
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 4, APRIL 2025 7037

HICL: Hashtag-Driven In-Context Learning for
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Abstract— Natural language understanding (NLU) is integral
to various social media applications. However, the existing NLU
models rely heavily on context for semantic learning, resulting
in compromised performance when faced with short and noisy
social media content. To address this issue, we leverage in-
context learning (ICL), wherein language models learn to make
inferences by conditioning on a handful of demonstrations to
enrich the context and propose a novel hashtag-driven ICL
(HICL) framework. Concretely, we pretrain a model #Encoder,
which employs #hashtags (user-annotated topic labels) to drive
BERT-based pretraining through contrastive learning. Our objec-
tive here is to enable #Encoder to gain the ability to incorporate
topic-related semantic information, which allows it to retrieve
topic-related posts to enrich contexts and enhance social media
NLU with noisy contexts. To further integrate the retrieved
context with the source text, we employ a gradient-based method
to identify trigger terms useful in fusing information from both
sources. For empirical studies, we collected 45 M tweets to set up
an in-context NLU benchmark, and the experimental results on
seven downstream tasks show that HICL substantially advances
the previous state-of-the-art results. Furthermore, we conducted
an extensive analysis and found that the following hold: 1)
combining source input with a top-retrieved post from #Encoder
is more effective than using semantically similar posts and 2)
trigger words can largely benefit in merging context from the
source and retrieved posts.

Index Terms— In-context learning (ICL), natural language
processing, pretrained language model, social media.

I. INTRODUCTION

SOCIAL media provide rich resources of real-life and
real-time content to understand our world and society.
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It motivates the demands and advances of various natural
language processing (NLP) applications on these platforms,
such as stance detection [1] and content recommendation [2].
For these applications, natural language understanding (NLU)
plays an essential role in featuring the text and representing
its semantics, where pretrained language models [3], [4], [5]
contribute cutting-edge advances and serve as the backbone to
broadly benefit downstream applications [6].

Pretrained language models gain generic NLU capabilities
by navigating large-scale text and exploring the context, such
as word co-occurrence patterns. Their performance, thus,
heavily relies on rich and high-quality context, whereas that
on social media is prevalently short and noisy. It results in a
severe problem of data sparsity, meaning the context on social
media exhibits an extremely sparse distribution of language
features [7]. It would universally and negatively affect NLU
pretraining and its downstream tasks [8], [9]. Viewing this
challenge, BERTweet and Bernice are pretrained by randomly
concatenating social media posts to lengthen context and
alleviate sparsity [10], [11]. It is, however, suboptimal as
random concatenations are unlikely to form coherent contexts.

Given these concerns, we envision that effective methods to
automate context enriching will allow less sparse features and
promisingly advance the generic NLU on social media. Our
idea is inspired by recent advances in in-context learning (ICL)
[12], [13], [14], uplifting model performance via conditioning
on a few example data from training samples. However, the
existing ICL studies are predominantly done on unidirectional
models, such as GPT [15], and have primarily overlooked
bidirectional models, such as the BERT family, despite the
unique advantages of the latter on NLU tasks [3].

Motivated by the above points, our study aims to effec-
tively retrieve external data and properly fine-tune bidirectional
models to advance generic NLU on social media (henceforth,
in-context social media NLU). To that end, we first pretrain
an embedding model to help any social media post in context
enriching by retrieving another relevant post; then, we insert
trigger terms to fuse the enriched context for language models
to refer to in semantics learning under sparsity. This way, the
framework can easily be plugged into various task-specific
fine-tuning frameworks as external features and broadly ben-
efits downstream social media tasks.

In the existing approaches, ICL examples are usually con-
structed by retrieving the samples using metrics, such as
semantic similarity [16] and mutual information [17]. How-
ever, their effectiveness is concerning due to social media’s
short and informally written text. A related study about
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Fig. 1. Sample tweet P sarcasming overwork through “zzzZZZ” (top). It is
followed by a SimCSE-retrieved tweet S with similar semantics (middle) and
a “#zzz”-hashtagged tweet T cross refer other topic-related tweets (bottom).
Blue words show semantic indicators, and red words show topical hints.

social media image–text understanding [18] showed retriev-
ing context-enriching data was helpful; yet, image features
contribute substantially more than text in retrieval training.
It sheds light on the nontrivial challenge of learning what to
retrieve given data sparsity in a text-only context, which is
much more common in social media posts than those with
images. To address this issue, we pretrain the retrieval model
via utilizing hashtags, user-annotated topic labels starting with
a “#” and cross referring to other topic-related posts [19].
It associates posts about the same topic, learns semantics in
a richer topic-coherent context, and gains topic relevance for
retrieval. Hashtags have been adopted in many task-specific
scenarios (e.g., image captioning [20] and sentiment analy-
sis [21]). In contrast, we present a novel initiative to explore
its effects in ICL for a broad range of NLU tasks.

