
Service-Oriented IoT Modeling and its Deviation from Software Services

I-Ling Yen, Farokh Bastani,
Wei Zhu, Hessam Moeini

University of Texas at Dallas
{ilyen, bastani, wxz094120, hxm141530

@utdallas.edu}@utdallas.edu

San-Yih Hwang

National Sun Yat-Sen University
syhwang@mis.nsysu.edu.tw

Yuqun Zhang

S. Univ. of Science and Technology
zhangyq@sustc.edu.cn

Abstract. Service technologies have been widely applied

to many application domains to facilitate rapid system
composition and deployment. However, existing service
models need to be enhanced in order to be used in Internet-
of-Things (IoT). Also, due to the massive-scale, IoT service
discovery and composition cannot be centralized. Existing
discovery routing protocols for peer-to-peer systems have
their shortcomings and need to be improved. In this paper,
we analyze the differences between IoT services and
software services and identify the requirements for designing
IoT service models that are additional to software service
models. We then discuss a service ontology model for the
specification of IoT services. For IoT service discovery, we
survey existing discovery routing approaches, including
those for conventional peer-to-peer networks and for IoT
systems and discuss the potential problems when used in IoT
networks. Then, we discuss our approach, summarization
and ontology coding, which greatly reduce the memory
requirements of the routing protocols, for the IoT networks.
 Keywords. Internet-of-Things, service discovery and
composition, service discovery routing, peer-to-peer.

1 Introduction
Service oriented architecture (SOA) has become the major

architecture model in modern system development process.
With the advances in various hardware and networking
technologies, computing devices becomes more and more
pervasive in human society and in our daily lives. Nowadays,
Internet of Things (IoT) have gained increasing importance.
Consequently, many researchers are investigating SOA
technologies for IoT system development.

In the beginning of SOA research, the focus was on its use
in the development of enterprise systems. Thus, the main
research directions include the service-oriented architecture
itself as well as technologies for service discovery and
composition. With the centralized registry UDDI, there is no
routing issue and, hence, how to model and specify the
available services and the to-be-composed systems became
the most important issue. Service modeling is the foundation
for matchmaking and grounding. Widely used specification
models such as WSDL, OWL, WSMO, etc. provide different
levels of sophistication in service modeling.

With the increasing availability of software services cross
organizations all over the globe, service computing has been
globalized beyond enterprises. During this transition, service

discovery has to take routing issues into consideration since
it is no longer feasible for a central UDDI to tracking all
available services. Various hierarchical search solutions and
decentralized routing protocols have been investigated.

As we come to the IoT era, SOA technologies need to
take another stage of evolution. This evolution should
include both the modeling perspective as well as the service
discovery routing protocols.

In terms of modeling, IoT services are quite different from
software services and modeling for IoT services should be
carefully investigated. Existing SOA models are developed
with software services in mind and modifications are
required to support better IoT service specification and
matchmaking. However, current SOA models for IoT
systems mostly follow the same design concepts as those
considered in software systems. In IoT world, most of the
devices have proprietary access commands and data
retrieving protocols. Some SOA-based middleware systems
encapsulate Things and wrap them to offer more uniform
service invocation interfaces [1] [2] [3] [4]. Many IoT
applications can be better designed with event-based
modeling, and event-based SOA models have been proposed
to fulfill the needs in these systems [1] [3] [5] [6] [7]. These
middleware design and modeling techniques are very
important for IoT systems, but there are no novel issues
when applied to the IoT world.

In [8] [9], we have investigated the insufficiency of
existing service models for the IoT domain and what should
be considered in the IoT service models that have not been
considered important or have not been considered at all in
software service models. We have also proposed the
modeling techniques to bridge the gaps, attempting to make
IoT service models more complete and support better IoT
service composition reasoning.

On the routing side, we consider routing in dynamic IoT
systems. Many existing IoT systems are statically built and
the specific IoT devices and control/management software
are statically designed and configured at the design time to
achieve some predefined tasks and to handle some
anticipated events. This type of systems has a similar nature
as the conventional embedded systems, except that the
constituent Things are interacting via Internet instead of
proprietary buses, power wires, etc. The major issues for
communication among Things in these systems include
communication protocol standardization and interoperation
between various protocols and routing is an insignificant
issue. However, the IoT world interconnects a vast variety of

40

2018 IEEE Symposium on Service-Oriented System Engineering

0-7695-6394-5/18/$31.00 ©2018 IEEE
DOI 10.1109/SOSE.2018.00014

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:41:16 UTC from IEEE Xplore. Restrictions apply.

capabilities, which can be so powerful if they are properly
made use of, in addition to their statically assigned tasks.
Thus, it is inevitable to consider dynamic IoT systems, in
which IoT services can be discovered and composed
dynamically to handle dynamically arising tasks. In these
dynamic IoT environment, routing becomes highly critical so
that Things can be discovered and invoked in a timely
manner in order to cope with the dynamically occurring
situations.

