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Abstract. Service technologies have been widely applied 

to many application domains to facilitate rapid system 
composition and deployment. However, existing service 
models need to be enhanced in order to be used in Internet-
of-Things (IoT). Also, due to the massive-scale, IoT service 
discovery and composition cannot be centralized. Existing 
discovery routing protocols for peer-to-peer systems have 
their shortcomings and need to be improved. In this paper, 
we analyze the differences between IoT services and 
software services and identify the requirements for designing 
IoT service models that are additional to software service 
models. We then discuss a service ontology model for the 
specification of IoT services. For IoT service discovery, we 
survey existing discovery routing approaches, including 
those for conventional peer-to-peer networks and for IoT 
systems and discuss the potential problems when used in IoT 
networks. Then, we discuss our approach, summarization 
and ontology coding, which greatly reduce the memory 
requirements of the routing protocols, for the IoT networks. 
 Keywords. Internet-of-Things, service discovery and 
composition, service discovery routing, peer-to-peer. 

1 Introduction 
Service oriented architecture (SOA) has become the major 

architecture model in modern system development process. 
With the advances in various hardware and networking 
technologies, computing devices becomes more and more 
pervasive in human society and in our daily lives. Nowadays, 
Internet of Things (IoT) have gained increasing importance. 
Consequently, many researchers are investigating SOA 
technologies for IoT system development. 

In the beginning of SOA research, the focus was on its use 
in the development of enterprise systems. Thus, the main 
research directions include the service-oriented architecture 
itself as well as technologies for service discovery and 
composition. With the centralized registry UDDI, there is no 
routing issue and, hence, how to model and specify the 
available services and the to-be-composed systems became 
the most important issue. Service modeling is the foundation 
for matchmaking and grounding. Widely used specification 
models such as WSDL, OWL, WSMO, etc. provide different 
levels of sophistication in service modeling.  

With the increasing availability of software services cross 
organizations all over the globe, service computing has been 
globalized beyond enterprises. During this transition, service 

discovery has to take routing issues into consideration since 
it is no longer feasible for a central UDDI to tracking all 
available services. Various hierarchical search solutions and 
decentralized routing protocols have been investigated. 

As we come to the IoT era, SOA technologies need to 
take another stage of evolution. This evolution should 
include both the modeling perspective as well as the service 
discovery routing protocols.  

In terms of modeling, IoT services are quite different from 
software services and modeling for IoT services should be 
carefully investigated. Existing SOA models are developed 
with software services in mind and modifications are 
required to support better IoT service specification and 
matchmaking. However, current SOA models for IoT 
systems mostly follow the same design concepts as those 
considered in software systems. In IoT world, most of the 
devices have proprietary access commands and data 
retrieving protocols. Some SOA-based middleware systems 
encapsulate Things and wrap them to offer more uniform 
service invocation interfaces [1] [2] [3] [4]. Many IoT 
applications can be better designed with event-based 
modeling, and event-based SOA models have been proposed 
to fulfill the needs in these systems [1] [3] [5] [6] [7]. These 
middleware design and modeling techniques are very 
important for IoT systems, but there are no novel issues 
when applied to the IoT world. 

In [8] [9], we have investigated the insufficiency of 
existing service models for the IoT domain and what should 
be considered in the IoT service models that have not been 
considered important or have not been considered at all in 
software service models. We have also proposed the 
modeling techniques to bridge the gaps, attempting to make 
IoT service models more complete and support better IoT 
service composition reasoning. 

On the routing side, we consider routing in dynamic IoT 
systems. Many existing IoT systems are statically built and 
the specific IoT devices and control/management software 
are statically designed and configured at the design time to 
achieve some predefined tasks and to handle some 
anticipated events. This type of systems has a similar nature 
as the conventional embedded systems, except that the 
constituent Things are interacting via Internet instead of 
proprietary buses, power wires, etc. The major issues for 
communication among Things in these systems include 
communication protocol standardization and interoperation 
between various protocols and routing is an insignificant 
issue. However, the IoT world interconnects a vast variety of 
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capabilities, which can be so powerful if they are properly 
made use of, in addition to their statically assigned tasks. 
Thus, it is inevitable to consider dynamic IoT systems, in 
which IoT services can be discovered and composed 
dynamically to handle dynamically arising tasks. In these 
dynamic IoT environment, routing becomes highly critical so 
that Things can be discovered and invoked in a timely 
manner in order to cope with the dynamically occurring 
situations.  