To better illustrate the potential of hashtags in context
enriching, Fig. 1 shows a sample tweet P that conveys a
sense of sarcasm through an emoticon “zzzZZZ” (indicating
overwork and opposing the previous sayings). As can be
seen, P’s short context and implicit writings may hinder
NLU models from capturing the genuine underlying meanings.
We then retrieved a tweet S using a popular semantic-based
retrieval model SimCSE [22], which exhibits similar semantics
(heavy work), partially helps enrich context, and yet ignores
the sarcastic hint from “zzzZZZ.” Meanwhile, a related hashtag
“#zzz” might gather other topic-related (such as T in Fig. 1)
complaining about overwork, strengthen the NLU in “zzzZZZ,”
and offer more direct assistance to infer sarcasm.

Here, a straightforward approach is to feed the encoder with
the concatenation of the source post with another topic-related
post. Nevertheless, this method may also distract the model,
causing it to pay undue attention to nonessential details instead
of focusing on the main message of the source post. Therefore,
we employ a gradient-based approach to identify trigger terms
that facilitate the incorporation of the retrieved text’s context.
To the best of our knowledge, hashtag-driven ICL (HICL)
is the first framework leveraging hashtags in large-scale pre-
training for social media NLU, which enables the pretrained
model to retrieve topic-related posts and enhances the ICL

framework by incorporating automatically generated trigger
terms for context enrichment.

Concretely, HICL works in a pretraining and fine-tuning
paradigm. In pretraining, we develop #Encoder, a hashtag-
driven pretrained model based on RoBERTa [4]. It is pretrained
on 179 M hashtagged tweets via contrastive learning to pull the
tweets with the same hashtags closer together in embedding
space and push apart those with different hashtags. Then,
in the fine-tuning, #Encoder helps retrieve topic-related data,
which is later utilized for context enriching and merging
with the help of trigger terms during the training of specific
downstream tasks. Here, we set up HICL with a #Database
containing 45 M tweets grouped by hashtags for #Encoder to
retrieve context-enriching tweets.

To evaluate HICL’s performance, we conducted experi-
ments on seven popular Twitter benchmark datasets. The
main results demonstrate that HICL enables bidirectional
language models, such as BART [23], RoBERTa [4], and
BERTweet [10], to achieve superior performance by incor-
porating the top-retrieved tweet from #Encoder. Furthermore,
inserting trigger terms between the source and retrieved tweets
can enhance the overall performance, indicating that these
trigger terms can positively facilitate information integration
between the two components.

In further discussion about HICL, we first quantify the
number of trigger terms and show that even a single trigger
term can positively impact downstream tasks. Then, by prob-
ing into the position of trigger terms, we find that those
at the beginning or middle of sentences effectively facilitate
information integration; in contrast, those at the end are less
useful. Next, we quantify the scale of retrieved context and
observe that augmenting with more context is beneficial to
enhance social media NLU. However, the marginal benefits of
adding additional text to the input diminish with the increasing
number of retrieved pieces of information. Finally, case studies
and analysis of the trigger terms provide insight into how
HICL helps NLU.

In summary, our contributions are threefold.
We propose a novel HICL framework for generic social

media NLU in data sparsity, which can retrieve topic-related
posts and enrich contexts via gradient-searched trigger terms.

We develop the first hashtag-driven pretrained model,
#Encoder, leveraging hashtags to learn interpost topic rel-
evance (for retrieval) via contrastive learning over 179 M
tweets.

We contribute a large corpus with 45 M tweets for retrieval,
and the experiments on seven Twitter benchmarks show that
HICL advances the overall results of various trendy NLU
models.1

II. RELATED WORK

Our HICL is built upon ICL and retrieves posts based on
sentence embeddings and hashtags. In the following, we first
discuss previous ICL work, followed by the discussion on
sentence embedding and hashtag modeling.