Since the number of Things in the IoT world are massive
and Things are widely distributed, thus, centralized solutions
become infeasible and decentralized routing becomes an
essence. There are many decentralized routing algorithms in
the peer-to-peer literature. Among them, the DHT
(distributed hash table) based solutions [10] are not suitable
for IoT systems since IoT nodes cannot be arbitrarily moved
to their hashed locations. The caching based selective
flooding algorithms are suitable for large scale peer-to-peer
networks, especially when mobile IoT nodes are considered
[11] [12]. However, since they are designed for general
computing systems, they do not consider the resource
constraints on IoT devices. With limited memory space on
many IoT devices, the cache size will be small and the
system needs to throw away useful routing information,
which hurts the discovery routing performance.

 We consider the cache based approach for routing service
discovery queries. To cope with the very limited cache size
on IoT devices, we have developed a summarization
technique to help retain the useful routing information in the
cache and, hence, improve the routing performance [13] [14].
In our approach, instead of throwing away useful routing
data, we summarize them to retain the potentially useful
routing information while significantly reduce space
requirements. Also, how to effectively summarize routing
information can be challenging. We organize the capabilities
of the IoT devices in an ontology tree, in which leaf nodes
are the actual capabilities of the IoT devices and the internal
tree nodes are the summarized capabilities. We then make
use of the semantics in the ontology tree structure to achieve
effective capability summarization.

In this paper, we survey existing solutions for modeling
IoT services and discuss some routing protocols that have
been considered for IoT service discovery (Section 2). Based
on the literature, we investigate the issues remain to be
investigated and discuss our solutions that can bridge some
of the gaps. In Section 3, we discuss our IoT service model
which addresses the deviation of the IoT services from
software services. In Section 4, we discuss a summarization
concept we have developed and the mechanisms that help
realize the concept. Section 5 concludes the paper.

2 Related Work

2.1 Service Models for IoT Systems
In recent years, Internet of Things (IoT) and cyber

physical systems (CPS) attracted intensive research. Since

existing service models are mainly designed for software
services and may not suit IoT/CPS services, some research
works attempt to adapt the models for IoT/CPS systems.
Here, we survey the works in IoT/CPS service modeling.

Service middleware focusing on encapsulation. In IoT,
various Things usually have very different and complex
access interfaces (involving low-level control sequences) and
different communication protocols. Thus, it is very important
to extend the wrapping and encapsulation techniques in
software world to unify the access interfaces for the IoT
services. Some IoT middleware systems are developed to
encapsulate the devices and providing a uniform interface to
access devices that offer similar functionalities.

The SenaaS [1] middleware consists of three layers: the
service virtualization layer, the semantic layer and the real-
world access layer. The real-world access layer provides
unified interfaces for accessing similar services provided by
functionally similar IoT devices. These devices with
different access protocols and communication mechanisms
are wrapped in this layer. The semantic layer provides the
needed ontologies in the middleware to support the service
specifications in different layers, including the sensor
ontology, an event ontology, and the service access policies.
These ontologies can facilitate cross layer mappings and
enhance the effectiveness of device encapsulation. The
virtualization layer provides users with “virtual Things” that
may be the composition of several “real Things”. Since
SenaaS focuses on sensors, the middleware essentially offers
virtual sensors whose output data are the aggregation of the
data retrieved from multiple real sensors.

In ScriptIoT [2], a common script interface is provided to
access IoT sensors with different data formats and
communication mechanisms and to activate different IoT
devices. For example, a common “fetch(d)” command can be
used to fetch data from a sensor d of any type and the
underlying accesses protocol for d and conversions of d’s
data format are encapsulated. Such sensor data accesses can
also be registered as an event and only when the data
satisfying a certain condition will the event be delivered to
the request issuer.

In [3], the proposed middleware also consists of three tiers
and it focuses not only on sensors but also on the control
activities in response to sensor readings. The lowest layer is
the environmental tier, which encapsulates the physical
devices. The control tier consists of controllers. Each
controller subscribes to specific monitoring data stream
gathered by sensors, analyzes the sensor data to make control
decisions, and composes services to realize the control
decisions. The service tier analyzes common services needed
by the control tier and composes the functionalities provided
by the IoT devices to realize these identified common
services. Thus, the specific accesses to the devices are not
exposed to the control tier or to the users to avoid complex
access procedures. In [4], a similar 3-tier architecture is
considered and the goal is also to encapsulate the interaction
protocols with the devices and conduct service composition
to react to situations.

41

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:41:16 UTC from IEEE Xplore. Restrictions apply.

Event driven IoT/CPS service models. Similar to some
software services, physical services may be invoked by
requests and/or by events. For example, air conditioner may
be turned on (invoked) due to a high temperature reading
from the temperature sensor or by the user. When the gas
tank of a car is low, the gas filling service should be invoked
before providing the car transporting services. Some research
works use the event-based model from soft*ware systems to
capture these event driven characteristics in the IoT world.

