest finish time.
he pseudo-code of the algorithm is given in Algorithm 1.

seudo-code description. The PushTask() function on Line 1 is in
harge of pushing incoming tasks into the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 of the scheduler.
t first obtains the heterogeneity ratios from the lookup table for each
ncoming task (Line 2), then inserts the tasks into the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒
y largest-heterogeneity-ratio-first (Lines 3–8). On Line 9, function

etAllDeviceLen() gets the total number of assigned tasks in all device
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Algorithm 1 Heterogeneity ratio-based mapping
1: function PushTask(𝑡𝑎𝑠𝑘)
2: Sort tasks in the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 by largest-heterogeneity-ratio-first
3: for 𝑡𝑖 in 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 decreased by 𝐻𝑖 do
4: if 𝐻(𝑡𝑎𝑠𝑘) < 𝐻(𝑡𝑖) then
5: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
6: end if
7: 𝐼𝑛𝑠𝑒𝑟𝑡𝐵𝑒𝑓𝑜𝑟𝑒(𝑡𝑎𝑠𝑘, 𝑡𝑖, 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒)
8: end for
9: 𝑛𝑢𝑚 ← 𝐺𝑒𝑡𝐴𝑙𝑙𝐷𝑒𝑣𝑖𝑐𝑒𝐿𝑒𝑛()
0: if 𝑛𝑢𝑚 < 𝑡ℎ𝑟 then
1: PushTaskOnDeviceQueue
2: end if
3: end function
4:
5: function PushTaskOnDeviceQueue
6: 𝜏𝑗𝑖 ← 𝑃𝑜𝑝𝐹𝑟𝑜𝑛𝑡(𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒)
7: for 𝑀𝑞 𝑖𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑠𝑒𝑡 𝑀 do

18: 𝐸𝐹𝑇 (𝜏𝑗𝑖 ,𝑀𝑞) = 𝑇𝐴𝑣𝑎𝑖𝑙(𝑀𝑞) +𝑀𝐷𝐴𝐶(𝜏𝑗𝑖 ,𝑀𝑞) + 𝐶𝜏𝑗𝑖 ,𝑀𝑞
19: end for
20: Assign 𝜏𝑗𝑖 to 𝑀𝑞 that minimize 𝐸𝐹𝑇 (𝜏𝑗𝑖 ,𝑀𝑞)
21: end function

queues. If the number is less than a predefined threshold 𝑡ℎ𝑟(Line 10),
then the scheduler executes the PushTaskOnDeviceQueue() function. In
other words, if the total number of tasks that have been assigned to
devices is large enough, then the scheduler will stop dispatching tasks
in the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 to devices. The intuition is to let the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒
hold most of the unassigned tasks and sort them in order while guaran-
teeing that processing units have enough tasks residing in their device
queues to be executed. Unlike the greedy dispatching approach that
assigns ready tasks immediately to devices, our non-greedy approach
ensures that tasks entering the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 late still have a fairly good
chance to be assigned to their favorite processing units. The function
PushTaskOnDeviceQueue (Lines 15–21) seeks to assign tasks to devices.
It first grabs the task with highest heterogeneous ratio (Line 16), then
estimates the finish time of this task if assigned to each processor
(Lines 17–19), and finally assigns the task to the processor that yields
the earliest finish time (Line 20).

Time complexity. This algorithm need to compute the heterogeneity
ratio and conduct sort insertion that is 𝑂(𝑙2), and the assignment phase
needs 𝑂(𝑙2 ⋅ 𝑚) time complexity. The total time complexity is 𝑂(𝑙2 ⋅ 𝑚)

here 𝑙 is the maximum number of tasks in the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 and 𝑚 is
he number of processors.
ationale behind threshold setup For time complexity, if we keep
(the number of processors) as constant, the time complexity of

lgorithm 1 will only depend on 𝑙 (the maximum number of tasks)
n the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒. If the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 cannot dequeue or slowly de-
ueue, but rapidly enqueue, the time consumption of computation of
eterogeneity ratio and sort insertion will rapidly increase. To address
his issue, the threshold is used in Algorithm 1 to limit the maxi-
um capacity of the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒. Therefore, the maximum extra time

onsumption of the algorithm itself can be ensured under a preset
onstraint, i.e., 𝑂(𝑡ℎ𝑟2 ⋅ 𝑚).

.2. Task graph structure considerations

Our second algorithm improves upon the baseline algorithm by
onsidering the task graph structure of each application. As discussed
n Section 3, our observation is that for many applications, the time
aken to transfer data among tasks executed on different devices (which
eavily depends on the task graph structure) is far from being negligible
hen compared to task execution time. For certain data-intensive
5

𝐷

applications, the data transfer time is actually the dominant factor
in response time performance. Let 𝑇 (𝑒𝑗𝑘𝑖 ) represent the general data
transfer cost between two dependent tasks 𝑡𝑗𝑖 and 𝑡𝑘𝑖 . Since 𝑇 (𝑒𝑗𝑘𝑖 ) can
e decided only after knowing the specific devices to which these two
asks are assigned, we compute the average cost as the estimated data
ransfer time between 𝑡𝑗𝑖 and 𝑡𝑘𝑖 , which is given by

(𝑒𝑗𝑘𝑖 ) =

∑

𝑞,𝑤∈𝑀

(

𝑇𝑞→𝑤(𝑒
𝑗𝑘
𝑖 )

)

𝑚2
. (5)

Note that if 𝜏𝑗𝑖 and 𝜏𝑘𝑖 are assigned to the same device, then 𝑇 (𝑒𝑗𝑘𝑖 ) = 0.
The algorithm seeks to assign higher priorities to tasks with larger

𝑎𝑛𝑘(𝜏𝑗𝑖 ) values. 𝑟𝑎𝑛𝑘(𝜏𝑗𝑖 ) is defined as:

𝑎𝑛𝑘(𝜏𝑗𝑖 ) =
∑

𝑀𝑞∈𝑀
𝐶𝑗
𝑖,𝑞∕𝑚 + max

𝜏𝑘𝑖 ∈(𝜏
𝑗
𝑖 )

(

𝑇 (𝑒𝑗𝑘𝑖 )

+
∑

𝑀𝑞∈𝑀
𝐶𝑘
𝑖,𝑞∕𝑚

)

, (6)

here ∑

𝑀𝑞∈𝑀 𝐶𝑗
𝑖,𝑞∕𝑚 denotes the average execution time of task 𝜏𝑗𝑖 , and

he max() term represents the longest time taken to send 𝜏𝑗𝑖 ’s data to any
f its successor tasks plus this successor’s execution time. The intuition
ehind using 𝑟𝑎𝑛𝑘(𝜏𝑗𝑖 ) values is to give pairs of connected tasks that are
omputation-intensive and/or data-intensive higher possibilities to be
ssigned to their favorite devices. The pseudo-code of this algorithm
s given in Algorithm 2. As seen, the algorithm is identical to our
aseline algorithm except that the scheduling priorities the tasks using
he 𝑟𝑎𝑛𝑘(𝜏𝑗𝑖 ) values instead of the heterogeneity ratios.

Algorithm 2 Structure rank based heuristics
1: function PushTask(𝑡𝑎𝑠𝑘)
2: 𝑟𝑎𝑛𝑘(𝑡𝑎𝑠𝑘) ← Compute 𝑟𝑎𝑛𝑘 of 𝑡𝑎𝑠𝑘
3: for 𝑡𝑖 in 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 decreased by 𝑟𝑎𝑛𝑘(𝑡𝑖) do
4: if 𝑟𝑎𝑛𝑘(𝑡𝑎𝑠𝑘) < 𝑟𝑎𝑛𝑘(𝑡𝑖) then
5: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
6: end if
7: 𝐼𝑛𝑠𝑒𝑟𝑡𝐵𝑒𝑓𝑜𝑟𝑒(𝑡𝑎𝑠𝑘, 𝑡𝑖, 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒)
8: end for
9: 𝑛𝑢𝑚 ← 𝐺𝑒𝑡𝐴𝑙𝑙𝐷𝑒𝑣𝑖𝑐𝑒𝐿𝑒𝑛()
0: if 𝑛𝑢𝑚 < 𝑡ℎ𝑟 then
1: PushTaskOnDeviceQueue
2: end if
3: end function

4.3. Data partitioning

According to the observation given in Section 3, the intuition behind
data partitioning is that if a task is data-intensive, then dividing its
data into multiple slices would give it a higher chance to utilize more
processors. This idea has been proposed and applied in [14], but only
under a single task scenario. For example, an automated partitioning
technique has been proposed in [3] to partition the data of a single task
such that this task can be executed on a CPU and a GPU in parallel.
Unlike prior work, our third algorithm considers data partitioning
as a sub-component and integrates it into our considered multi-task
scenario.

Despite of its advantages, data partitioning may also introduce
additional data transfer costs, as discussed in Section 3. Thus, a map-
ping algorithm needs to decide whether to apply data partitioning to
applications. Our third algorithm extends the baseline heterogeneity
ratio-based algorithm by taking data partitioning into account. We
apply a historical data profiling technique to decide whether a task
needs to be partitioned. In the implementation, we record the historical
sampling data and use a nonlinear regression-based cost model (𝑎 ∗

𝑏
 + 𝑐) [15] (where 𝑎, 𝑏, and 𝑐 are constant coefficients, and 𝐷
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is the data size) to find out the relationship between data size and
execution time. Given the data size of a task, if the estimated execution
time (without applying data partitioning) is larger than a pre-defined
threshold, then we partition it into multiple blocks.

4.4. Data transfer time considerations

The priority functions of the aforementioned algorithms fail to
consider or can hardly accurately capture the data transfer time. In
particular, ‘‘h-ratio’’ considers data transfer time by using 𝑀𝐷𝐴𝐶, but
ometimes it is inaccurate since data transfer time is related to the size
f data transferred where using maximum value to estimate this value
ends to cause system non-optimization, i.e., the over-estimation. On
he other hand, ‘‘d-rank’’ and ‘‘dmdar’’ fail to take data transfer time
nto considerations. However, in real-world heterogeneous comput-
ng scenarios, the data transfer time usually can cause non-negligible
mpacts and ought to be considered.

To address such issue, based on the previous work, we develop a
onlinear scheduling algorithm which adopts a newly-designed priority
unction on different processor types. In particular, since both state-
f-the-art algorithms and our original algorithms, i.e., ‘‘h-ratio’’ and

‘d-rank’’, lead to long prediction time under massive processors and
urther result in inferior runtime performance, our nonlinear scheduling
lgorithm replacesMDAC with PDAC (predicted data transfer time) and
evokes the threshold setups.

According to Definition 4, MDAC calculates the time consumption
or data transfer between two devices, with the time complexity of
(𝑚2) where the number of devices is denoted by 𝑚. It can be observed

hat although the MDAC computation can perform well under small
evice number, the time consumption to calculate 𝑀𝐷𝐴𝐶 rises rapidly
hen the device number largely increases (e.g., on a high-performance

omputing cluster, there are thousands of devices). Therefore, it is
ifficult to ensure the real-time property during the MDAC computation
rocess.

