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Abstract. IoT systems have gained increasing attentions in 
research community and industry. Tens of billions of devices 
are now connected to the Internet and quintillion bytes of data 
are generated from sensing devices every day. One of the 
important applications of IoT systems in industry is 
monitoring, fault detection, and diagnosis of manufacturing 
systems (MFDM). However, current practices in the 
development of such systems are individualized with each 
company developing their own solutions. To address this 
issue, we propose a SaaS-centered framework for 
manufacturing system health management. The 
configurability and easy evolution of SaaS can facilitate reuse 
and sharing of data, processes, and technologies.  

Besides the general framework, we also look into the 
technologies that are important for the framework. The 
literature in time series data storage and the techniques for 
mining correlated data are reviewed and the gaps are 
identified. To bridge the gap, we discuss some potential 
methods for resolving the problems. We also consider how to 
incorporate the potential techniques into our framework for 
effective fault detection and diagnosis. 

Keywords: Internet-of-things, cyber-physical systems, 
smart manufacturing, smart industry, SaaS, health monitoring, 
fault detection and diagnosis. 

1 Introduction 
IoT (Internet-of-things) technologies are being developed 

rapidly in recent years. It is estimated that there are tens of 
billions of physical things that are connected to the Internet, 
and the number is still growing rapidly. Various IoT 
applications are being developed towards the goal of more 
advanced automation and improved human living.  

Due to the importance and popularity of IoT, many 
application domains have incorporated IoT to improve the 
application systems. A lot of efforts are currently devoted to 
the development of smart home, smart building, smart city, 
smart planet, smart farms, smart agriculture, smart factory, 
smart manufacturing, smart industry, smart roads, smart 
parking, smart transportation, smart cyber physical systems, 
smart grid, etc.  

To enable the IoT applications, many IoT technologies 
have been developed. One category of such technologies is 
related to the interoperation and integration of the extremely 
diverse IoT devices. Many standards and tools for different 

layers of IoT systems, from communication protocols, 
integration platforms, middleware technologies, to cloud 
based platforms, have been developed [1-5]. These 
technologies can facilitate IoT connection to the network, 
interoperation, wrapping and encapsulation, and rapidly 
evolve to adopt new technologies and IoT system 
development and deployment. Also, big data plays a very 
important role in IoT systems. Most of the IoT systems 
involve a large number of sensors that collect a huge quantity 
of data and machine learning methods are applied to analyze 
them for various goals. Besides existing big data analytics, 
performance improvements and adapted algorithms are 
developed to fit specific IoT applications. 

Among various applications of IoT systems, a lot of 
industrial companies are now adopting IoT to improve their 
operations. One major use of IoT systems in industry is for 
monitoring, fault detection and diagnosis (MFDD) of the 
operations of the systems to ensure their proper operations. 
This can help with early problem detection and mitigation to 
ensure high quality as well as highly reliable and safe system 
operations. For manufacturing systems, IoT based monitoring 
and problem detection can also help reduce the likelihood of 
producing defective products and potentially improve product 
quality. However, many companies face the problem of 
adopting IoT solutions. Due to the potential differences, each 
company ends up developing its own company-specific IoT 
system to achieve the monitoring and fault detection and 
diagnosis goals.  

In this paper, we discuss the design of a SaaS-centered 
MFDM framework for IoT based system health management 
for manufacturing systems. The goal is to extend system 
configurability such that manufacturers can easily build the 
health management capabilities for their production systems 
using the MFDM framework. The MFDM-SaaS is designed 
to offer physical system architecture management, data 
collection infrastructure and management, big data analytics, 
sensor and diagnosis capability provisioning and scheduling, 
and data provenance and security assurance. 

Besides a SaaS-centered framework, we also look into the 
desired technologies that should be incorporated in the 
MFDM framework. We review the state of the art 
technologies in using IoT and big data for manufacturing 
system monitoring, fault detection and diagnosis, and 
investigate the gaps in current research. One major issue we 
consider is the data correlation analysis. In many physical 
systems, individual sensor data are not sufficient to detect and 
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diagnose faults. The sensor readings for some components are 
correlated. Traditionally, a powerful paradigm for FDD for 
this type of systems is model-based fault detection and 
diagnosis [6][7]. However, model-based approaches require a 
specific model, including the system architecture and sensor 
data correlation rules, being built to enable fault detection and 
diagnosis. This information is not always available from some 
manufacturers and, even if available, it may not be complete. 
Also, manufacturing systems may evolve to adopt new 
technologies or upon the demand of new production needs. 
Moreover, with the new drive of customer-oriented industry, 
it is expected that manufacturing systems will become more 
and more agile and configurable. All these factors make it 
more challenging to maintain the up to date system 
specification for the manufacturing systems. Thus, it is 
expected that some sensor data correlation should be 
automatically derived instead of being prespecified. However, 
with large-scale systems, there may be hundreds, thousands, 
or an even larger number of sensors. Mining the data 
correlation without knowing which sensor data streams are 
correlated can be highly computation intensive and may even 
be infeasible.  