In [5], an event-driven service-oriented architecture (ED-
SOA) for IoT systems has been proposed. In this model,
events are treated at the same level as services. A service can
subscribe to a set of events and it takes corresponding
actions when some of these events are delivered to it. Also,
events may be generated during service executions and they
will be delivered to their subscribers. DPWS (devices profile
for Web services) [6] is a standard defined by OASIS (led by
Microsoft) for resource constrained devices to interact
securely. It also uses an event-based model following the
same publish-subscribe model. DPWS also considers device
access protocol specification and service specification and
discovery for the IoT devices. The SenaaS (sensor as a
service) system [1] is a sensor virtualization framework for
IoT cloud. It also uses the event-driven SOA in its
virtualization layer, which is in charge of receiving events,
managing them, and sending them to subscribers so that
appropriate actions can be taken. SOCRADES [7] explicitly
provides an event system. The status information of the
physical entities and sensors can be defined as events and
can be subscribed by other services through the SOCRADES
event system. Also, a virtual composition language is
defined in SOCRADES to specify the bindings of events,
event handling services, and the corresponding Things.

In [3], an event-based model is used as the underlying
system model. But unlike the other systems discussed above
in which the event handling logic is manually determined in
advance, this work emphasizes to dynamically compose
services to handle events. After an event is raised, the control
layer determines a control decision for the event. Then the
services are composed together to realize the control
decision. Also, since some physical devices are configurable,
the services incorporate configurability to support flexible
provisioning. Though the dynamic control decision making
and on-the-fly service composition are important for
unexpected situations, there is no effective methods in this
framework to support such goals.

Modeling the Things that provide the services. The
physical Things in IoT systems have a significant role in the
composition reasoning of physical services, which is very
different from composition reasoning for software services.
In software services, the Thing is the computing and storage
hardware. However, due to the sufficient uniformity in the
computing facilities for software services and the high speed
communication among them, though there are still issues
like communication costs and workloads, the Things for
existing software services do not have a significant role. In
IoT, the physical Thing that provides a service and its

properties are very important. For example, different types of
vehicles can be used to transport people from a disaster site
to a safe evacuation area. But each type of vehicle has its
own characteristics, such as load capacities and number of
seats. Also, even for the vehicles that are exactly the same,
when grounding the service for transporting people, it is
necessary to specifically determine the number of vehicles
required and the number of trips each vehicle may have to
make. The second issue for physical service composition is
that, a Thing may be able to provide several different types
of services. However, it is frequently not possible for one
Thing to fulfill multiple services it provides at the same time.
The schedule of individual Thing will impact the service
composition result. The Thing context is also an issue during
physical services composition. The context is defined as the
dynamic changing states of a Thing. For example, in a rescue
mission, some robots may be used for survivor detection.
The physical location of the robots must be at the rescue site.
If not, additional services are required to bring them to the
rescue site. Last issue that needs to be considered is that, the
side effect of a software service generally can be specified
independent of other software services. This may not be true
in physical things. For example, a car may transport a robot
to a disaster site for a rescue search. In this case, the states of
the Thing that provides the service and the recipient Thing of
the service may change together. Such impact need to be
specified explicitly and existing software service models do
not have such a feature.

In existing models, there are efforts toward the modeling
of things. The lower level specifications in DPWS (Devices
Profile for Web Services) [6] and EDDL (electronic device
description language) [15] provide device specifications, but
they focus on the interactions with the devices, not about the
properties of the devices themselves. In SOCRADES [7], the
availability of a device for service provisioning is considered
as an event and the broker will deliver this type of events to
the subscribers. This offers some help in service composition,
but only on the availability of the devices, not on other
properties and constraints of the Things.

Remarks. The event based modeling may be useful in
IoT world, but it does not offer additional features compared
to the event modeling for software services. The middleware
for wrapping and encapsulation is a direct application of the
concepts in software systems to IoT systems. Though they
are important for IoT systems, they do not address some of
the issues discussed in this section. As to the specification
models for the physical Things, existing models are not
designed with the IoT service technologies in mind. In
general, they only consider how to interact with the IoT
devices, not those attributes that are important when
considering IoT service matchmaking and composition.

2.2 IoT Service Discovery Routing
Dynamic IoT service composition requires dynamic IoT

service discovery. Many IoT routing protocols are IP based
(e.g., RPL) or ID based (e.g., EPCglobal), which cannot help
with functionality based IoT service discovery.

42

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:41:16 UTC from IEEE Xplore. Restrictions apply.

Existing semantic-based routing protocols can be applied
to IoT networks by defining the capabilities of IoT devices
using keywords and concepts and route according to the
capabilities. This technique is commonly used in semantic
based service discovery protocols. Some of the semantic
based routing are centralized, which may not be able to scale
for widely distributed IoT systems, especially when we
consider mobile IoT devices, which may cause frequent
updates and result in significant communication overhead.