We can observe that in various embedded platforms, e.g., StarPU
11], data transfer time is mainly dominated by the data size in transfer.
urthermore, we infer that replacing 𝑀𝐷𝐴𝐶 with a metric derived
y a nonlinear model based on data size in transfer can significantly
educe the time consumption for predicting data transfer time, because
t is unlikely to compute 𝑀𝐷𝐴𝐶 in a real-time system at a small
ime cost. However, the data size in transfer can be easily accessed.
herefore, we can expect to reduce scheduling time cost for massive-
evice computation, e.g., runtime neural networks by adopting data
ize in transfer in our scheduling algorithm.

efinition 6. Let 𝑃𝐷𝐴𝐶(𝜏𝑗𝑖 ,𝑀𝑞) denote the Predicted Data Transfer
Time of 𝜏𝑗𝑖 if 𝜏𝑗𝑖 is assigned on 𝑀𝑞 , which is defined as the maximum
time for transferring data from any of 𝜏𝑗𝑖 ’s predecessor tasks to 𝜏𝑗𝑖 .
Specifically, 𝑃𝐷𝐴𝐶(𝜏𝑗𝑖 ,𝑀𝑞) is given by

𝑃𝐷𝐴𝐶(𝜏𝑗𝑖 ,𝑀𝑞) = (𝑎 ∗ 𝐷𝑏 + 𝑐) (7)

where 𝑎, 𝑏 and 𝑐 are hyper-parameters obtained from devices, 𝐷
denotes the data size in transfer.

To illustrate, considering that the time consumption for data trans-
mission cannot be neglected in the overall computation, we decide
to propose a nonlinear model (𝑎 ∗ 𝐷𝑏 + 𝑐), similar to [15] based on
data size (mentioned in data partition Section 4.3) using conventional
optimization methods, e.g., heuristic method, for predicting data trans-
fer time. After training for fitting the parameters, the time complexity
of the entire prediction process can be reduced to a constant level,
i.e., 𝑂(1), which significantly enhance the forecasting efficiency under
tolerantly biased predictions.

Based on such considerations, we replace EFT defined in Defini-
tion 5 by PFT (Predicted Finish Time) via the predicted data trans-
fer time such that the algorithm with the neural network accelera-
tion considerations can use PFT to predict data transfer time more
accurately.
6

Definition 7. Let 𝑃𝐹𝑇 (𝜏𝑗𝑖 ,𝑀𝑞) denote the Predicted Finish Time of
𝜏𝑗𝑖 if 𝜏𝑗𝑖 is assigned on 𝑀𝑞 . It is defined as:

𝐹𝑇 (𝜏𝑗𝑖 ,𝑀𝑞) = 𝑇𝐴𝑣𝑎𝑖𝑙(𝑀𝑞) + 𝑃𝐷𝐴𝐶(𝜏𝑗𝑖 ,𝑀𝑞) + 𝐶𝑗
𝑖,𝑞 (8)

here 𝑇𝐴𝑣𝑎𝑖𝑙(𝑀𝑞) is the earliest time at which processor 𝑀𝑞 is available,

Algorithm 3 Heterogeneity ratio-based and data-partition optimizing
scheduling
1: function PushTask(𝑡𝑎𝑠𝑘)
2: Sort tasks in the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 by largest-heterogeneity-ratio-first
3: for 𝑡𝑖 in 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 decreased by 𝐻𝑖 do
4: if 𝐻(𝑡𝑎𝑠𝑘) < 𝐻(𝑡𝑖) then
5: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
6: end if
7: 𝐼𝑛𝑠𝑒𝑟𝑡𝐵𝑒𝑓𝑜𝑟𝑒(𝑡𝑎𝑠𝑘, 𝑡𝑖, 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒)
8: end for
9: PushTaskOnDeviceQueue
0: end function
1:
2: function PushTaskOnDeviceQueue

13: 𝜏𝑗𝑖 ← 𝑃𝑜𝑝𝐹𝑟𝑜𝑛𝑡(𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒)
4: for 𝑀𝑞 𝑖𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑠𝑒𝑡 𝑀 do
5: 𝑃𝐹𝑇 (𝜏𝑗𝑖 ,𝑀𝑞) = 𝑇𝐴𝑣𝑎𝑖𝑙(𝑀𝑞) + 𝑃𝐷𝐴𝐶(𝜏𝑗𝑖 ,𝑀𝑞) + 𝐶𝑗

𝑖,𝑞
6: end for
7: Assign 𝜏𝑗𝑖 to 𝑀𝑞 that minimizes 𝑃𝐹𝑇 (𝜏𝑗𝑖 ,𝑀𝑞)
8: end function

Since the task-based heterogeneity features of the ReadyQueue en-
sures that in most cases, heterogeneous tasks can be processed with
priority. Intuitively, a more heterogeneous task has a higher probability
of being prioritized to be assigned to the corresponding device, such
that the tasks with short execution time can be ensured for being
scheduled in a high priority. However, such scheduling strategy may
result in the halting states of the less heterogeneous tasks for a long
time, similar to thread starvation [16]. Moreover, since the calculation
of the task heterogeneity cannot fully reflect the exact execution time, it
cannot always guarantee that the less heterogeneous tasks are assigned
with long execution time and thus fail to maintain runtime performance
optimality.

To optimize runtime performance, the original heterogeneous
scheduling algorithm in Section 4.1 uses the threshold to manage the
ReadyQueue (Lines 9–12 of Alg. 1). When the tasks in the DeviceQueue
are excessively accumulated at any moment, the threshold-enabled
ReadyQueue temporarily halts the handover operation of the multi-
level queue, as it were blocking pre-scheduled tasks in the ReadyQueue,
similar to busy waiting, for optimizing the runtime performance of the
overall scheduling algorithm under the capacity of the DeviceQueue.

In Section 6.2.3, to implement the threshold setups in Alg. 1,
getAllDevicelen() needs to be called (Line 9) where its execution time
is positively correlated with the length of DeviceQueue. Therefore,
it is difficult to preset a uniform threshold for optimizing runtime
performance under diverse scenarios. To be specific, if one task is
not placed in the DeviceQueue when the DeviceQueue length exceeds
the preset threshold, no further tasks can be added into the Device-
Queue. However, the task heterogeneity still needs to be computed
and thus causes computing resource inefficiency. Meanwhile, in prac-
tice, application-level strategies can be used to limit the number of
simultaneous tasks pushed to the ReadyQueue, e.g., by adopting an
interrupt-based scheduling mechanism (in fact, this is often a solu-
tion to performance bottlenecks for preventing memory or computing
device overflow errors).