1The HICL framework and benchmark with 45 M tweets are available at
https://github.com/albertan017/HICL.
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A. In-Context Learning

In the initial ICL work, researchers enhance the GPT3
model’s zero-shot inference potential by concatenating numer-
ous exemplar instances ahead of the input text [15]. It offers an
interpretable interface for interacting with large language mod-
els (LLMs), making it easier to integrate human knowledge by
modifying the templates and demonstrations. With the rapid
scaling of LLMs size, the enormous computational expense of
fine-tuning LLMs accentuates the necessity for ICL. To select
suitable demonstration examples, researchers employ various
metrics to retrieve samples, e.g., SentenceBert embedding
similarity [16], mutual information [17], supervised retriever
EPR [24], and so on. There is also an inductive class learning
experiment that showcases how demonstration samples drive
end-task performance [14], which indicates that demonstration
samples provide the following: 1) instances from the label
space demonstrating the range of possible labels; 2) examples
of the distribution of the input text, illustrating the kinds of
inputs the model will encounter; and 3) demonstrations of the
overall format of the sequence, exhibiting the structure that
the model’s predictions should follow. These factors comprise
the key reasons demonstration samples facilitated ICL model
performance.

Although ICL has shown encouraging outcomes, previous
work has predominantly concentrated on unidirectional models
for natural language generation (NLG), such as GPT3 or
LLaMa, leaving bidirectional models (such as the BERT
family) largely unexplored. Meanwhile, bidirectional models
have shown unique advantages in NLU [3]. It is because
the bidirectional attention mechanisms can incorporate context
from both directions when encoding a word or sentence, allow-
ing effectiveness in capturing linguistic phenomena, such as
long-distance dependencies, pronoun resolution, and negation
understanding. It also reflects how human readers process lan-
guage as we understand words and sentences beyond relying
solely on left-to-right contexts, since it cannot fully capture
the dependencies between the context words [25]. We, thus,
study tailor-making ICL to fine-tune bidirectional models and
thoroughly evaluate its capabilities in social media NLU.

B. Sentence Embedding

Sentence embedding is the process of mapping sentences
into continuous vector representations. It captures sentences’
semantic meaning and allows them to be compared mathemati-
cally using distance metrics. This vector representation enables
various downstream NLP applications, such as sentence clas-
sification, semantic similarity, and sentiment analysis, and is
a widely applied index in information retrieval. Early works
build sentence embeddings via averaging word vectors, e.g.,
word2vec [26], which are word-level vector representations
pretrained from word co-occurrences. Doc2Vec [27] extends
the idea of word embeddings to the document level and
generated document embeddings by using either distributed
memory mode or distributed bag of words mode, where the
former pretrains embeddings by predicting words from their
context and the latter does the opposite. Despite its simplicity,

Doc2Vec has been shown to produce helpful sentence repre-
sentations.

Inspired by Siamese network, researchers later leverage con-
trastive learning to obtain sentence embeddings. InferSent [28]
uses natural language inference (NLI) datasets to train a
Siamese bi-LSTM to predict the relations of input sen-
tence pairs. As the model is trained to distinguish between
entailment, contradiction, and neutral relationships between
sentence pairs, it forces the model to learn meaningful sen-
tence representations. The idea of encoding sentences with the
NLI dataset is further extended into transformer architecture
in Universal Sentence Encoder [29]. Also, the corresponding
results indicate that sentence embeddings are significantly
helpful for transfer learning and can be used to obtain promis-
ing task performance with significantly less task-specific
training data. More recently, scholars have incorporated the
concept of contrastive learning into the pretraining paradigm.
SentenceBert [30] is among the initial models to modify the
pretrained BERT model [3] by utilizing a Siamese architecture
to encode the semantic meaning of sentences into embeddings.
SimCSE [22] presents an unsupervised method that utilizes
standard dropout as noise and predicts an input sentence itself
in a contrastive objective. They further include supervised
contrastive learning with NLI datasets and reach state-of-the-
art performance on semantic textual similarity (STS) tasks.
Although the dominant techniques for generating sentence
embeddings are trained on formal written text, such as the
Stanford NLI dataset (SNLI) [31] and Multi-Genre NLI dataset
(MNLI) [32], social media language—which is often char-
acterized by sparsity and noise—has received relatively little
attention. As a result, researchers have largely overlooked the
informal writing style of social media language and instead
adopted language encoders that are specifically designed for
formal written text [33], [34], which may compromise the final
results.