Hierarchical routing protocols can improve on the
scalability problem. In Rendezvous Regions [16] and Service
Rings [17], services are divided into groups based on their
proximity and semantic similarities. In Rendezvous Regions,
some routing protocol (unspecified) can be used to route
queries to the desired group. Within the group, a flooding
based approach is used to locate the desired host. In Service
Rings, hierarchical groups are formed based on the same
principle (proximity and semantic similarities). Each group
elects a leader to serve as a directory server. Routing is done
hierarchically by traversing the service rings. These
approaches are also called clustering based approaches.
Cluster based approaches can also facilitate service selection
based on QoS requirements. However, they still require
inter-cluster routing and specific routing protocols are
needed to complete the solutions. Some hierarchical
networks are specifically designed for IoT [18] [19]. In [18],
the global network is divided into many local networks, each
with a gateway centrally managing the local IoT nodes.
Gateways are then networked together using existing peer-
to-peer network solutions. It is not clear how routing can be
done efficiently in the upper layer peer-to-peer network. [19]
has a similar architecture as that in [18], except that they
consider federating autonomous local IoT networks.

Decentralized routing protocols include structured and
unstructured solutions. Structured semantic routing solutions
are generally DHT (distributed hash table) based, which
hashes the resources or services to specific servers. DHT has
been used in peer-to-peer service discovery [20] [21] [22]
[10]. In [20] [22], services need to be deployed at their
hashed locations, which has no problem for software
services, but are not applicable to IoT services because the
IoT devices cannot be flexibly moved to their hashed
locations. [22] [10] also considers service description using
multiple keys, which is very important for software services,
while IoT capabilities generally can be specified more
specifically without using multiple keywords. [10]
specifically use DHT for IoT service discovery. The hashed
destination nodes are used as indirect pointers to locate the
actual services, which imposes additional communication
overhead (double the cost). Generally speaking, the
advantage of DHT only emerges in systems with a very large
keyword space compared to the number of physical nodes,
so that hashing provides a uniform distribution of the objects.
In IoT networks, many IoT nodes may have the same
capabilities and the number of different IoT capabilities may
be similar or even less than the number of physical nodes.
Thus, most of the nodes in the network will not contribute to

routing since nothing will be hashed to them. Thus, DHT is
in general not a good solution for IoT.

Unstructured decentralized routing protocols are mostly
flooding based. The older routing protocol, Gnutella [23],
uses pure flooding. It does not require any memory space for
storing the routing table, but the service discovery phase
incurs heavy network traffic due to the flooding nature.
When there are multiple service discovery queries, network
may get congested and cause delays. The caching approach
[11] [12] is based on selective flooding. A node upon
receiving a query, does not forward it to all its neighbors, but
selects the most promising ones for forwarding. The
intermediate nodes on the discovered path caches the routing
information and use it for future flooding path selection in
order reduce the routing costs [20] [24]. These schemes may
result in a large cache size, potentially having one entry for
every capability in the system. To control the cache size,
GSD [12] adds a hop limit and incorporates the service
group concept. A node needs to cache the service name and
all the names of the corresponding service groups for each
resource in its neighborhood. This design results in
inefficient use of memory space and large messages size,
making it not suitable for IoT systems.

Bloom filter (BF) has been used in semantic based routing
[25] [26]. Generally, BF are used in the supernode structures
where supernodes exchange the keywords (which is mapped
to BF) with their peers. BF is very useful when the number
of keywords to be passed is reasonably high relative to the
entire keyword space. In an IoT network, the capabilities of
each node can generally be described by a few keywords.
But the number of keywords for describing all the
capabilities in the network can be relatively high. Thus,
using keywords directly can be much more space efficient
than that of BF solutions.

Remarks. The centralized and hierarchical IoT service
discovery routing solutions incurs communication overhead
for registry updates, especially if the IoT network is dynamic
due to mobility or other factors. DHT solutions is not
suitable for IoT systems. Caching based peer-to-peer
solutions have potential advantages for IoT service discovery.
However, the cache size limits on resource-constrained IoT
nodes could force the cache to throw away useful
information, resulting in ineffective discovery routing.

3 From Software Services to IoT Services

3.1 Modeling the Things
In existing service models, the specifications of the

services focus on their functionalities, not on the devices that
can host the services. Also, a lot of research considers
Quality of Service (QoS) issues during service composition
and these works can address the availability, efficiency and
other QoS issues of the service provisioning. But none of
these need the specification of the underlying computing
facilities that hosts the services. This is because software
services are hosted by computing facilities that have

43

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:41:16 UTC from IEEE Xplore. Restrictions apply.

sufficient uniformity and can be left out from the picture. On
the other hand, the services provided by the IoT devices are
mostly device specific and the characteristics of the devices
can impact the service it provides. For example, all vehicles
can provide the transport service, but each of them has its
own characteristics, such as the capacity limit. If the cargo to
be transported exceeds the limit of one truck, it is possible to
select multiple trucks (different Things) or to select one
truck and let it transport in multiple trips. Similar to software
services, these issues may be left to QoS considerations. But
due to the diversity of the devices, whether the devices are
considered at the functional composition time or QoS based
composition time, the specification of the IoT devices should
be explicit. Thus, besides specifying the services, the IoT
service model requires the specific specification of the
characteristics of the IoT devices.