Based on the above analysis, we decide to remove the threshold
setups in our extended scheduling algorithm, i.e., Lines 9–12 of Alg. 1,
for optimizing time and resource consumption when scheduling tasks.
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Fig. 4. Our scheduler implementation.

The details of our extended scheduling algorithm, namely hetero-
geneity ratio-based and data-partition optimizing scheduling is demon-
strated in Alg. 3. The heterogeneity ratio-based and data-partition optimiz-
ing scheduling consists of two steps. In particular, similar to Alg. 1, the
incoming tasks are first pushed into the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 of the scheduler
(Lines 1–9) is in charge of pushing. Next, the PushTaskOnDeviceQueue()
function (Lines 11–17) assigns tasks to the corresponding device, where
it deques a task (denoted by 𝜏𝑗𝑖 ) from 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 (Line 12), calculates
𝑃𝐹𝑇 for each device (Lines 13–15), and assigns the task to the device
that minimizes 𝑃𝐹𝑇 . In the following, we denote our heterogeneity
ratio-based and data-partition optimizing scheduling as ‘‘hratio-part’’.
Time complexity. Similar to Alg. 1, the ‘‘hratio-part’’ computes the
heterogeneity ratio and conducts sort insertion within 𝑂(𝑙2), and the
time complexity for the task assignment is 𝑂(𝑙2 ⋅𝑚). By replacing MDAC
with PDAC, we reduce time complexity of finish time estimation from
𝑂(𝑚2) to 𝑂(1). As a result, the total time complexity of the overall
algorithm stays 𝑂(𝑙2 ⋅ 𝑚) as the ‘‘h-ratio’’ and ‘‘d-rank’’ where 𝑙 is the
number of tasks and 𝑚 is the number of processors.

5. Implementation

We implement our scheduler algorithms on top of the StarPU run-
time platform [11] as customized schedulers. The role of the StarPU
scheduler is to dispatch tasks onto different processing units (named
‘‘workers’’ internally). In general, the process of a scheduler can be
described as follows: given 𝑛 applications, each application consists of
a number of tasks waiting to be executed. The scheduler selects the
tasks from the runnable tasks (i.e., the tasks that obtain all the data
they need) for each processing unit once the processing unit is free.
Moreover, the scheduler is expected to ensure the completion time of
the application to be as short as possible.

5.1. General scheduler implementation

All StarPU scheduling strategies implement task dispatching using
queue-based method. Tasks that have received needed data from their
predecessors are pushed in a 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒. This 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 is updated
at runtime while tasks arrive dynamically. Based upon this dispatching
model, our schedulers make mapping decision at runtime for tasks in
𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒.

StarPU has several pre-defined schedulers, including the eager
scheduler, the dm scheduler, and the dmda scheduler. The eager
scheduler uses a single FIFO task queue, as illustrated in Fig. 4(a), from
which workers draw tasks to execute. The mapping decision is made
only when a worker becomes idle. More complex schedulers such as the
dm scheduler maintain one queue for each processing unit, as shown in
Fig. 4(b). A task is immediately dispatched to a specific worker once it
7

is pushed into the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒. Different from these implementation
strategies, our scheduler uses a central priority queue to hold and
sort tasks, and dispatch tasks to worker’s private queues, as illustrated
in Fig. 4(c). Under our implementation, the proposed schedulers do
not immediately dispatch an incoming task to one of the workers’
queues. Instead, we set a threshold value (as discussed in Section 4.1)
to trigger the dispatching action. The central priority queue would
dispatch tasks to workers only when the total number of tasks residing
in workers’ queues is less than the pre-defined threshold value. A large
threshold value may allow the scheduler to have a better ordering
of the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒. However, when considering multiple application
scenarios, the total number of tasks could be large. Since pushing tasks
into the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 may incur overheads, a large threshold value may
also reduce the efficiency as such overheads negatively impact the
timing performance. Although depending on the specific hardware, the
idea behind setting a threshold value is to perform task pushing and
task execution in parallel at runtime.

5.2. Implementation of hratio-part

As shown in Fig. 4(c), hratio-part is implemented by multi-level
queues which makes fine-grained scheduling possible. Compared to
Fig. 4(a) and (b), hratio-part has stronger control over the on-scheduling
tasks and can perform complex classification of tasks in the first-level
queue. In the implementation of hratio-part, 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒 dominates
the runtime, e.g., calculating task heterogeneity and insertion sorting.
Meanwhile, 𝐷𝑒𝑣𝑖𝑐𝑒𝑄𝑢𝑒𝑢𝑒 only needs to dispatch the corresponding
tasks to its associated device. Next, we will discuss the implementation
details in StarPU platform.

In StarPU, we modify the core code of StarPU to customize and reg-
ister our scheduler to StarPU’s environment. First, we bind the sched-
uler pointer to the structure of StarPU scheduler ‘‘predefined_policies’’
so that StarPU can recognize the customized scheduler. Then, we use
a StarPU structure named ‘‘_starpu_sched_hratiopart_ready_policy’’ to
specify the concrete implementation hook of the predefined sched-
uler interface. Finally, we implement the corresponding task handler
function (implementing the interface mentioned above) for scheduling
(e.g., pop task from the 𝑅𝑒𝑎𝑑𝑦𝑄𝑢𝑒𝑢𝑒, push task to device queues, etc.).

6. Evaluation

In this section, we present the implementation methodology and
experimental results used to evaluate the effectiveness of our proposed
algorithms.