Another important issue in MFDM is the storage of sensor 
data streams. Many time series database (TSDB) have been 
developed and they are still evolving. Since there are many 
different applications that may require different TSDB 
support, some desired features are still being identified and 
incorporated. We discuss the TSDB requirements for 
manufacturing sensor data that are not well supported in 
current TSDBs, such as the consolidation methods, the sensor 
data semantics, etc., and consider some solutions. 

In the next section, we review the literature related to IoT 
systems, manufacturing systems, and system monitoring and 
fault diagnosis. The architecture and components of the 
MFDM framework are discussed in Section 3. Specific 
components in the framework that require in depth research 
and investigation are discussed in Sections 4 and 5. Section 5 
states the conclusion of the paper. 

2 Literature Review 

2.1 IoT Technologies 
IoT related research spans many dimensions. Basic IoT 

systems research focuses on the communication and 
interoperation for machine to machine (M2M) and machine 
to cloud interactions. For example, Bluetooth, Zigbee, 
AllJoyn are frequently used M2M protocols for M2M 
communications. 6LowPAN and RPL are popular IP based 
communication protocols used for large scale mobile device 
communications. Some more abstract messaging protocols 
built on top of the publish/subscribe or remote procedure call 
paradigm have also been developed for IoT communications, 
such as MQTT, CoAP, and REST protocols.  

Some basic integration platforms have also been built to 

facilitate integration and interoperation of IoT devices. For 
example, Contiki [1] is an open source IoT operating system 
that can support several IoT communication protocols 
including CoAP, 6LowPAN, and RPL. Users of Contiki can 
communicate with IoT devices with common sockets. 
Arduino [2], besides offering communication interface, also 
provides a programming language for controlling the IoT 
devices. Thus, users can exercise the desired control without 
needing to know the low level commands of the IoT devices. 
There are also some higher level platforms such as SenaaS 
(sensor as a service) system [3] and SOCRADES [4], which 
support event based service oriented IoT system development. 
They require IoT device developers to wrap the low level IoT 
devices as services and the IoT application system users can 
invoke IoT services through common service interfaces 
without knowing the device details.  

Since many IoT systems focus on sensing and monitoring, 
data is an important element in this class of IoT systems. It is 
estimated that everyday a couple of quintillion bytes of data 
are collected from sensing devices. Thus, a lot of research 
efforts are devoted to data related topics for IoT systems. 
Some IoT platforms focus on interacting with IoT devices for 
data collection. OpenIoT [5] supports easy sensor integration 
and data collection without needing to worry about how to 
interact with the sensors. It also is an infrastructure of sensors 
and collected sensor data. Its sensor data repository is based 
on the semantic sensor network (SSN) standard. Legitimate 
users can access semantic sensor data hosted by OpenIoT to 
obtain the desired information.  

Research related to IoT data also investigate the issues of 
data semantics. Several standards have been developed. OGC 
(Open Geospatial Consortium) has developed the 
Observations & Measurements (O&M) standard [8], which 
defines the XML schema observations and measurements 
data from sensors. The schema considers specifications of 
sensor location, sensor functionality, and lineage of 
observation. Correspondingly, the Sensor Model Language 
(SensorML) is a standard defined to describe the sensor 
systems and processes associated with sensor observations [9]. 
But Sensor ML mainly focuses on geospatial data, and may 
not be sufficient to provide the semantics for system health 
monitoring data. SSN ontology [10] is defined by W3C and it 
provides a generic sensor data semantics model (used by 
OpenIoT). The ontology describes sensor devices, sensor 
operations and management, sensor observation and 
measurement data semantics, etc. Sensor O&M data 
semantics also uses Quantity Kinds and Units standard [11] 
for the specification of what kind of data are collected by a 
sensor. SSN is a powerful ontology and when properly 
integrated with domain ontology, it can be used for modeling 
the semantics for manufacturing monitoring data. 

2.2 Fault Detection and Diagnosis 
Due to the importance of fault detection and diagnosis for 

system health, a large volume of research works have been 
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presented in the literature. Over the past, the most prominent 
solution for FDD is probably the model-based approach [6]. 
In model-based FDD, a model for the cyber physical system 
should be built based on the expert knowledge and 
mathematical abstraction of the system. From the model, the 
rules and invariants that had to be followed by the system 
states can be derived and accordingly faults can be detected 
and diagnosed when the system state violates the model. The 
model-based FDD has been applied to many application 
systems successfully [7]. 