Since the number of Things in the IoT world are massive 
and Things are widely distributed, thus, centralized solutions 
become infeasible and decentralized routing becomes an 
essence. There are many decentralized routing algorithms in 
the peer-to-peer literature. Among them, the DHT 
(distributed hash table) based solutions [10] are not suitable 
for IoT systems since IoT nodes cannot be arbitrarily moved 
to their hashed locations. The caching based selective 
flooding algorithms are suitable for large scale peer-to-peer 
networks, especially when mobile IoT nodes are considered 
[11] [12]. However, since they are designed for general 
computing systems, they do not consider the resource 
constraints on IoT devices. With limited memory space on 
many IoT devices, the cache size will be small and the 
system needs to throw away useful routing information, 
which hurts the discovery routing performance. 

 We consider the cache based approach for routing service 
discovery queries. To cope with the very limited cache size 
on IoT devices, we have developed a summarization 
technique to help retain the useful routing information in the 
cache and, hence, improve the routing performance [13] [14]. 
In our approach, instead of throwing away useful routing 
data, we summarize them to retain the potentially useful 
routing information while significantly reduce space 
requirements. Also, how to effectively summarize routing 
information can be challenging. We organize the capabilities 
of the IoT devices in an ontology tree, in which leaf nodes 
are the actual capabilities of the IoT devices and the internal 
tree nodes are the summarized capabilities. We then make 
use of the semantics in the ontology tree structure to achieve 
effective capability summarization.  

In this paper, we survey existing solutions for modeling 
IoT services and discuss some routing protocols that have 
been considered for IoT service discovery (Section 2). Based 
on the literature, we investigate the issues remain to be 
investigated and discuss our solutions that can bridge some 
of the gaps. In Section 3, we discuss our IoT service model 
which addresses the deviation of the IoT services from 
software services. In Section 4, we discuss a summarization 
concept we have developed and the mechanisms that help 
realize the concept. Section 5 concludes the paper. 

2 Related Work 

2.1 Service Models for IoT Systems 
In recent years, Internet of Things (IoT) and cyber 

physical systems (CPS) attracted intensive research. Since 

existing service models are mainly designed for software 
services and may not suit IoT/CPS services, some research 
works attempt to adapt the models for IoT/CPS systems. 
Here, we survey the works in IoT/CPS service modeling. 

Service middleware focusing on encapsulation. In IoT, 
various Things usually have very different and complex 
access interfaces (involving low-level control sequences) and 
different communication protocols. Thus, it is very important 
to extend the wrapping and encapsulation techniques in 
software world to unify the access interfaces for the IoT 
services. Some IoT middleware systems are developed to 
encapsulate the devices and providing a uniform interface to 
access devices that offer similar functionalities.  

The SenaaS [1] middleware consists of three layers: the 
service virtualization layer, the semantic layer and the real-
world access layer. The real-world access layer provides 
unified interfaces for accessing similar services provided by 
functionally similar IoT devices. These devices with 
different access protocols and communication mechanisms 
are wrapped in this layer. The semantic layer provides the 
needed ontologies in the middleware to support the service 
specifications in different layers, including the sensor 
ontology, an event ontology, and the service access policies. 
These ontologies can facilitate cross layer mappings and 
enhance the effectiveness of device encapsulation. The 
virtualization layer provides users with “virtual Things” that 
may be the composition of several “real Things”. Since 
SenaaS focuses on sensors, the middleware essentially offers 
virtual sensors whose output data are the aggregation of the 
data retrieved from multiple real sensors. 

In ScriptIoT [2], a common script interface is provided to 
access IoT sensors with different data formats and 
communication mechanisms and to activate different IoT 
devices. For example, a common “fetch(d)” command can be 
used to fetch data from a sensor d of any type and the 
underlying accesses protocol for d and conversions of d’s 
data format are encapsulated. Such sensor data accesses can 
also be registered as an event and only when the data 
satisfying a certain condition will the event be delivered to 
the request issuer.  