6.1. Experimental setup

We implemented the ‘‘h-ratio’’ and ‘‘d-rank’’ in a real heterogeneous
desktop computer consisting of a CPU and two discrete GPUs. The
hardware specification is given in Table 4. The benchmarks used in
the experiments are listed in Table 3. All benchmarks are rewritten in
order to be used on the StarPU runtime platform. Among the bench-
marks, Monte Carlo and Cholesky factorization are considered to be
computation-intensive because they have relatively heavier computing
workload for processor units and have a relatively high computation-
to-communication ratio (i.e., the task execution time is far greater
than the time to transfer its needed data from another device). On
the other hand, VectorAdd and VectorIncrement are considered to
be date-intensive because their computing workload is low, but may
generate heavy date traffic. To reflect different workload scenarios, we
vary the problem scale of each benchmark as three problem sizes. To
further evaluate our heterogeneity ratio-based and data-partition optimiz-
ing scheduling, we change the original PC-level settings to server-level
settings and re-implement ‘‘h-ratio’’ and ‘‘d-rank’’ with extended bench-
marks to implement all the algorithms (i.e., Algs. 1 to 3) for evaluating
runtime neural network applications.
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Table 3
Benchmarks used in the original experiments.

Benchmark Description Small problem size Medium problem size Large problem size

xgemm Combined matrix multiplication and addition 1k*1k matrix x 3 4k*4k matrix 8k*8k matrix
cg Conjugate Gradient 1k*1k matrix and 1k vector 4k*4k matrix and 4k vector 8k*8k matrix and 8k vector
cholesky Cholesky matrix factorization 1k*1k matrix 2k*2k matrix 4k*4k matrix
increment Vector instrumentation 10k vector 100k vector 1M vector
va Vector add 10k vector 100k vector 1Mk vector
pi Monte Carlo method to compute pi 1k hits per task, 1k tasks 4k hits per task, 1k tasks 8k hits per task, 1k tasks
fblock 3-D assignment 128*128*128* cube 256*256*256 cube 512*512*512 cube
The specific values of the problem sizes generated in the ex-
eriments are shown in Table 3. Moreover, we test three workload
omposition scenarios commonly seen in practice, i.e., computation-
ntensive, data-intensive, and randomly mixed workloads. To generate
hese composition scenarios, we first generate one instance of each
f the first seven benchmarks shown in Table 3 as the base case.
e then generate the computation-intensive workload composition

sing the base case combined with three instances of each of the
wo computation-intensive benchmarks (mentioned above). Similarly,
he data-intensive workload composition is generated using the base
ase combined with three instances of each of the two data-intensive
enchmarks. The mixed workload composition is generated by creating
wo instances of each of the seven considered benchmarks. Note that
he current StarPU runtime system implementation mainly considers
he single application scenario. To support simultaneous execution of
ultiple applications, in our experiments, we compose all the bench-
arks into one single executable file by rewriting and compiling the

ource codes of the benchmarks using StarPU’s SDK.
We compare our proposed mapping algorithms against the refer-

nce scheduler of StarPU—the dmdar (deque model data aware ready)
cheduler [17], which considers the task execution time and the data
ransfer time when making mapping decisions. According to StarPU
andbook, similar to the deque model scheduler (dm scheduler), dmdar
s designed by involving data transfer time (dmda scheduler), while
t also uses priority-queue to distribute tasks. It is similar to the clas-
ical heterogeneous-earliest-finish-time-first scheduling (HEFT): dmdar
chedules each task to a processing unit that provides the minimum
inish time, and sorts tasks residing in each worker queue by largest
umber of available data buffers first. For each experimental setup,
irst, we tested two system configurations: one with one CPU and two
PUs, and the other one with one CPU and one GPU (GTX 660), as

pecified in Table 4. Regarding the evaluation metric, we measured
he final completion time for running each entire experiment set. In
he following, we denote our baseline mapping algorithm (Section 4.1),
tructure-based mapping algorithm (Section 4.2), data partitioning-
ased mapping algorithm (Section 4.3), the dmdar scheduler , as

‘h-ratio’’, ‘‘d-rank’’, ‘‘ad-part’’ and‘‘dmdar’’, respectively.
Nowadays, the neural network models, e.g., GoogleNet [18] and

ast R-CNN [19,20], can achieve superior accuracy while enabling
arge number of layers. Correspondingly, they tend to consume ex-
essive computing resources than traditional network models and are
ore likely to cause performance bottlenecks. As a result, it is difficult

o apply them on resource-limited embedded systems, e.g., neural-
etwork-based autonomous driving systems, while maintaining optimal
untime performance.

To evaluate the performance of the ‘‘h-ratio’’ and ‘‘d-rank’’ and
he extended algorithm on runtime neural networks, we design and
mplement an extended benchmark for simulating runtime deep neural
etworks on StarPU [11]. In particular, we simulate the different layers
f deep neural networks via their respective typical computation load
nd the corresponding data dependency, e.g., matrix multiplication for
imulating the convolution layers and bubble sorting for simulating the
nterpreted layers.

For evaluating our ‘‘hratio-part’’ in high-performance computing
etups, we redeploy the experimental environment according to the
8

ardware specification given in Table 5 which consists of two CPUs and
Table 4
Experimental hardware specification for the original evaluation.

CPU GPU1 GPU2

Architecture Intel Core NVIDIA GeForce NVIDIA GeForce
i7-4700 GTX 660 GT 620

Frequency 3.9 GHz 1033 MHz 700 MHz
Memory 16 GB DDR3 2048 MB GDDR5 2048 MB DDR3
OS 64-bit Linux Ubuntu lucid

Table 5
Experimental hardware specification for the extended evaluation.

CPU*2 GPU*4

Architecture Intel(R) Xeon(R) CPU NVIDIA GeForce GTX
E5–2640 1080 Ti

Frequency 2.40 GHz 1480 MHz
Memory 126 GB DDR4 11264 MB GDDR5
OS 64-bit Linux Ubuntu Xenial

four discrete GPUs with much more powerful settings. Table 6 lists our
extended benchmarks for simulating runtime deep neural networks (nn-
LeNet, nn-GoogleNet, nn-ImageNet, nn-FRCNN) with the corresponding
functions reconstructed on the StarPU runtime platform.