To the best of our knowledge, there are very few pretrained
models for sentence embedding that are specifically tailored
for social media language. While some attempts have been
made to pretrain language models on social media data, such
as BERTweet [10], Bernice [11], and TwHIN-BERT [35], most
of them have been limited to using randomly grouped tweets,
which would result in a lack of coherent context and may
consequently lead to confusion in pretraining. In contrast,
our #Encoder exhibits the first pretrained sentence embedding
model specifically tailored for social media language in a
context-rich manner. Rather than prioritizing the semantic con-
tent of social media posts, usually characterized as noisy and
lacking in context, #Encoder adopts a topic-based perspective
and utilizes hashtags as a means of grouping posts and driving
contrastive pretraining for encoding social media posts. Built
upon the #Encoder-learned embeddings, we further explore
HICL, a novel framework on their use for downstream tasks
under an ICL approach.

C. Hashtag Modeling

Our work is also related to prior studies using hashtags for
language learning on social media platforms. Although social
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media language lacks context within individual posts, it offers
a vast quantity of data. Hashtags, which are user-generated
topic labels, are widely available on social media plat-
forms and serve as clusters of post topics. These hashtags
are typically used as indicators for constructing language
resources [1], [36] and for social media tasks [37], [38],
[39]. For instance, hashtag semantics have been incorporated
and benefit content recommendation [40]. Moreover, a recent
study shows that adding automatically generated hashtags can
enrich the context of tweets and help low-resource classi-
fication [41]. However, directly supplementing hashtags to
tweets is arguably suboptimal, as it may also bring noise
and mislead the model, because the appended hashtags and
tweets may not be featured in the same semantic space for
classification. In contrast, to allow models to attend salient
parts, we propose generating trigger terms to serve as a
bridge for improving the integration between retrieved content
and source input. Furthermore, they restricted their scope to
low-resource classification with limited labeled data, whereas
here, we focus on a more general scenario of social media
NLU.

In addition, some researchers work on hashtag embedding
to help models gain hashtag-level understanding. In this line,
Hashtag2Vec [42] learns hashtag representations by jointly
modeling their co-occurrence patterns and associated textual
content; SHE [43] captures semantic and sentiment infor-
mation in hashtag embeddings leveraging multitask learning.
Nevertheless, no prior work has exploited hashtags in gath-
ering topic-related posts for large-scale language pretraining,
which is a research gap we aim to address in this article.

Meanwhile, to understand the topics of posts without
hashtags, researchers have proposed various algorithms for
recommending the hashtags. Early approaches utilize machine
learning techniques, such as topic modeling [44] and convo-
lutional neural networks [45], to analyze post semantics for
hashtag recommendations. Considering the rich information in
social networks, other methods incorporate user data, such as
communities [46] and hub nodes [47] to improve recommenda-
tions. Recently, reference [48] constructs separate latent spaces
for embedding post text and associated hashtags. A multilayer
perceptron mapping process then learns a translation from
text semantic features to hashtag latent representations for
recommendation. Inspired by the hashtag embedding, we pro-
pose leveraging hashtags as topic indicators and employing
contrastive learning to pretrain an #Encoder model that can
encode topic information implicitly into the high-dimensional
representation space. Our objective diverges from the field of
hashtag recommendation, which focuses on classifying posts
for subsequent application. In contrast, our #Encoder model
is tailored to directly retrieve posts related to certain topics to
provide a rich context for language models to advance generic
NLU on social media.

III. HICL FRAMEWORK

This section introduces how we pretrain #Encoder and
apply it in the HICL framework. The framework design
is first overviewed in Section III-A. Then, we discuss the
pretraining process for #Encoder in Section III-B and how

it is further leveraged in HICL to fine-tune language models
in Section III-C. Finally, we present the details to search for
the trigger terms in Section III-D.

A. Framework Design Overview

As discussed above, HICL employs #Encoder for retrieving
posts to enrich post-level context in task-specific fine-tuning.
For this reason, we feed #Encoder with hashtag-grouped
posts (posts with the same hashtag), which differs from
the BERTweet, Bernice, or TwHIN-BERT schemes that take
randomly concatenated tweets as input. Our intuition is that
posts about the same topic (hinted by hashtags) would allow
richer context for pretrained models to learn semantics. The
grouping design considers that the limited words in a post may
prevent the model’s language learning potential from being
fully exploited in pretraining.