In [3], the proposed middleware also consists of three tiers 
and it focuses not only on sensors but also on the control 
activities in response to sensor readings. The lowest layer is 
the environmental tier, which encapsulates the physical 
devices. The control tier consists of controllers. Each 
controller subscribes to specific monitoring data stream 
gathered by sensors, analyzes the sensor data to make control 
decisions, and composes services to realize the control 
decisions. The service tier analyzes common services needed 
by the control tier and composes the functionalities provided 
by the IoT devices to realize these identified common 
services. Thus, the specific accesses to the devices are not 
exposed to the control tier or to the users to avoid complex 
access procedures. In [4], a similar 3-tier architecture is 
considered and the goal is also to encapsulate the interaction 
protocols with the devices and conduct service composition 
to react to situations. 
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Event driven IoT/CPS service models. Similar to some 
software services, physical services may be invoked by 
requests and/or by events. For example, air conditioner may 
be turned on (invoked) due to a high temperature reading 
from the temperature sensor or by the user. When the gas 
tank of a car is low, the gas filling service should be invoked 
before providing the car transporting services. Some research 
works use the event-based model from soft*ware systems to 
capture these event driven characteristics in the IoT world.  

In [5], an event-driven service-oriented architecture (ED-
SOA) for IoT systems has been proposed. In this model, 
events are treated at the same level as services. A service can 
subscribe to a set of events and it takes corresponding 
actions when some of these events are delivered to it. Also, 
events may be generated during service executions and they 
will be delivered to their subscribers. DPWS (devices profile 
for Web services) [6] is a standard defined by OASIS (led by 
Microsoft) for resource constrained devices to interact 
securely. It also uses an event-based model following the 
same publish-subscribe model. DPWS also considers device 
access protocol specification and service specification and 
discovery for the IoT devices. The SenaaS (sensor as a 
service) system [1] is a sensor virtualization framework for 
IoT cloud. It also uses the event-driven SOA in its 
virtualization layer, which is in charge of receiving events, 
managing them, and sending them to subscribers so that 
appropriate actions can be taken. SOCRADES [7] explicitly 
provides an event system. The status information of the 
physical entities and sensors can be defined as events and 
can be subscribed by other services through the SOCRADES 
event system. Also, a virtual composition language is 
defined in SOCRADES to specify the bindings of events, 
event handling services, and the corresponding Things.  

In [3], an event-based model is used as the underlying 
system model. But unlike the other systems discussed above 
in which the event handling logic is manually determined in 
advance, this work emphasizes to dynamically compose 
services to handle events. After an event is raised, the control 
layer determines a control decision for the event. Then the 
services are composed together to realize the control 
decision. Also, since some physical devices are configurable, 
the services incorporate configurability to support flexible 
provisioning. Though the dynamic control decision making 
and on-the-fly service composition are important for 
unexpected situations, there is no effective methods in this 
framework to support such goals. 

Modeling the Things that provide the services. The 
physical Things in IoT systems have a significant role in the 
composition reasoning of physical services, which is very 
different from composition reasoning for software services. 
In software services, the Thing is the computing and storage 
hardware. However, due to the sufficient uniformity in the 
computing facilities for software services and the high speed 
communication among them, though there are still issues 
like communication costs and workloads, the Things for 
existing software services do not have a significant role. In 
IoT, the physical Thing that provides a service and its 

properties are very important. For example, different types of 
vehicles can be used to transport people from a disaster site 
to a safe evacuation area. But each type of vehicle has its 
own characteristics, such as load capacities and number of 
seats. Also, even for the vehicles that are exactly the same, 
when grounding the service for transporting people, it is 
necessary to specifically determine the number of vehicles 
required and the number of trips each vehicle may have to 
make. The second issue for physical service composition is 
that, a Thing may be able to provide several different types 
of services. However, it is frequently not possible for one 
Thing to fulfill multiple services it provides at the same time. 
The schedule of individual Thing will impact the service 
composition result. The Thing context is also an issue during 
physical services composition. The context is defined as the 
dynamic changing states of a Thing. For example, in a rescue 
mission, some robots may be used for survivor detection. 
The physical location of the robots must be at the rescue site. 
If not, additional services are required to bring them to the 
rescue site. Last issue that needs to be considered is that, the 
side effect of a software service generally can be specified 
independent of other software services. This may not be true 
in physical things. For example, a car may transport a robot 
to a disaster site for a rescue search. In this case, the states of 
the Thing that provides the service and the recipient Thing of 
the service may change together. Such impact need to be 
specified explicitly and existing software service models do 
not have such a feature.  