6.2. Results

We conduct three sets of experiments to evaluate our original
and extended algorithms. In particular, Fig. 5 shows the experimental
results of the ‘‘h-ratio’’ and ‘‘d-rank’’ under the original benchmarks
(Table 3) and experimental setups (Table 4). In all six graphs, the
𝑥-axis denotes the three tested scenarios where problem size scale is
varied to be small, medium, and large (according to Table 3). The 𝑦-
axis denotes the speedup each algorithm can achieve upon the naive
CPU-only mapping algorithm. Graphs in the first (second) row depict
the results under the system configuration with one CPU and two GPUs
(one CPU and one GPU). In the first (respectively, second and third)
column of the graphs, mixed (respectively, computation-intensive and
data-intensive) workloads are assumed.

Fig. 6 shows the experimental results of the original and extended
algorithms under the original benchmarks (Table 3) and the extended
experimental setups (Table 5). In all the six graphs, the 𝑥-axis de-
notes the three tested scenarios where problem size scale varies to be
small, medium, and large (according to Table 3). The 𝑦-axis denotes
the achieving speedup of each algorithm upon the eager scheduler.
Graphs in the first (second) row depict the results under the system
configuration with two CPUs and four GPUs (two CPUs and two GPUs).
In the first (respectively, second and third) column of the graphs, mixed
(respectively, computation-intensive and data-intensive) workloads are
assumed.

Figs. 7 and 8 show the experimental results under the extended
benchmarks (Table 6) and experimental setups (Table 5).

6.2.1. Experiments under the original benchmarks and experimental setups
The obtained experimental results comparing our original map-

ping algorithms against dmdar are shown in Fig. 5 (the orga-
nization of which is explain in the figure’s caption). Each bar
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Fig. 5. Original experimental results on the original benchmarks in Table 3 with the configuration in Table 4.
Table 6
Benchmarks used in the extended experiments with configuration in the Table 4.

Benchmark Description Small problem size Medium problem size Large problem size

nn-LeNet LeNet neural network simulation 256 tasks 1k tasks 2k tasks
nn-GoogleNet GoogleNet neural network simulation 100 tasks 200 tasks 400 tasks
nn-ImageNet ImageNet neural network simulation 1k tasks 4k tasks 8k tasks
nn-FRCNN FRCNN neural network simulation 1k tasks 4k tasks 8k tasks
plots the speedup achieved by the corresponding algorithm upon a
naive CPU-only mapping algorithm which prioritizes workloads by
shortest-execution-time-first and maps all workloads only to CPU.

As seen, in most tested scenarios, our original mapping algorithms
improve upon dmdar. The performance gain varies depending on the
workload composition and problem scale. As shown in all six graphs of
Fig. 5, when the problem size is small or medium, one or more of our
proposed algorithms yield slightly better performance than dmdar. The
improvement is not significant in these cases because the variances in
heterogeneity ratio and structure spawn are small. Thus, the benefit of
specifically considering these factors becomes less significant. When the
problem size becomes large, the performance improvement under our
proposed algorithms becomes more substantial. For example, as seen
in Fig. 5(b), for computation-intensive workloads with large problem
size, h-ratio, d-rank, and ad-part improve upon dmdar by more than
15%, 10%, and 110%, respectively. In particular, ad-part achieves the
best performance in these cases because computation-intensive tasks
are divided into parallel threads with partial data. This effectively
reduces the time to complete such tasks when multiple processing units
become available. Moreover, for computation-intensive tasks, applying
data partitioning does not incur much data transfer penalty. Another
interesting observation is that when workloads become data-intensive,
ad-part yields the worst performance, as shown in Figs. 5(c) and (f).
By analyzing the mapping traces of these experiments, we observe
that partitioning data-intensive applications may incur significant data
transfer time, which negatively impact the completion time perfor-
mance. Unlike prior work considering single application scenario where
data partitioning should be applied in most cases, our results suggest
that data partitioning should only be selectively applied, in particularly
when workloads become more data-intensive. Figs. 5(d)–(f) show the
results under the system configuration with the CPU and only one
GPU (removing the less powerful GT 620 GPU). Compared to the case
where all three processing units are used (shown in Figs. 5(a)–(c)), the
observation is that the speedup decreases. This is intuitive because less
resources are available in this case.
9

6.2.2. Experiments for evaluating ‘‘hratio-part’’
For evaluating our ‘‘hratio-part’’ as well as comparing its perfor-

mance with the ‘‘h-ratio’’ and ‘‘d-rank’’, we set up our experiments
into two groups: one is implemented to evaluate their performance
upon up-to-date embedded computing device setups and the other upon
high-performance computing device setups.

Overall, all our proposed algorithms, including the original and ex-
tensive ones, can achieve around 10% better completion time than the
dmdar algorithm. While the original scheduling algorithms significantly
outperform the eager scheduling algorithm, they fail to do so over the
dmdar algorithm, possibly because the computation platforms, such as
CUDA [1] and OpenCL [2], have been increasingly improved in recent
years so that a simple scheduling strategy can also have a relatively
acceptable effect. Another reason is that the eager scheduling algorithm
for the original text comparison is only run on the CPU, and even
for the Naive algorithm, GPU acceleration is allowed for a more fair
comparison.

In the extended schemer ‘‘hratio-part’’, because of the nonlinear
relationship based on the data size to estimate the data transfer time,
the time consumption cost of the scheduling is significantly reduced,
which leads to significant enhancement of the real-time performance of
the scheduling. For instance, in Fig. 6(a) and (d) (mixed test scenarios),
all five tested schedulers (including ‘‘hratio-part’’) can significantly
outperform the speed of the eager scheduler as in the medium/large
test scenarios, while in small size of test scenarios, the schedulers
based on the dmdar/h-ratio/d-rank algorithms performs much worse
than the eager scheduler. The small test scenarios require smaller time
consumption of computing tasks, but close time to scheduling. This
shows their scheduling time consumption cannot be ignored in small
test scenarios and ‘‘hratio-part’’ can efficiently reduce scheduling time.