There have been specification models proposed to specify
devices (e.g., DPWS [6] and EDDL [15]) which defines the
schema for specifying a device and its services. DPWS
defines web Service description, discovery, messaging, and
eventing for the device. However, there are two problems
with this type of models.

(1) This model is device centric and services are defined
as a part of the device specification. But frequently, the same
service can be provided by a variety of devices. In this case,
should we repeatedly provide the same service specifications
for each device specification? We can also consider a service
centric approach and for each service, define the devices that
can provide the service. But this will raise the same issue. A
device may be able to provide multiple different services,
and the device specification should be repeated for the
services.

(2) The specification for devices in DPWS is far from
comprehensive. The major fields defined in DPWS schema
are the device name, model, maker, etc. The essential
properties of the devices are missing. For example, for a car,
it is better to know its number of seats so that proper device
allocation and scheduling can be performed.

Figure 1. Upper Service-Thing ontology for IoT.

From the above, we believe that the IoT service model
requires both the Services and the Things to be incorporated
at the same upper level. They can be associated to each other
in the upper ontology, instead of having one belong to the
other. Also, the detailed specification for the Things should
include QoS related properties that may impact the
composition decisions. However, different set of attributes
are required for different types of Things. Due to the
diversity of Things, it is difficult to have a comprehensive
model. Thus, domain specific ontology is needed to enhance
the specification of the properties and profiles of Things.
Figure 1 shows the upper ontology for the IoT Service-Thing

model (ST-model). For time being, the Service class can use
the popular service models such as OWL-S, WSMO, etc.
Later we will discuss the necessary extensions based on
OWL-S for IoT service specifications. The expanded model
for Things is shown in Figure 2.

Figure 2. Ontology for the Thing.

In the Thing ontology, we try to incorporate the general
classes for the specification of Things and leave the details to
domain specific ontologies. The General characteristics class
is similar to the definition given in the “Characteristics”
class of DPWS. The Q&Q properties class is to specify the
quantitative and qualitative properties that may impact the
service selection decisions. For example, if we need to
transport a group of 10 people from one location to another,
it is important to know how many seats (quantitative
property) are there in each car (Thing) in order to make the
correct decision on service and thing selection for handling
the transport task.

The Operation profile specifies the attributes that are
related to how the Thing should operate. One important
element is the Control model, including the control
mechanisms and commands for the Thing. Similar to the
encapsulation feature in existing IoT middleware, the
Control class can specify the detailed control commands and
how the upper level services are mapped to a control
mechanism, i.e., the sequence of control commands. Also,
Things may be nested. For example, a robotic swarm
consists of multiple robots, which are also Things. In this
case, the Control class can specify the mechanisms for the
coordination of the lower level Things to achieve a certain
service of the higher-level Thing. These control mechanisms
can also be specified in the Control class.

During service provisioning, there may be constraints on
the provider Thing regarding how its services can be
provided. For example, multiple services provided by one
Thing will have to be provided exclusively. Some device
may have to be operated at a certain temperature range.
These and other constraints can be specified in the Usage
constraints class in the Operation profile of the Thing.

During the execution of software services, the computing
facility would consume power. Similarly, the operation of a

Thing

Provide Service

Q&Q
properties

Operation
profile

Scheduling

Current
context

Usage
constraints

Control

Consumable
resources

Has

General
characteristics

Thing*

Provided-by

Provide

Service*

44

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:41:16 UTC from IEEE Xplore. Restrictions apply.

Thing may consume some resources. A temperature sensor
consumes battery power when providing its temperature
sensing service. A truck consumes gas when providing its
“cargo transport” service. Also, some Things requiring
maintenances can also be viewed as requiring some
consumable resources, e.g., a car would consume its
maintenance free period. However, the issues of consumable
resources for Things are different from the issues of energy
consumption in software services. The energy consumption
for software services can be handled as a QoS issue, while
insufficiency of the consumable resources for the Things
may require some external services to replenish them, which
is a functional issue. Thus, the resources and the sufficiency
of the resources need to be exposed specifically in the
specification of the Things. The event model is most suitable
for this specification. The Consumable resources class can
specify the resources needed and the events for insufficient
resources. When such an event is triggered, external services
can be activated to execute the replenishing task.