In existing models, there are efforts toward the modeling 
of things. The lower level specifications in DPWS (Devices 
Profile for Web Services) [6] and EDDL (electronic device 
description language) [15] provide device specifications, but 
they focus on the interactions with the devices, not about the 
properties of the devices themselves. In SOCRADES [7], the 
availability of a device for service provisioning is considered 
as an event and the broker will deliver this type of events to 
the subscribers. This offers some help in service composition, 
but only on the availability of the devices, not on other 
properties and constraints of the Things.  

Remarks. The event based modeling may be useful in 
IoT world, but it does not offer additional features compared 
to the event modeling for software services. The middleware 
for wrapping and encapsulation is a direct application of the 
concepts in software systems to IoT systems. Though they 
are important for IoT systems, they do not address some of 
the issues discussed in this section. As to the specification 
models for the physical Things, existing models are not 
designed with the IoT service technologies in mind. In 
general, they only consider how to interact with the IoT 
devices, not those attributes that are important when 
considering IoT service matchmaking and composition. 

2.2 IoT Service Discovery Routing 
Dynamic IoT service composition requires dynamic IoT 

service discovery. Many IoT routing protocols are IP based 
(e.g., RPL) or ID based (e.g., EPCglobal), which cannot help 
with functionality based IoT service discovery.  
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Existing semantic-based routing protocols can be applied 
to IoT networks by defining the capabilities of IoT devices 
using keywords and concepts and route according to the 
capabilities. This technique is commonly used in semantic 
based service discovery protocols. Some of the semantic 
based routing are centralized, which may not be able to scale 
for widely distributed IoT systems, especially when we 
consider mobile IoT devices, which may cause frequent 
updates and result in significant communication overhead.  

Hierarchical routing protocols can improve on the 
scalability problem. In Rendezvous Regions [16] and Service 
Rings [17], services are divided into groups based on their 
proximity and semantic similarities. In Rendezvous Regions, 
some routing protocol (unspecified) can be used to route 
queries to the desired group. Within the group, a flooding 
based approach is used to locate the desired host. In Service 
Rings, hierarchical groups are formed based on the same 
principle (proximity and semantic similarities). Each group 
elects a leader to serve as a directory server. Routing is done 
hierarchically by traversing the service rings. These 
approaches are also called clustering based approaches. 
Cluster based approaches can also facilitate service selection 
based on QoS requirements. However, they still require 
inter-cluster routing and specific routing protocols are 
needed to complete the solutions. Some hierarchical 
networks are specifically designed for IoT [18] [19]. In [18], 
the global network is divided into many local networks, each 
with a gateway centrally managing the local IoT nodes. 
Gateways are then networked together using existing peer-
to-peer network solutions. It is not clear how routing can be 
done efficiently in the upper layer peer-to-peer network. [19] 
has a similar architecture as that in [18], except that they 
consider federating autonomous local IoT networks.  

Decentralized routing protocols include structured and 
unstructured solutions. Structured semantic routing solutions 
are generally DHT (distributed hash table) based, which 
hashes the resources or services to specific servers. DHT has 
been used in peer-to-peer service discovery [20] [21] [22] 
[10]. In [20] [22], services need to be deployed at their 
hashed locations, which has no problem for software 
services, but are not applicable to IoT services because the 
IoT devices cannot be flexibly moved to their hashed 
locations. [22] [10] also considers service description using 
multiple keys, which is very important for software services, 
while IoT capabilities generally can be specified more 
specifically without using multiple keywords. [10] 
specifically use DHT for IoT service discovery. The hashed 
destination nodes are used as indirect pointers to locate the 
actual services, which imposes additional communication 
overhead (double the cost). Generally speaking, the 
advantage of DHT only emerges in systems with a very large 
keyword space compared to the number of physical nodes, 
so that hashing provides a uniform distribution of the objects. 
In IoT networks, many IoT nodes may have the same 
capabilities and the number of different IoT capabilities may 
be similar or even less than the number of physical nodes. 
Thus, most of the nodes in the network will not contribute to 

routing since nothing will be hashed to them. Thus, DHT is 
in general not a good solution for IoT. 