A variation of model-based FDD is the integrated system 
health management (ISHM), which is renamed from IVHM 
(integrated vehicle health management) initiated by NASA 
[12] to general systems. IVHM integrates model based FDD, 
case based reasoning (CBR) [13], fault signature matrix (FSM) 
[14], anomaly detection, etc. Model-based FDD relies fully 
on the system model for fault identification, while CBR 
relaxes it by the concept of training by examples. In CBR, 
normal and faulty cases of the system are presented to the 
learning module, which outputs the learnt model to be used 
for fault detection. Neural networks are frequently used as the 
learning module [15]. FSM is one specific method under the 
model-based FDD concept and focuses on fault diagnosis. It 
defines the sensor vector and correlates system components 
with sensors in the vector and, thus, forms a signature vector 
for each component. Different components have different 
signatures. When faulty sensor data are detected, the signature 
helps isolate the faulty component.  

All the above methods require the knowledge about the 
system model and some of them require more specific rules 
for fault detection. This may not be feasible in some systems 
due to the heavy cost and efforts to generate the model and 
the flexibility of the model is limited. More recently, big data 
analytics are being applied to FDD with the benefit of not 
needing detailed system models. Many such applications 
consider individual sensor data streams and use anomaly 
detection, timed automata learning, etc., methods to detect 
faults [16]. When a more complex system with a large number 
of sensors is considered, the multivariate statistical analysis 
such as principle/independent component analysis  (PCA/ICA) 
have been applied to discover the correlation between the 
large number of sensor data streams [17]. However, PCA and 
ICA can only derive linear correlations while many physical 
systems have nonlinear relations among their components. 
Nonlinear multi-variate algorithms have scalability problem. 
Thus, further research is required to support more powerful 
MFDD data analytics. 

3 SaaS-Centered Framework for IoT-
Based MFDD 

In this section, we discuss a SaaS-centered configurable 
framework for IoT-based monitoring and diagnosis of 
manufacturing systems (MFDM framework). The MFDM 
framework is not fully a SaaS system because it requires on-

site hardware/software components to perform data collection, 
on-the-fly data analysis and problem detection, and activation 
of mitigation schemes when problems are detected. All the 
other functions that do not have local dependency are 
incorporated in the SaaS. In Subsection 3.1, we discuss the 
SaaS design in the MFDM framework (MFDM-SaaS). The 
MFDM framework design for the manufacturing site 
(MFDM-Manufacture) is discussed in Subsection 3.2. 

3.1 MFDM SaaS 
Figure 1 shows the architecture for the SaaS in the MFDM 

framework. The corresponding technical issues and potential 
solutions for each component are discussed below. 

 
Figure 1. MFDM SaaS. 

A. Knowledge of the Target System  
In order to achieve fault diagnosis of a physical system, it 

is necessary to know the system architecture and workflow as 
well as the sensors placement in the system. System 
architecture provides the information regarding system 
components and their correlations, and the relations between 
the sensors and system components. System workflow 
provides the information regarding the sequences and timings 
that system components or subsystems are activated upon 
various events or stimuli. From the sensor data, one can 
observe the behaviors of the system. In case some anomalies 
are detected from the data, the fault diagnosis techniques can 
be used to identify the faulty components based on the relation 
of the sensors with faulty data and the system [6][18]. 

In traditional practice, the architecture and workflow of the 
system are created by human experts and interpreted into 
machine understandable model to facilitate fault diagnosis. 
However, creating these models are time consuming and 
costly. Some smaller companies may even lack the expertise 
for generating proper system models. With system evolution, 
it is unlikely these system specifications can be kept 
consistent with the real physical system architecture and 
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workflow. Modern manufacturing systems are shifting 
toward configurability to fit customized production needs, 
which makes the specification of the system model even more 
challenging. Thus, it is desirable that the system architecture 
can be discovered automatically.  

In the MFDM SaaS, multiple approaches are used to help 
with system spec construction. Users can choose to directly 
submit system spec through the GUI. The repository 
maintains a large number of ready specifications. In case 
assistance is needed, the “System spec Miner” is designed to 
mine the repository for similar systems and use the mining 
results to help construct the spec of the target system.  

Semantic models and specification languages are needed to 
support well defined system specifications. Existing 
specification techniques, such as UML, BPMN, timed 
automata can be combined to support the specifications. 

B. Knowledge about the Collected Data  
Effective system monitoring and fault diagnosis requires 

not only knowledge about the physical system, but also about 
the sensor data. Big data analytics can be applied to the sensor 
data for system fault detection and diagnosis. With the sensor 
data repository in the MFDM framework, it is also possible to 
cluster the sensor data streams and perform cross stream 
analysis to help more accurately detect and diagnose 
problems. Knowledge about the sensor and the data collected 
can help with better mining of similar data streams and 
perform cross data stream analysis. It is also possible to mine 
the similar data streams and obtain the most effective data 
processing workflows. 