Generally, a software service has an execution context,
but it hardly has much importance. In the physical world, the
context of the Thing is very critical in service provision. For
example, we cannot select a Thing in San Diego to fulfill a
service required in Boston within an hour. Thus, the current
context of the Thing and the context of the service request
should be clearly specified. In fact, there is another
important consideration that is not there for software services.
Consider that a service consumer requests for a service at
location � within a time limit �. A Thing � at location � can
provide this service. Then, we cannot just select � for the
task. We also need to compose the transport services to bring
� from � to � within time � in order for � to properly fulfill
the request. Here, we define the Current context class to
specify the current context of a Thing. Later we will further
discuss the issue of contexts in service composition.

A software service can be provided simultaneously to
multiple requesters from different geographical locations,
while IoT services may have to be provided with a specific
context given in a request. Thus, scheduling has a significant
role in the Thing-ontology. We define the Scheduling class
in the Thing ontology to address the scheduling issues. For
example, a plumber (Thing) provides a plumbing service.
Several houses may require the plumbing service
concurrently. The provider can only offer the service one at a
time, and needs to schedule these requests and needs to
request transport services to bring itself to these locations. A
requester can choose to use another Thing in case one cannot
provide a satisfactory schedule. Though scheduling can be
considered as a QoS issue, it may trigger functional
compositions due to the context issue.

3.2 Extending the IoT Service Model for the
Contexts

We consider the OWL-S model for IoT services, but some
extensions are needed to allow the service model to fully
support IoT systems. We have already discussed the Apply-

to extension in the IoT service model in Section 3. Here we
consider the context requirements for the IoT services.

In the OWL-S model, a service is formally specified by its
IOPE (inputs, outputs, preconditions, effects), where
preconditions are the conditions that have to be satisfied
before the service can be invoked and effects are the
conditions that will hold after the execution of the service, if
the preconditions are satisfied. A service request can be
specified as an abstract service with its IOPE being the
requirements for match making.

Here, we define “Context preconditions” to support the
specification of the context requirements in a service request.
Why can’t the Context preconditions be specified as the
regular preconditions? Generally, preconditions of a service
are fixed conditions that stay the same for all service
invocations. But Context preconditions are dynamic and can
probably be different in each invocation. Why can’t the
Context preconditions be specified as an input? The
composition reasoning process needs to take the Context
preconditions into account, but input values are not
considered during composition reasoning. Corresponding to
Context preconditions, we also define the “Context effects”
class to specify the dynamic effects that impact the states of
the service recipients. The extended service model for IoT
services is shown in Figure 3.

Figure 3. Extended IoT Service model.

Separation of the regular preconditions/effects and
Context preconditions/effects can also benefit staged
composition reasoning. For example, consider a disaster site
that is hard to reach by human rescuers. To reach the
survivor-search goal, the functional reasoner selects a
survivor-search service provided by a swarm of robots
equipped with life detectors. The service has a Context
precondition requiring that the provider Thing (the swarm)
should be at the disaster site. To satisfy the goal, a functional
composition reasoning is used to get a transport service
provided by a truck. The QoS based composition reasoner
can then select the truck that is closest to the swarm to
provide the transport service. For complex composition
problems, such separation can help reduce the complexity of
the composition process.

4 Routing for IoT Service Discovery
Many IoT devices have limited resources, especially

Service

Provided-by

Provider
Thi

Profile Context
precondition

Context
effects

Recipient

Process

Apply-to

Precondition
s

Effects

Grounding

…

45

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:41:16 UTC from IEEE Xplore. Restrictions apply.

memory. Table driven and cache based routing protocols
require a table (or cache) to store useful routing information
so that service discovery queries can be routed efficiently
without incur a high network traffic volume. Most of the
existing semantic based routing algorithms do not consider
bounded table (cache) size since they are designed for
general computing systems. A reasonable resolution is to
delete some routing data when the routing table size exceeds
a given limit. But by doing so, some potentially useful
routing information may be lost. In our approach, instead of
throwing away routing data, we summarize them to retain
the potentially useful routing information while significantly
reduce their space requirements. But, how to effectively
summarize routing information can be challenging. In our
solution, we organize the capabilities of the IoT devices in
an ontology tree to facilitate ontology-based summarization.
An example ontology is shown in Figure 5.

Figure 5: A sample Ontology

 In the ontology tree, leaf nodes are the actual capabilities
of the IoT devices and the internal tree nodes are the
summary IoT capabilities of different degree. For example,
the system may summarize several different watches in the
neighborhood into the “SmartWatch”. However, in order to
perform summarization at each IoT node, it is necessary for
the IoT node to store the ontology and the size of the
ontology tree could be quite significant. This fully defeats
our purpose of summarization and attempting to have the
routing operation use a very small memory size. To make the
summarization concept workable, we design an ontology
coding scheme to code the ontology. For each IoT capability,
only a small ontology code need to be used and at the same
time, this small code carries sufficient information for the
IoT node to perform summarization without needing to store
the entire ontology tree.