Unstructured decentralized routing protocols are mostly 
flooding based. The older routing protocol, Gnutella [23], 
uses pure flooding. It does not require any memory space for 
storing the routing table, but the service discovery phase 
incurs heavy network traffic due to the flooding nature. 
When there are multiple service discovery queries, network 
may get congested and cause delays. The caching approach 
[11] [12] is based on selective flooding. A node upon 
receiving a query, does not forward it to all its neighbors, but 
selects the most promising ones for forwarding. The 
intermediate nodes on the discovered path caches the routing 
information and use it for future flooding path selection in 
order reduce the routing costs [20] [24]. These schemes may 
result in a large cache size, potentially having one entry for 
every capability in the system. To control the cache size, 
GSD [12] adds a hop limit and incorporates the service 
group concept. A node needs to cache the service name and 
all the names of the corresponding service groups for each 
resource in its neighborhood. This design results in 
inefficient use of memory space and large messages size, 
making it not suitable for IoT systems.  

Bloom filter (BF) has been used in semantic based routing 
[25] [26]. Generally, BF are used in the supernode structures 
where supernodes exchange the keywords (which is mapped 
to BF) with their peers. BF is very useful when the number 
of keywords to be passed is reasonably high relative to the 
entire keyword space. In an IoT network, the capabilities of 
each node can generally be described by a few keywords. 
But the number of keywords for describing all the 
capabilities in the network can be relatively high. Thus, 
using keywords directly can be much more space efficient 
than that of BF solutions.  

Remarks. The centralized and hierarchical IoT service 
discovery routing solutions incurs communication overhead 
for registry updates, especially if the IoT network is dynamic 
due to mobility or other factors. DHT solutions is not 
suitable for IoT systems. Caching based peer-to-peer 
solutions have potential advantages for IoT service discovery. 
However, the cache size limits on resource-constrained IoT 
nodes could force the cache to throw away useful 
information, resulting in ineffective discovery routing.  

3 From Software Services to IoT Services  

3.1 Modeling the Things  
In existing service models, the specifications of the 

services focus on their functionalities, not on the devices that 
can host the services. Also, a lot of research considers 
Quality of Service (QoS) issues during service composition 
and these works can address the availability, efficiency and 
other QoS issues of the service provisioning. But none of 
these need the specification of the underlying computing 
facilities that hosts the services. This is because software 
services are hosted by computing facilities that have 
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sufficient uniformity and can be left out from the picture. On 
the other hand, the services provided by the IoT devices are 
mostly device specific and the characteristics of the devices 
can impact the service it provides. For example, all vehicles 
can provide the transport service, but each of them has its 
own characteristics, such as the capacity limit. If the cargo to 
be transported exceeds the limit of one truck, it is possible to 
select multiple trucks (different Things) or to select one 
truck and let it transport in multiple trips. Similar to software 
services, these issues may be left to QoS considerations. But 
due to the diversity of the devices, whether the devices are 
considered at the functional composition time or QoS based 
composition time, the specification of the IoT devices should 
be explicit. Thus, besides specifying the services, the IoT 
service model requires the specific specification of the 
characteristics of the IoT devices. 

There have been specification models proposed to specify 
devices (e.g., DPWS [6] and EDDL [15]) which defines the 
schema for specifying a device and its services. DPWS 
defines web Service description, discovery, messaging, and 
eventing for the device. However, there are two problems 
with this type of models.  

(1) This model is device centric and services are defined 
as a part of the device specification. But frequently, the same 
service can be provided by a variety of devices. In this case, 
should we repeatedly provide the same service specifications 
for each device specification? We can also consider a service 
centric approach and for each service, define the devices that 
can provide the service. But this will raise the same issue. A 
device may be able to provide multiple different services, 
and the device specification should be repeated for the 
services.  