Specifying the data semantics can help with mining cross 
data streams. The semantics about one sensor data stream 
should include the sensor specification, the components or the 
subsystem the sensor is monitoring, the quantity and kind of 
the data, and the data unit. For each monitoring data, we need 
to have the time the data is collected and the collected data 
itself. Data stream correlations can be specified by rules or by 
simply indicating that a group of data streams are correlated. 

C. General and Domain-Specific Monitoring Data 
Processing Services 

Common sensor data stream analysis techniques can be 
incorporated in the MFDM SaaS as services. Generally, for 
individual data streams, anomaly detection, pattern mining, 
episode mining, periodicity analysis, etc., methods may be 
used. For correlated data, if the rules are specified, then 
analysis can be performed to ensure the conformance to the 
rules and determine the normal deviations from the rules in 
case the rules are not exactly satisfied. For correlated data 
without rules, the correlation of data can be analyzed and the 
rules can be derived. Similarly, the normal deviations from 
the rules can be recorded. We can also mine the data stream 
repository to obtain similar data streams and use the similar 
group for enhancing data analysis accuracy. 

To improve data analysis performance, incremental mining 
methods should be considered for time series data. Also, the 
data quality from different sensors may be different and 

should be taken into account. 
Big data analysis can be done in the cloud, and the model 

derived from the data streams is passed to the manufacturing 
site for on-the-fly sensor data validation against the model.  

Pictures and videos are generally the generic and effective 
means for monitoring and fault detection of physical systems. 
For example, videos can show that in a nut bread production 
line, the nut dispenser did not dispense nuts for some doughs. 
Images of the system can be used to examine, for example, 
eroded parts of some production equipment. Thus, image 
processing and problem detection from videos are important 
capabilities to be included as the MFDM SaaS services.  

When detecting problems from images and videos, 
specifications of what to look for could help guide the analysis 
and achieve better detection accuracy. Proper models for the 
specifications of faults and associated positive and negative 
image/video examples should be incorporated.  

Other common data processing techniques that may be 
useful in processing monitoring data for manufacturing 
systems, such as signal processing, Fourier transformation, 
wavelet transformation, etc., can be incorporated as the 
MFDM SaaS services. Also, common mitigation software can 
be incorporated as the MFDM SaaS services as well. 

The MFDM SaaS also incorporates a data processing 
workflow construction interface to support the description of 
the fault detection-diagnosis-mitigation workflows and their 
association to the sensor data streams. Data processing 
services hosted by MFDM SaaS as well as external data 
processing services can be discovered, selected, and 
composed into workflows to facilitate sensor data analysis.  

Data streams and workflows from various sources are 
stored in the repository and the repositories can be mined for 
knowledge that can be reused by other systems. The data 
stream repository can be mined to discover similar data and 
use them to enhance fault analysis results. We can also 
support reuse of data processing schemes for fault detection 
and diagnosis by mining the repository for similar systems 
and data sources and learn the most effective processing 
methods and workflows for the corresponding sensor data 
streams.  

D. Diagnosability Analysis and Optimal Sensor and 
Diagnosis Software Scheduling  

For some sensors that may be far from power sources, we 
need to minimize their activation time if they can be 
dynamically activated. Also, we need to determine when to 
activate the fault detection and diagnosis software. These 
scheduling decisions are made to balance the diagnosability 
of the system, diagnosis timeliness, power consumption, and 
system overhead. Also, the activation schedule can be an 
adaptive one. In the normal situation, the schedule is set to 
ensure basic diagnosability. When there is suspicion of faults 
but below the identification threshold, then the schedule can 
be adapted to ensure better diagnosability and timely 
mitigation. The scheduling can be performed at the 
manufacturing site or in the cloud and compute an adaptive 
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scheduling rules and pass them to the manufacturing side 

E. Data and Metadata Storage and Management 
As shown in Figure 1, MFDM SaaS hosts several data and 

process repositories. They not only store the historical data 
and processing information, but also will be mined to get 
reusable knowledge to facilitate more accurate fault detection 
and diagnosis. To facilitate cross data stream mining, the 
semantics of the data are very important. Thus, semantic 
knowledge for the data and processing schemes should be 
clearly defined. Also, the storage system for storing the data 
is very important. Many supporting factors and performance 
issues should be considered in the data storage. Moreover, 
since the quantity of data will keep on growing as time goes 
by, if the storage space is confined, historical data should be 
compressed. Many time series databases have associated 
consolidation mechanisms and new consolidation algorithms 
for the data should be considered.  

F. End-to-End Provenance and Security 
The MFDM SaaS system hosts the data and processing 

elements from many manufacturing tenants. Hence, it is very 
important to protect the security, privacy, and integrity of the 
tenant assets. Each manufacturer should supply their own 
security policies. MFDM SaaS system offers data provenance, 
access control and information flow control mechanisms to 
protect the security of the data and processing elements of the 
tenants. The information in the repository that are private to 
the tenants may be publicly sharable, sharable after 
sanitization, or not sharable. MFDM SaaS offers a set of 
privacy preserving mining services to ensure the security 
policies of each tenant are strictly observed. 