Here we define the ontology code. Let ���	
��
 denote
the ontology id of an ontology node ��. ���	
��
 consists
of two bit vectors, including the “ID” bit vector and the “SP”
bit vector. The ID vector specifies a code for each ontology
node. It is an aggregation of codes level by level from root to
the node in the ontology tree. The SP vector specifies the
“starting position” of each level of code. Let ���	
��
� �	
and ���	
��
� �� denote the ID and SP bit vectors of an
ontology node ��. ���	
��
� �	 includes the parent code,
���	
��
� ��	 , and the sibling code, ���	
��
� ����	 .
���	
��
� ��	 is essentially the ID vector of on’s parent.
The sibling code is a unique code among the siblings of node
n. More formally, we have

���	
��
� �	 � ���	
��
� ��	������	
��
� ����	

���	
��
� ��	 � ���	�������
��
�� �	

���	
��
� ����	 � ���
�� ������
������
��

Here, function ������
��
 returns the parent node of on

in the ontology, ������
��
 returns the list of child nodes of
node on, and ���
��� �
 returns the position of on in list l
(assume that on is an element of l). To uniquely define the
sibling code ���	
��
� ����	, its code length should be

 ���	
��
� ����	 � !"#$% ������
������
��

 &
Figure 6 shows an example of coded ontology nodes. The

root ontology node has an assigned code “0”. The root has
five children. For all the child nodes �� ' (� () , their
���	
�
� ��	 should be “0”, ���	
�
� ����	 should be 3
bits, and ���	
�
� ����	 should be “000”, “001”, “010”,
“011” and “100”. As shown in the figure, the same coding
scheme is applied to the three child nodes of “0001”.

Figure 6.�*+,-
./
� ,-

As can be seen, the coding scheme defined above will
result in different code length for each ontology node. If we
simply pad the code, then the ID for each node may not be
unique. More importantly, from ���	
��
� �	 , we cannot
decompose the code to recognize ���	
�
� ��	 and
���	
�
� ����	 which is essential for identifying the
relations between nodes.

 Figure 7: *+,-
./
� 01 vector coding

We use an SP vector, ���	
��
� �� , to solve the
problem. ���	
��
� �� specifies the “starting position” of
each level of code in ���	
��
� �	 (by setting the bit to 1 at
the start position). Similar to ���	
��
� �	, ���	
��
� ��
includes the parent SP, ���	
�
� ��� and the sibling SP
���	
��
� �����. Formally, we have

���	
��
� �� � ���	
��
� ���������	
��
� �����

���	
��
� ��� � ���	�������
��
�� ��

 ���	
��
� ����� � !"#$% ������
������
��

 &
���	
��
� �����2�3 � 45� 67�� � 5������

'� #89:;<6=:

Figure 7 shows the SP vectors for the sample ontology
code given in Figure 6.

1

1100 1100 1100

11001

1100 1100

11001 11001

0000 0001 0010

00010

0011 0100

00010 00011

0

>:?6@:=

A:@B;68C

D:E"89

F:E;EG": H#B8#IE86#J

AIE;8�K"E==:=

AIE;8�L9#J:

M68J:==

N#8#�OP5 HQQ":�FE8@9 K:E;

D#I: L:;=#JE" RJSB=8;6:=

AIE;8�FE8@9

M68G68TK�FE8@9

46

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:41:16 UTC from IEEE Xplore. Restrictions apply.

Now we can pad ���	
��
� �	 and ���	
��
� �� with
0’s for all ontology nodes to the same length while retaining
the uniqueness of ONID for all nodes. The ONID for each
node is the concatenation of ���	
��
� �	 and
���	
��
� �� and the code length of ���	
��
 is the
maximal code length of any node in the ontology as derived
earlier. Based on the ontology code, the IoT system can
easily achieve the summarization goal in the routing table (or
cache) without storing any part of the ontology tree. Note
that summarization can only be performed for the routing
table entries under the same neighbor.

5 Conclusion
IoT service discovery and composition research requires

evolutions in two areas: IoT service modeling and IoT
service discovery routing. We have surveyed existing service
modeling literature and discussed how the considerations for
IoT services are different from software services from the
modeling perspective. We then extend OWL-S and other
service models to build the IoT-specific service model. For
discovery routing, we have surveyed existing solutions and
identified that the caching based protocols are most suitable
for IoT networks. Since existing cache based protocols do
not consider cache size bound due to the limited memory
space on IoT devices, we discuss our solution, the
summarization and ontology coding, and how it can be used
to bound the memory requirement without significantly
degrade the routing performance.

6 Reference

[1] S. Alam, M. M. Chowdhury and J. Noll, "Senaas: An event-
driven sensor virtualization approach for internet of things
cloud," in IEEE International Conference on Networked
Embedded Systems for Enterprise Applications, 2010 .