(2) The specification for devices in DPWS is far from 
comprehensive. The major fields defined in DPWS schema 
are the device name, model, maker, etc. The essential 
properties of the devices are missing. For example, for a car, 
it is better to know its number of seats so that proper device 
allocation and scheduling can be performed.  

 
Figure 1. Upper Service-Thing ontology for IoT. 

From the above, we believe that the IoT service model 
requires both the Services and the Things to be incorporated 
at the same upper level. They can be associated to each other 
in the upper ontology, instead of having one belong to the 
other. Also, the detailed specification for the Things should 
include QoS related properties that may impact the 
composition decisions. However, different set of attributes 
are required for different types of Things. Due to the 
diversity of Things, it is difficult to have a comprehensive 
model. Thus, domain specific ontology is needed to enhance 
the specification of the properties and profiles of Things. 
Figure 1 shows the upper ontology for the IoT Service-Thing 

model (ST-model). For time being, the Service class can use 
the popular service models such as OWL-S, WSMO, etc. 
Later we will discuss the necessary extensions based on 
OWL-S for IoT service specifications. The expanded model 
for Things is shown in Figure 2. 

 

 
Figure 2. Ontology for the Thing. 

In the Thing ontology, we try to incorporate the general 
classes for the specification of Things and leave the details to 
domain specific ontologies. The General characteristics class 
is similar to the definition given in the “Characteristics” 
class of DPWS. The Q&Q properties class is to specify the 
quantitative and qualitative properties that may impact the 
service selection decisions. For example, if we need to 
transport a group of 10 people from one location to another, 
it is important to know how many seats (quantitative 
property) are there in each car (Thing) in order to make the 
correct decision on service and thing selection for handling 
the transport task.  

The Operation profile specifies the attributes that are 
related to how the Thing should operate. One important 
element is the Control model, including the control 
mechanisms and commands for the Thing. Similar to the 
encapsulation feature in existing IoT middleware, the 
Control class can specify the detailed control commands and 
how the upper level services are mapped to a control 
mechanism, i.e., the sequence of control commands. Also, 
Things may be nested. For example, a robotic swarm 
consists of multiple robots, which are also Things. In this 
case, the Control class can specify the mechanisms for the 
coordination of the lower level Things to achieve a certain 
service of the higher-level Thing. These control mechanisms 
can also be specified in the Control class. 

During service provisioning, there may be constraints on 
the provider Thing regarding how its services can be 
provided. For example, multiple services provided by one 
Thing will have to be provided exclusively. Some device 
may have to be operated at a certain temperature range. 
These and other constraints can be specified in the Usage 
constraints class in the Operation profile of the Thing.   

During the execution of software services, the computing 
facility would consume power. Similarly, the operation of a 
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Thing may consume some resources. A temperature sensor 
consumes battery power when providing its temperature 
sensing service. A truck consumes gas when providing its 
“cargo transport” service. Also, some Things requiring 
maintenances can also be viewed as requiring some 
consumable resources, e.g., a car would consume its 
maintenance free period. However, the issues of consumable 
resources for Things are different from the issues of energy 
consumption in software services. The energy consumption 
for software services can be handled as a QoS issue, while 
insufficiency of the consumable resources for the Things 
may require some external services to replenish them, which 
is a functional issue. Thus, the resources and the sufficiency 
of the resources need to be exposed specifically in the 
specification of the Things. The event model is most suitable 
for this specification. The Consumable resources class can 
specify the resources needed and the events for insufficient 
resources. When such an event is triggered, external services 
can be activated to execute the replenishing task.  

Generally, a software service has an execution context, 
but it hardly has much importance. In the physical world, the 
context of the Thing is very critical in service provision. For 
example, we cannot select a Thing in San Diego to fulfill a 
service required in Boston within an hour. Thus, the current 
context of the Thing and the context of the service request 
should be clearly specified. In fact, there is another 
important consideration that is not there for software services. 
Consider that a service consumer requests for a service at 
location � within a time limit �. A Thing � at location � can 
provide this service. Then, we cannot just select �  for the 
task. We also need to compose the transport services to bring 
� from � to � within time � in order for � to properly fulfill 
the request. Here, we define the Current context class to 
specify the current context of a Thing. Later we will further 
discuss the issue of contexts in service composition.