Additional security mechanisms should be incorporated in 
the data collection process and data collection channels. 
Physical system security and integrity protection should also 
be considered. 

3.2 MFDM-Manufacture 
The manufacturing site needs to manage the following 

tasks. 
(1) Manage the sensors and the data collection process 

using existing IoT system management platforms [5]. Control 
the data stream flows from sensors to intermediate collectors, 
on-site analyzers, and to the Cloud. Some M2M and M2C 
standards for communication can be used. 

(2) Coordinate with MFDM SaaS to obtain learned models 
and rules for individual as well as correlated data streams. 
Based on the predefined rules and/or learned models to exam 
the newly collected data on-the-fly and to detect faults and 
ensure that the system is operating correctly. Activate the 
mitigation system workflows to either confine the faults and 
protect the system or lead the system to a safe state.  

(3) Coordinate with the scheduling unit in MFDM SaaS 
and determine the optimal scheduling for sensors and 
diagnosis software according to the current situation of the 
system. When necessary, adapt the schedule based on the 

diagnosis results. 
Big data analysis and mining tasks are performed in the 

cloud. The learned models and rules are passed from MFDM 
SaaS to MFDM-Manufacturing for on-the-fly sensor data 
validation against the model. Image and video analysis should 
be done at the manufacturing site and the analysis capabilities 
can be migrated as virtual machines to the remote site. The 
historical image and video data as well as analysis results can 
be passed back to the cloud for storage and mining. The other 
data processing services can also be performed in one of these 
mechanisms. 

4 Monitoring Data Storage 
With the rapid developments in the domain of IoT, a huge 

amount of time series data are gathered by distributed sensors, 
which creates a huge demand and presents a great challenge 
for time series storage. Many time series data bases (TSDBs) 
have been developed with different features to store and 
retrieve time series data streams. Various TSDB research 
works have also been investigating how to efficiently store 
and process data at scale. The suitability of each TSDB for 
various IoT based monitoring and fault detection and 
diagnosis systems needs to be evaluated based on the context 
and the underlying data. Here, we take a high level look at the 
design of some popular TSDBs, including  RRDtool [19], 
Graphite [20], BlueFlood [21], OpenTSDB [22], InfluxDB 
[23] and DalmatinerDB [24] and analyze the important 
features of these systems for IoT MFDD.  

Scalability and data access performance are key features in 
the development of TSDB. RRDtool is the earliest version of 
time series database that offers industry level performance 
with fast disk seeking and fixed storage usage. It requires the 
data size related specifications in advance in order to pre-
allocate required storage space when creating databases. 
However, RRDtool is not designed to handle a large number 
of data streams. With large-scale, even multiple-site 
manufacturing systems, thousands or tens of thousands of 
data streams flow into the storage at various rates, which 
makes RRD to exhibit performance bottlenecks. Graphite 
attempts to improve the bottleneck on random disk IO and 
handling irregularly arriving data. But this still cannot satisfy 
the increasingly large scale and high rate of time series data 
from MFDD systems. Newer TSDBs attempt to use 
distributed storage to address the IO access bottlenecks. 
Blueflood attempts to provide high scalability by using 
Cassandra for data storage and Elasticsearch [25] for indexing. 
Similar to Blueflood, OpenTSDB is built on top of HBase. 
Since Cassandra and HBase are both general purpose 
databases, not specifically designed for time series data, and 
are not the best performing distributed databases, Blueflood 
and OpenTSDB place a layer on top of them, which adds an 
additional cost for data access and management. Several even 
newer TSDBs try to build databases from ground up with the 
aim of improving query performance and storage efficiency. 
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InfluxDB and DalmatinerDB are representative TSDBs in this 
aspect. Some storage space optimizations, including limited 
rebuilding of RAID arrays, tuned B+Tree block size against 
the OS page size, etc., are adopted in these systems to ensure 
better data compression for storage efficiency. As a result, 
disk space usage in DalmatinerDB is less than one tenth of 
that in OpenTSDB for the same amount of data points. 
Besides storage efficiency, InfluxDB and DalmatinerDB also 
adopt more advanced storage engines for customization, such 
as RocksDB [26], LMDB [27] and ZFS [28], and have 
specific designs to work with them to achieve high 
performance as well as high scalability. 

Due to the importance of TSDB performance and 
scalability, one critical task is the evaluation of the TSDBs for 
MFDD processing. We plan to develop a benchmark suite to 
represent the TSDB accesses in MFDD operations and study 
the tradeoffs and identify new requirements in TSDBs for 
MFDD of manufacturing systems. 