We further observe that on the benchmarks for simulating
LeNet [21], GoogleNet [18,22], and ImageNet [23] (Fig. 8(a)–(c) and
Fig. 7(a)–(c)), the existing algorithms (dmdar, h-ratio, d-rank) and the
extended algorithm (‘‘hratio-part’’) can achieve close performance as
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Fig. 6. Experimental results on the original benchmarks in Table 3 with the configuration in Table 5.
Fig. 7. Experimental results of NN simulation on 2CPUs+4GPUs (extended benchmarks in Table 6) with the configuration in Table 5.
the baseline FIFO-based algorithm, which can be explained as follows.
Since the proposed algorithms tend to schedule each single task of an
application, such scheduling process inevitably results in overall non-
trivial time consumption all together. However, in typical deep neural
networks, e.g., LeNet, GoogleNet and ImageNet, most of the size of
their associated computation tasks are small [18,21–23] compared
to the original benchmarks adopted in this paper (the input size of
convolutional layers is usually less than 100 × 100, while the input
size of original benchmarks is more than 1kx1k, as listed in Table 3). As
a result, compared with the execution time for tasks, scheduling tasks
consumes more time. We define the total running time, i.e., schedul-
ing time plus execution time, as the evaluation metric of runtime
performance.
10
On the benchmark simulating F-RCNN [19,20] (nn-FRCNN), dmdar
and other heterogeneous-based scheduling algorithms can greatly en-
hance the performance of nn-FRCNN for simulating runtime F-RCNN
network. For example, in the large test scenario of Figs. 8(d) and
7(d), dmdar, h-ratio, d-rank, and ‘‘hratio-part’’ outperform the eager
scheduler by 53%, 132%, 131%, and 159%, respectively. The h-ratio
and d-rank algorithms achieve more advantages over dmdar under 2
GPUs (averagely 49%), while such advantages are shrunk under 4 GPUs
(averagely 29%). It can be speculated that there are better chances to
optimize the scheduling strategy when the resources are limited (with
fewer GPUs).

Moreover, since LeNet and GoogleNet enable mostly homogeneous
convolution operations and pooling operations, the efficiency of such
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Table 7
Crash test comparison against threshold policy.

Exp. set 1 Exp. set 2 Exp. set 3 Exp. set 3
pi large size × 100 cg large size ×100 incrementer large size × 100 fblock large size × 100

eager (naive scheduler) 0/100 0/100 1/100 0/100
dmdar (has threshold) 2/100 4/100 3/100 0/100
h-ratio (no threshold) 1/100 9/100 2/100 0/100
rank-based (no threshold) 2/100 3/100 1/100 0/100
Fig. 8. Experimental results of NN simulation (extended benchmarks in Table 6) on 2CPUs+2GPUs with the configuration in Table 5.
operations can be largely improved by being implemented directly on
the GPU. Therefore, the baseline FIFO-based algorithm can perform
well when their associated computation is loaded in the GPU. However,
many state-of-the-art neural networks require more operations which
are hard to be parallelized on the GPU. For instance, F-RCNN [19,
20] contains an interpretation layer with complex sorting operations,
such operations render the task partitioning of the neural network
throughout the runtime more heterogeneous, which can be significantly
optimized by heterogeneity-based algorithms. Therefore, the ‘‘hratio-
part’’ algorithm achieves more advantages over other algorithms on
F-RCNN over LeNet, GoogleNet and ImageNet.

6.2.3. Experiments for the impact of the threshold setup
As mentioned in Section 4.1, a threshold is set partially for prevent-

ing overflow under performance bottlenecks. To evaluate the efficacy of
the threshold setup, we conduct a preliminary study to investigate the
frequency of overflow occurrence under the no-threshold setup upon
large test scenarios (as in Table 3). Table 7 demonstrates the study
results which indicate that the system only incurs quite limited amount
of overflows by revoking the threshold setups. In particular, the eager
scheduler incurs almost no overflow under multiple test scenarios.