A software service can be provided simultaneously to 
multiple requesters from different geographical locations, 
while IoT services may have to be provided with a specific 
context given in a request. Thus, scheduling has a significant 
role in the Thing-ontology. We define the Scheduling class 
in the Thing ontology to address the scheduling issues. For 
example, a plumber (Thing) provides a plumbing service. 
Several houses may require the plumbing service 
concurrently. The provider can only offer the service one at a 
time, and needs to schedule these requests and needs to 
request transport services to bring itself to these locations. A 
requester can choose to use another Thing in case one cannot 
provide a satisfactory schedule. Though scheduling can be 
considered as a QoS issue, it may trigger functional 
compositions due to the context issue. 

3.2 Extending the IoT Service Model for the 
Contexts 

We consider the OWL-S model for IoT services, but some 
extensions are needed to allow the service model to fully 
support IoT systems. We have already discussed the Apply-

to extension in the IoT service model in Section 3. Here we 
consider the context requirements for the IoT services.  

In the OWL-S model, a service is formally specified by its 
IOPE (inputs, outputs, preconditions, effects), where 
preconditions are the conditions that have to be satisfied 
before the service can be invoked and effects are the 
conditions that will hold after the execution of the service, if 
the preconditions are satisfied. A service request can be 
specified as an abstract service with its IOPE being the 
requirements for match making.  

Here, we define “Context preconditions” to support the 
specification of the context requirements in a service request. 
Why can’t the Context preconditions be specified as the 
regular preconditions? Generally, preconditions of a service 
are fixed conditions that stay the same for all service 
invocations. But Context preconditions are dynamic and can 
probably be different in each invocation. Why can’t the 
Context preconditions be specified as an input? The 
composition reasoning process needs to take the Context 
preconditions into account, but input values are not 
considered during composition reasoning. Corresponding to 
Context preconditions, we also define the “Context effects” 
class to specify the dynamic effects that impact the states of 
the service recipients. The extended service model for IoT 
services is shown in Figure 3. 

 
Figure 3. Extended IoT Service model. 

Separation of the regular preconditions/effects and 
Context preconditions/effects can also benefit staged 
composition reasoning. For example, consider a disaster site 
that is hard to reach by human rescuers. To reach the 
survivor-search goal, the functional reasoner selects a 
survivor-search service provided by a swarm of robots 
equipped with life detectors. The service has a Context 
precondition requiring that the provider Thing (the swarm) 
should be at the disaster site. To satisfy the goal, a functional 
composition reasoning is used to get a transport service 
provided by a truck. The QoS based composition reasoner 
can then select the truck that is closest to the swarm to 
provide the transport service. For complex composition 
problems, such separation can help reduce the complexity of 
the composition process. 

4 Routing for IoT Service Discovery 
Many IoT devices have limited resources, especially 
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memory. Table driven and cache based routing protocols 
require a table (or cache) to store useful routing information 
so that service discovery queries can be routed efficiently 
without incur a high network traffic volume. Most of the 
existing semantic based routing algorithms do not consider 
bounded table (cache) size since they are designed for 
general computing systems. A reasonable resolution is to 
delete some routing data when the routing table size exceeds 
a given limit. But by doing so, some potentially useful 
routing information may be lost. In our approach, instead of 
throwing away routing data, we summarize them to retain 
the potentially useful routing information while significantly 
reduce their space requirements. But, how to effectively 
summarize routing information can be challenging. In our 
solution, we organize the capabilities of the IoT devices in 
an ontology tree to facilitate ontology-based summarization. 
An example ontology is shown in Figure 5. 