In the domain of MFDD for manufacturing systems, the 
vast and diverse set of measurement metrics make the 
semantic modeling of the data streams and data points another 
important feature in TSDB design. Flexible data models with 
higher degrees of freedom on data types and schema along 
with more powerful query languages are the goals to be 
pursued. RRDtool, Graphite, and Blueflood use RRD-like 
models where data semantics, such as name of time series data, 
consolidation method, etc., need to be defined upon creation 
of each dataset. In OpenTSDB, InfluxDB, and DalmatinerDB, 
labels can be arbitrary created for each data entry in the form 
of key-value pairs. However, simple data labels are non-
structured concepts and cannot provide high level semantics 
for the specification of what data is being stored. For example, 
for one measurement time series, we may need to know which 
system component it is for in the overall system architecture, 
what property it is measuring, what unit it is using, etc. Simple 
key-value pair representation will not be sufficient in 
describing all these multi-dimensional attributes for the data 
stream. Descriptor concatenation may help, but is too 
primitive and still cannot associate related semantics. In [29], 
we have developed a semantic model and tools for adding 
semantics to TSDBs with the focus on cloud system 
monitoring. SSN [10] is an advanced semantic model for 
sensors and measurement data description. Though these two 
works can be applied to the manufacturing sensor databases, 
additional domain specific ontology for manufacturing 
systems should be developed to bridge the semantic gap in 
existing TSDBs. 

Monitoring data streams continuously flow into the 
database at a relatively high rate. Generally, it is impossible 
to expand the storage space continuously to accommodate all 
the data. Thus, most of the TSDBs provide a data 
consolidation mechanism to compress the older data so as to 
free up the space for the new data. RRDtool and Graphite 
support data consolidation and offer a few primitive 
consolidation functions, such as average, min, max, last, etc. 
to compress ancient data. Users can specify how many raw 

data points should be kept in the database and upon 
consolidation, which of the given functions should be used to 
compress data. OpenTSDB, InfluxDB, and DalmatinerDB 
offer a more flexible approach on consolidation. Users can 
specify the retention policy for ancient data consolidation. 
Users can specify the time threshold for data consolidation, 
i.e., data before the threshold will be “down sampled”. Users 
can also define a continuous query to down-sample ancient 
data using the consolidation method defined in the query. 
Continuous query will be activated automatically and 
periodically by the database to consolidate data. The 
consolidated data can be interpolated to the original precision 
when queried. Though existing TSDBs provide data 
consolidation support, specific consolidation methods that 
can best preserve the data stream characteristics should be 
investigated and integrated with the TSDB systems. 

Timing management and timestamps are important in 
TSDB. RRDtool and Graphite only support data series in 
fixed time intervals and they do not consider events. Also,  
they only consider numerical data with a min-max range. 
Their timestamps are at the second level, which is too coarse 
grained for some senor data where recording is done at a much 
higher frequency. Blueflood, OpenTSDB and DalmatinerDB 
work at the millisecond level and InfluxDB can work at the 
nanosecond level. Also, in InfluxDB, data can be stored as 
events and the data type of the time series data can be 
numerical or string.  

TSDBs are in the development stage and some of the 
released systems are continuously enhancing their features. 
Specific needs in MFDD for manufacturing systems should 
be more carefully investigated so that the desired features can 
be incorporated in commodity and open source TSDBs. 

5 Data Correlation Issues in MFDD for 
Manufacturing Systems 

Some sensor data may exhibit normal and abnormal 
patterns and can be used for system anomaly detection. 
Various big data analysis and anomaly detection algorithms 
have been developed to achieve fault detection and diagnosis 
for individual sensor data streams. However, in some systems, 
some anomalies can only be detected from the correlation of 
data, not by the data from individual sensors. An example of 
fault diagnosis based on data correlation rules is shown in 
Figure 2 [18][30].  

In this gas fuel system, sensors pi and qi monitor pressures 
and flows in corresponding locations, sensors fag, fagr, fsgr 
and fsg are the valves’ positions, 96hql is the water pressure. 
The normal sensor data should be governed by a set of rules 
and some of these rules are given below: 
�� � �������� − 	
  
��� � �����	� − ����  
��� � ����� 96ℎ���  
���� � ������ 96ℎ���  �
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Figure 2. Flow diagram of GFS of GE Frame 6 Turbine 

(adopted from [18][30]). 
Model-based FDD is a typical class of techniques for 

modeling this type of systems and their sensor data streams 
and performing fault detection and diagnosis based on the 
model. However, model-based approaches rely on the 
specification of the system architecture and sensor data 
correlation rules. This information is not always available for 
manufacturing systems. Even if the specification is available, 
it may not be complete. Also, manufacturing systems may 
evolve to adopt new technologies or upon the demand of new 
production needs. Moreover, with the new drive of customer-
oriented industry, it is expected that manufacturing systems 
will be more and more agile and configurable. All these 
factors make it more challenging to maintain the architecture 
and activity flows for the systems. Thus, automated discovery 
mechanisms to derive the knowledge about sensor data 
correlations is highly desirable.  