7. Related work

Scheduling algorithms for heterogeneous systems. The general
problem of scheduling in heterogeneous systems has received much
attention. A number of scheduling heuristics have been proposed
11
for scheduling directed acyclic graph-based (DAG) applications in
heterogeneous systems [24–29]. These algorithms schedule a single
DAG (Directed Acyclic Graph) of tasks onto heterogeneous processing
units with varying speed for minimizing the completion time. Zhao
et. [30] proposed multi-DAG scheduling by merging multiple DAGs
into one DAG. However, such algorithms do not specifically target
the CPU/GPU platform, and thus ignore several critical factors when
making scheduling decisions, including non-preemptivity, data transfer
cost among CPUs and GPUs, data partitioning. Moreover, these ex-
isting algorithms are mostly greedy in nature and do not provide a
theoretical understanding of the mapping problem considered herein.
Only a limited number of approaches have been tested in real systems,
e.g., researchers in [31] explore the multitude of real-time multi-
GPU configurations. In recent work, dynamic scheduling for multi-core
heterogeneous systems [32–35] is still a interesting topic. Researchers
are also concerned about task scheduling in restricted scenarios, for
instance, researchers in [36] focus on energy constraints, researchers
in [37] focus on equipment constraints.
Runtime system support and execution engines for heterogeneous
CPU/GPU processors. CPU/GPU processors have become increas-
ingly adopted in various domains, e.g., software development and
testing [38–42], cloud computing [43–45], IoT systems [46–48]. For
heterogeneous CPU/GPU platforms, a number of runtime systems have
been developed to perform task scheduling. PTask [49] focuses on
eliminating performance interference of GPU sharing. TimeGraph [9]
and others [50] provides prioritization and isolation capabilities in GPU
resource management. Harmony [51] schedules translated CUDA code
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on various devices. Qilin [3] provides an adaptive mapping to automat-
ically partition tasks on a CPU and a GPU. SKMD [14] transparently
translate single OpenCL [2] task into variations and execute them on
multiple GPUs simultaneously. The aforementioned runtime systems
either focus on single task or did not consider task affinities. Some
other runtime systems focus on task dataflow parallelism: OmpSs [52],
Hydra [53], StreamIt [54], IDEA [55], Liquid Metal [56], Lime [57].
However, these systems do not focus on scheduling multiple graphs
onto heterogeneous processors for minimizing the completion time.
The recent research trends are more migrated to high-performance
computing (HPC) platforms for solving data parallelism problems.
HESSLE-FREE [58] leverages fuzzy control for runtime resource man-
agement on heterogeneous systems. PLB-HAC [59] proposes a dynamic
load-balancing method and implements it on heterogeneous clus-
ters containing combinations of CPUs and accelerators. Northup [60]
applies divide-and-conquer programming in heterogeneous systems.
StarPU runtime system. The StarPU [11] runtime system provides
programmers with a portable interface for dynamically mapping tasks
onto heterogeneous processors (CPUs and GPUs). It integrates devel-
opment tuning and sampling with several pre-defined task scheduling
strategies [15] as plugins. These include the eager scheduler that uses
the minimum-completion-time-first policy [24], the dm scheduler that
performs an HEFT-based scheduling policy, and several variations of
the dm scheduler. Among all pre-defined schedulers, the best one
is the dmdar (deque model data aware ready) scheduler. The dm-
dar scheduler similar to the dm scheduler, but taking data transfer
time into account and sorting tasks on a per-worker queue basis.
Sc_hypervisor [61] is an extension based on StarPU, which supports
co-execution of multiple applications each using the StarPU runtime
system. It focuses on partitioning approaches, which split computing re-
sources into isolated sets, and then apply existing StarPU schedulers on
each set. However, the StarPU runtime system does not focus on design-
ing efficient mapping algorithms to minimize the completion time, but
rather contributes in providing a portable interface for programmers
to easily utilize GPUs. The StarPU pre-defined schedulers are mainly
designed to handle the single application scenario and use simplified
criterion to make mapping decisions. By far, StarPU has been actively
maintained and adopted for various research purposes [62–64].
Neural network acceleration. The recent advances of deep neural
etworks [65–71] lead to increasing computational complexity and
hus generate excessive energy and time consumption, e.g., Fast R-
NN [19,20]. For an embedded real-time system, it is necessary to
ptimize the prediction accuracy of deep neural networks while en-
uring the real-time performance. On this purpose, many approaches
dopts trade-offs. In particular, some approaches use a convolutional
eural network (CNN) with a relatively low relative prediction accu-
acy. For instance, SSD [72] provides a single shot multiBox detector
hich completely eliminates proposal generation and subsequent pixel
r feature resampling stages and encapsulates all computation in a
ingle network. YOLO [73], provides a single network implemented in
he whole detection pipeline. In addition, some approaches focus on
ptimizing computation process. For instance, ISAAC [74] provides a
onvolutional neural network accelerator with in situ analog arithmetic
n crossbars for enhancing the efficiency of large number of multiply-
ccumulate (dot-product) operations. EIE [75] works as an energy
fficient inference engine on compressed neural network and accel-
rates the resulting sparse matrix–vector multiplication with weight
haring. Cambricon-x [76] provides a method to exploit the sparsity
nd irregularity of neural network models for increasing efficiency.
NPU [77] provides a unified DNN accelerator with fully-variable
eight bit-precision. Moreover, some other approaches focus on FPGA
esign and implementation. Researchers in [78] provides an analytical
esign scheme to identify the solution with best performance and low-
st FPGA resource requirement based on a roofline model. Researchers
12

n [79] provides a dynamic-precision data quantization method and a
convolver design to improve the bandwidth and resource utilization for
convolutional neural networks.
Task mapping application. The recent advances of task mapping
applications are widely used in many different embedded systems,
including application workloads in modern MPSoC-based embedded
systems [80]. Researchers in [80] provide a hybrid task mapping
algorithm that combines a static mapping exploration and a dynamic
mapping optimization to achieve an overall improvement of system
efficiency. In addition, the task mapping applications also include
the field of high-performance computing, e.g., researchers in [81]
focus on topology-aware task-mapping methods on supercomputers.
TASKWORK [82] provides a cloud-aware runtime system for elastic
task-parallel HPC applications.

8. Conclusion

In this paper, we investigate the problem of mapping multiple
applications implemented using task graphs in a heterogeneous system
consisting of CPUs and GPUs. To achieve fast competition time, we
present a fine-grain mapping framework that explores a set of critical
factors that are suggested by several measurements-based case studies.
We present a theoretical framework that formulates this problem as an
integer program and a set of practically efficient mapping algorithms.
We implement the proposed algorithms in a real heterogeneous system
and conduct extensive experiments using a set of popular benchmarks.
Experimental results demonstrate that our proposed algorithms can
achieve up to 30% faster completion time compared to the state-of-the-
art mapping techniques, and can perform consistently superior across
different workloads.

In our extensive work, for strengthening the performance of
mapping tasks upon deep-neural-network applications under limited
resources, we propose an extensive algorithm, namely heterogeneity
ratio-based and data-partition optimizing scheduling (hratio-part), that
replaces EFT with PFT and revoke the threshold setups. To evaluate the
efficacy of the extensive algorithm, we also extended the experimental
setups for server-level scenarios and the benchmarks for simulating
the DNN-based applications under limited resources. The experimental
results demonstrate that our proposed algorithms, i.e., h-ratio, d-rank,
‘‘hratio-part’’, can achieve over 10% faster completion time compared
to the dmdar algorithm in multiple test scenarios. The experimental re-
sults also reveal that the extensive ‘‘hratio-part’’ algorithm can achieve
better advantages over the dmdar algorithm than the ‘‘h-ratio’’ and
‘‘d-rank’’ under both the resource-limited and resourceful scenarios.
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