 
Figure 5: A sample Ontology  

 In the ontology tree, leaf nodes are the actual capabilities 
of the IoT devices and the internal tree nodes are the 
summary IoT capabilities of different degree. For example, 
the system may summarize several different watches in the 
neighborhood into the “SmartWatch”. However, in order to 
perform summarization at each IoT node, it is necessary for 
the IoT node to store the ontology and the size of the 
ontology tree could be quite significant. This fully defeats 
our purpose of summarization and attempting to have the 
routing operation use a very small memory size. To make the 
summarization concept workable, we design an ontology 
coding scheme to code the ontology. For each IoT capability, 
only a small ontology code need to be used and at the same 
time, this small code carries sufficient information for the 
IoT node to perform summarization without needing to store 
the entire ontology tree. 

Here we define the ontology code. Let ���	
��
 denote 
the ontology id of an ontology node ��. ���	
��
 consists 
of two bit vectors, including the “ID” bit vector and the “SP” 
bit vector. The ID vector specifies a code for each ontology 
node. It is an aggregation of codes level by level from root to 
the node in the ontology tree. The SP vector specifies the 
“starting position” of each level of code. Let ���	
��
� �	 
and ���	
��
� �� denote the ID and SP bit vectors of an 
ontology node ��. ���	
��
� �	 includes the parent code, 
���	
��
� ��	 , and the sibling code, ���	
��
� ����	 . 
���	
��
� ��	 is essentially the ID vector of on’s parent. 
The sibling code is a unique code among the siblings of node 
n. More formally, we have 
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Here, function ������
��
 returns the parent node of on 

in the ontology, ������
��
 returns the list of child nodes of 
node on, and ���
��� �
 returns the position of on in list l 
(assume that on is an element of l). To uniquely define the 
sibling code ���	
��
� ����	, its code length should be 

 ���	
��
� ����	 � !"#$% ������
������
��

 &  
Figure 6 shows an example of coded ontology nodes. The 

root ontology node has an assigned code “0”. The root has 
five children. For all the child nodes �� ' ( � ( ) , their 
���	
�
� ��	 should be “0”,  ���	
�
� ����	  should be 3 
bits, and ���	
�
� ����	  should be “000”, “001”, “010”, 
“011” and “100”. As shown in the figure, the same coding 
scheme is applied to the three child nodes of “0001”. 

 
Figure 6.�*+,-
./
� ,-  

As can be seen, the coding scheme defined above will 
result in different code length for each ontology node. If we 
simply pad the code, then the ID for each node may not be 
unique. More importantly, from ���	
��
� �	 , we cannot 
decompose the code to recognize ���	
�
� ��	  and 
���	
�
� ����	  which is essential for identifying the 
relations between nodes.  

 
 Figure 7: *+,-
./
� 01 vector coding  

We use an SP vector, ���	
��
� �� , to solve the 
problem. ���	
��
� �� specifies the “starting position” of 
each level of code in ���	
��
� �	 (by setting the bit to 1 at 
the start position). Similar to ���	
��
� �	, ���	
��
� �� 
includes the parent SP, ���	
�
� ���  and the sibling SP 
���	
��
� �����. Formally, we have 
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Figure 7 shows the SP vectors for the sample ontology 
code given in Figure 6.  
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Now we can pad ���	
��
� �	 and ���	
��
� �� with 
0’s for all ontology nodes to the same length while retaining 
the uniqueness of ONID for all nodes. The ONID for each 
node is the concatenation of ���	
��
� �	  and 
���	
��
� ��  and the code length of ���	
��
  is the 
maximal code length of any node in the ontology as derived 
earlier. Based on the ontology code, the IoT system can 
easily achieve the summarization goal in the routing table (or 
cache) without storing any part of the ontology tree. Note 
that summarization can only be performed for the routing 
table entries under the same neighbor. 

5 Conclusion 
IoT service discovery and composition research requires 

evolutions in two areas: IoT service modeling and IoT 
service discovery routing. We have surveyed existing service 
modeling literature and discussed how the considerations for 
IoT services are different from software services from the 
modeling perspective. We then extend OWL-S and other 
service models to build the IoT-specific service model. For 
discovery routing, we have surveyed existing solutions and 
identified that the caching based protocols are most suitable 
for IoT networks. Since existing cache based protocols do 
not consider cache size bound due to the limited memory 
space on IoT devices, we discuss our solution, the 
summarization and ontology coding, and how it can be used 
to bound the memory requirement without significantly 
degrade the routing performance. 
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