Data analytics for mining the correlation rules among 
sensor data streams. Discovery of data correlations may not 
be straightforward. If knowledge of which data streams are 
correlated is needed, then existing mining techniques may be 
able to help derive the relations among data series. Of course, 
there are still issues. For example, the timing of the data may 
not be in sync, which may impact data correlation derivation. 
Also, data quality such as missing data or noise in data may 
impact the proper discovery of data correlation rules. Some 
potential techniques, such as using interpolation to obtain 
missing data or to derive data at the desired synchronization 
points, may be developed. Also, techniques such as 
multivariate statistical analysis [17] can help solve data 
correlations if the data dependencies are linear. But many 
physical laws are nonlinear. Nonlinear multivariate analysis 
[31] may not scale well and further study on its scalability for 
modern manufacturing systems should be investigated. Faster 
analysis algorithms should also be developed to support such 
data correlation discovery.  

Mining the system model. For a system with a large 
number of sensors, it will be difficult to rely purely on data 
analytics to discover sensor data correlations. Thus, we have 
to go back to discover the system model and derive the 

potential sensor data correlations from the complete or partial 
system model.  

Some research works attempt to automate the creation of 
system specifications. In [32], the system workflow is created 
by analyzing the timing correlations of the sensor data and 
discovering the potential “rippling effects”. When the data 
stream of sensor � shows the pattern of an event occurrence, 
if the data stream of sensor � also exhibits data pattern change 
shortly after �’s event, indicating an event occurrence (as 
shown in Figure 3), then it can be inferred that sensor � is 
associated with a component that executes after the 
component which sensor � is associated with. In [33], a case 
study is given to show the feasibility of the approach in 
correctly discovering the system workflow. 

 
Figure 3. Example sensor data for system spec mining.  

Though the “reverse engineering” approach for creating 
system specifications is very intriguing, the applicability may 
be limited. First, the timing for the “ripple effects” may not 
be good enough for such detection. If the “ripple latency” is 
not much smaller than the event occurrence period, then it is 
not possible to determine the ordered correlation of the 
sensors. Second, if the fault diagnosis system places sensors 
at the subsystem level and the subsystems have overlapping 
components, then the sensor data have correlations that are 
beyond the timing effects, making the approach infeasible. 
Third, the analysis may be able to discover the workflow of 
simple systems. For systems with many concurrent activities, 
the approach will not be able to determine whether 
components are activated concurrently or it is just the timing 
problem as discussed in the first case. 

In our MFDM framework, we consider to develop a 
“System spec Miner” which mines the “System spec” 
repository to find similar physical systems based on some 
informal descriptions of the system. Documents of similar 
systems can be retrieved and modified to create the desired 
system spec. In addition to text based descriptions, images of 
the physical system and videos of the system operations can 
also be submitted to the spec miner to achieve better mining. 
The spec miner can also cluster the systems based on their 
specifications and develop system patterns. These patterns 
can be reused to help with system specification construction. 

Even if the “System spec Miner” can only discover an 

Sensor � 

Sensor � 
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incomplete or even distorted system model, it can serve as a 
guideline to help reduce the complexity with data correlation 
mining. Validity of the mined system spec can be validated 
by mining the correlations between the actual data streams 
under the guideline of the incomplete system model. Also The 
system spec can be captured in a fuzzy model to indicate its 
uncertainty. 

6 Conclusion 
In this paper, we investigate the monitoring, fault detection 

and diagnosis issues in manufacturing systems using IoT and 
big data technologies. First, we discuss the design of a SaaS-
centered MFDM framework, which aims at offering 
configurability so that most manufacturing systems can make 
use of the SaaS provisioning for their MFDD tasks. We also 
raise two technology gaps that should be considered in 
realizing MFDM SaaS. First, data storage for time series data 
is still in the development stage. Issues such as scalability, 
semantic support, space efficiency, consolidation scheme, etc., 
should be investigated. Second, how to mine the correlated 
data when there are a large number of sensors? Better 
solutions are needed for these aspects. 

We plan to identify a few case studies of manufacturing 
systems and use them to evaluate the feasibility of the MFDM 
framework design. In the evaluation process, we will identify 
some previously overlooked issues and improve the 
framework design to address them. We also plan to perform 
in depth evaluation of existing TSDBs in supporting MFDM 
data storage and processing and improve them for achieving 
better health management of manufacturing systems. In 
addition, we plan to develop new techniques to cope with the 
data correlation discovery problem and apply them to real 
manufacturing data for validation. 

7 References 
[1] A. Dunkels, B. Gronvall, T. Voigt. "Contiki - a lightweight and 

flexible operating system for tiny networked sensors". LCN 
2004, pp. 455-462. 

[2] Arduino, 2011, http://arduino.cc 
[3] S. Alam, M. M. R. Chowdhury, J. Noll. "Senaas: An event-

driven sensor virtualization approach for internet of things 
cloud". NESEA 2010, pp. 1-6. 