[2] H.-C. Hsieh, C. Kai-Di, W. Ling-Feng, C. Jiann-Liang and C.
Han-Chieh, "ScriptIoT: A Script Framework for Internet-of-
Things Applications.," IEEE Internet of Things Journal, pp.
628 - 636, 2015.

[3] H. J. La and S. D. Kim, "A service-based approach to
designing cyber physical systems," in 2010 IEEE/ACIS 9th
International Conference In Computer and Information
Science (ICIS), 2010.

[4] Z. Song, A. A. Cárdenas and R. Masuoka, "Semantic
middleware for the internet of things," in Internet of Things ,
2010.

[5] Y. Zhang, L. Duan and J. L. Chen, "Event-driven soa for iot
services," in IEEE International Conference on Service
Computing, 2014.

[6] T. Nixon, "OASIS Devices Profile for Web Services (DPWS)
Version 1.1," 2009. [Online].

[7] A. Cannata, M. Gerosa and M. Taisch, "SOCRADES: A
framework for developing intelligent systems in
manufacturing," in IEEE International Conference on
Industrial Engineering and Engineering Management , 2008.

[8] W. Zhu, G. Zhou, I.-L. Yen and F. B. Bastani, "A PT-SOA
model for CPS/IoT services," in ICWS, New York, July 2015.

[9] I.-L. Yen, F. B. Bastani, S.-Y. Hwang, W. Zhu and G. Zhou,
"From software services to IoT services: The modeling
perspective," in International Conference on Serviceology
(ICServ), July 2017.

[10] F. Paganelli and D. Parlanti, "A DHT-based discovery service
for the Internet of Things," in JCNC, 2012.

[11] O. Ratsimor, D. Chakraborty, A. Joshi and T. Finin, "Allia:
Alliance-based service discovery for ad hoc environments," in
Mobile Commerce Workshop, Sep. 2002.

[12] D. Chakraborty, A. Joshi, Y. Yesha and T. Finin, "GSD: A
novel group-based service discovery protocol for MANETS,"
in IWWCN, 2002.

[13] H. Moeini, I.-L. Yen and F. B. Bastani, "Routing in IoT
networks for dynamic service discovery," in IEEE
International Conference on Parallel and Distributed Systems
(ICPADS), , Shenzhen, China, Dec. 2017.

[14] H. Moeini, I.-L. Yen and F. B. Bastani, "Efficient caching for
peer-to-peer service discovery in Internet of Things," in
ICWS, 2017.

[15] J. Berge, "Electronic device description language (EDDL) for
efficiency," HydroCarbon Asia, pp. 46-54, March-April 2008.

[16] K. Seada and A. Helmy, "Rendezvous Regions: A scalable
architecture for service location and data-xentric storage in
large-scale wireless networks," in ACM Mobicom, San Diego,
Sept. 2003.

[17] M. Klein, B. König-Ries and P. Obreiter, "Service Rings - A
semantic overlay for service discovery in ad hoc networks," in
International Workshop on Network-Based Information
Systems (NBIS), Sept. 2003.

[18] S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M.
Picone and L. Veltri, "A scalable and self-configuring
architecture for service discovery in the internet of things,"
IEEE Internet of Things Journal, vol. 1, no. 5, pp. 508-521,
2014.

[19] P. Gomes, E. Cavalcante, T. Rodrigues and T. Batista, "A
federated discovery service for the Internet of Things," in
Workshop on Middleware for Context-Aware Applications in
the IoT, Dec. 2015.

[20] Q. He, J. Yan, Y. Yang, R. Kowalczyk and H. Jin, "A
decentralized service discovery approach on peer-to-peer
networks," IEEE TSC, vol. 6, no. 1, pp. 64-75, 2013.

[21] M. Castro, P. Druschel, A. Kermarrec and A. Rowstron, "One
ring to rule them all: Service discovery and binding in
structured peer-to-peer overlay networks," in SIGOPS
European Workshop, 2002.

[22] C. Schmidt and M. Parashar, "A peer-to-peer approach to web
service discovery," vol. 7, no. 2, pp. 211-229, 2004.

[23] E. Adar and B. Huberman, "Free riding on Gnutella," First
Monday, vol. 5, no. 10, 2001.

[24] J. Li and S. Vuong, "A scalable semantic routing architecture
for grid resource discovery," in ICPADS, July, 2005.

[25] G. Koloniari and E. Pitoura, "Content-based routing of path
queries in peer-to-peer systems," in International Conference
on Extending Database Technology, 2004.

[26] J. Zhang, R. Shi, W. Wang, S. Lu, Y. Bai, Q. Bao, T. J. Lee,
K. Nagaraja and N. Radia, "A Bloom filter-powered technique
supporting scalable semantic service discovery in service
networks," in ICWS, 2016.

47

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:41:16 UTC from IEEE Xplore. Restrictions apply.