[4] A. Cannata, M. Gerosa, M. Taisch. "Socrades: A framework 
for developing intelligent systems in manufacturing". IEEM 
2008. pp 1904-1908.  

[5] J. Soldatos, N. Kefalakis, M. Hauswirth, et al. "OpenIoT: open 
source Internet-of-Things on the cloud". InterOSS-IoT 
Workshop 2014. pp. 13–25. 

[6] S. Ding. Model-Based Fault Diagnosis Techniques: Design 
Schemes, Algorithms, and Tools. Springer Science & Business 
Media. 

[7] R. Isermann. "Model-based fault-detection and diagnosis–
status and applications". Annual Reviews in Control, Vol.29, 
No.1, 2005, pp.71-85. 

[8] S. Cox. "Geographic information - Observations and 

measurements", 2013, 
http://portal.opengeospatial.org/files/?artifact_id=41579 

[9] M. Botts, A. Robin. "OGC SensorML: Model and XML 
encoding standard", The Open Geospatical Consortium Inc., 
2014, http://www.opengis.net/doc/IS/SensorML/2.0 

[10] M. Compton, P. Barnaghi, L. Bermudez, et al, "The SSN 
Ontology of the semantic sensor networks incubator group", 
Web Semantics: Science, Services and Agents on the World 
Wide Web, 2012, pp. 25-32. 

[11] L. Lefort. "Ontology for quantity kinds and units: units and 
quantities definitions". W3C Semantic Sensor Network 
Incubator Group, 2005. 

[12] E.Baroth, W. Powers, J. Fox, et al. "IVHM (Integrated Vehicle 
Health Management) techniques for future space vehicles." In 
37th Joint Propulsion Conference and Exhibit, p. 3523. 2001. 

[13] A. Aamodt, E. Plaza. "Case-based reasoning: Foundational 
issues, methodological variations, and system approaches." AI 
communications, Vol.7, No.1, 1994, pp. 39-59. 

[14] H. Niemann, N.K. Poulsen. "Active fault diagnosis in closed-
loop systems." IFAC World Congress, Volumes 38, No. 1, 
2005, pp. 448-453. 

[15] T. Sorsa, H.N. Koivo, H. Koivisto. "Neural networks in 
process fault diagnosis." IEEE SMC, Vol. 21, No. 4, 1991, pp. 
815-825. 

[16] O. Niggemann, G. Biswas, J.S. Kinnebrew, et al. "Data-driven 
monitoring of cyber-physical systems leveraging on big data 
and the Internet-of-Things for diagnosis and control." DX@ 
Safeprocess, pp. 185-192. 2015. 

[17] D. Slišković, R. Grbić, and Ž. Hocenski. "Multivariate 
statistical process monitoring." Tehnicki Vjesnik-Technical 
Gazette, Vol.19, No.1, 2012, pp. 33-41. 

[18] Y. Zhang, I.L. Yen, F.B. Bastani, et al. "Optimal adaptive 
system health monitoring and diagnosis for resource 
constrained cyber-physical systems". ISSRE 2009, pp. 51-60.  

[19] RRDtool, http://oss.oetiker.ch/rrdtool/ 
[20] Graphite, https://graphiteapp.org/ 
[21] BlueFlood, blueflood.io/ 
[22] OpenTSDB, opentsdb.net/ 
[23] InfluxDB, https://www.influxdata.com/ 
[24] DalmatinerDB, https://dalmatiner.io/ 
[25] Elasticsearch, https://www.elastic.co/ 
[26] RocksDB, http://rocksdb.org/ 
[27] LMDB, http://www.lmdb.tech/doc/ 
[28] ZFS, https://en.wikipedia.org/wiki/ZFS 
[29] S. Zhang, I.L. Yen, F.B. Bastani. "Toward semantic 

enhancement of monitoring data repository." ICSC, 2016, pp. 
140-147. 

[30] L. Trave-Massuyes, T. Escobet, R. Milne. “Model-based 
diagnosability and sensor placement application to a frame 6 
gas turbine subsystem,” IJCAI, Vol.1, 2001, pp. 551-556. 

[31] B. Schölkopf, A. Smola, K.R. Müller. Nonlinear component 
analysis as a kernel eigenvalue problem. Neural computation, 
10(5), 1998. Pp. 1299-1319. 

[32] O. Niggemann, B. Stein, A. Vodencarevic, et al. "Learning 
Behavior Models for Hybrid Timed Systems". AAAI 2012, 
Vol. 2, pp. 1083-1090. 

[33] A. Vodenčarević, H.K. Bürring, O. Niggemann, et al. 
"Identifying behavior models for process plants." ETFA 2011, 
pp. 1-8. 
  

8

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:45:39 UTC from IEEE Xplore.  Restrictions apply. 