To better interpret this point, we first review the general
design of most pretrained models for NLU [3], [4]. It adopts
a transformer encoder [49] fed by a word sequence x =
⟨x1, x2, . . . , xL⟩ (L is the word number). For each word
xi ∈ x and its word embedding ei , the model explores its
representation hi through multiple self-attention encoder layers
based on xi ’s occurrences with all words in x. A self-attention
layer is formulated as follows:

hi =

L∑
j=1

softmax
(

Qi K j

dk

)
Vi . (1)

Q, K , and V are the projections of x’s input embeddings. dk

is the scaling factor to avoid a small gradient.
In pretraining, the transformer encoders leverage

self-supervised learning tasks, e.g., masked language
model (MLM), to explore the word features in context
for learning general NLU skills. However, because of the
sparsely distributed features, NLU encoders may need
help to practice these tasks given post-level context only.
To mitigate sparsity, #Encoder is pretrained on grouped input
with contrastive learning for a richer context in semantic
learning. Consequently, HICL matches a post with a retrieved
post to follow this context-rich design and enable easier
fine-tuning [50].

We then present the details of contrastive learning. Formally,
given a batch of post pairs D = {[x1, x+1 ], . . . , [xn, x+n ]}
(xi and x+i are tagged the same hashtag in our scenario),
#Encoder encodes D into latent semantic space, H =

{[h1, h+1 ], . . . , [hn, h+n ]} as their representations.
In the hashtag-driven pretraining, #Encoder aims to pull

representations of posts with the same hashtag, [hi , h+i ], closer
and push apart those with different hashtags, [hi , h+j ] (i ̸= j).
Here, we follow SimCSE [22] and compute the cross-entropy
objective with in-batch negatives. Also, the training loss for a
batch D is defined as follows:

loss = −log
esim(hi ,h+i )/τ∑N
j esim

(
hi ,h+j

)
/τ

(2)

where sim(hi , h+i ) is the cosine similarity between post
embeddings hi and h+i , and τ is a temperature hyperparameter.
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Fig. 2. Workflow to pretrain #Encoder on 179 M Twitter posts, each containing a hashtag. #Encoder is pretrained on pairwise posts, and contrastive learning
which guides it to learn topic relevance by learning to identify posts with the same hashtag. The pretraining aims to pull representations of posts with the
same hashtag, [hi , h+i ], closer, and push apart those with different hashtags, [hi , h+j ] (i ̸= j). Consequently, this results in embeddings that are infused with
topic-specific information. We randomly noise the hashtags to avoid trivial representation.

B. #Encoder Pretraining

We then discuss how to pretrain #Encoder, and the workflow
is shown in Fig. 2. It is built on the architecture of RoBERTa
with a 12-layer transformer encoder [49]. We employ con-
trastive learning to pretrain large-scale tweets. In the following,
we first discuss how to gather the pretraining data, followed
by the training methods.

1) Pretraining Data: #Encoder is pretrained on 15 GB of
plain text from 179 M tweets and 4 billion tokens. Following
the practices to pretrain BERTweet [10], the raw data were
collected from the archived Twitter stream containing 4 TB
of sampled tweets from January 2013 to June 2021.2 For data
preprocessing, we ran the following steps. First, we employed
FastText [51] to extract English tweets and only kept tweets
with hashtags. Then, low-frequency hashtags appearing in less
than 100 tweets were further filtered out to reduce sparsity.
After that, we obtained a large-scale dataset containing 179 M
tweets; each has at least one hashtag and, hence, corresponds
to 180k hashtags in total.

To further examine how to utilize hashtags, we show the
log-scaled distribution of hashtag frequency in Fig. 3. As can
be seen, it is extremely imbalanced and roughly exhibits a long
tail, where each hashtag appears in an average of 951.4 tweets.
We observe that the majority (86%) of hashtags contain less
than 1000 tweets, while several (the generic ones) appear
in millions of tweets, e.g., #job occurs in 1.6 M tweets,
#nowplaying 1.3 M, and #hiring 0.9 M.

To enable a more balanced training, we sampled the posts
with respect to the inverse of hashtag frequency and randomly
formed pairs of tweets sharing a hashtag for contrastive
learning. Besides, in order to guide #Encoder to focus on
nontrivial representation learning, we randomly add noise to
hashtags, such as deletion and segmentation [52]. It is because
hashtags are characterized by the # symbol and the nonindent
format, which may mislead the model to encode trivial and
useless features for tackling pretraining tasks.

2https://archive.org/details/twitterstream

Fig. 3. This histogram shows the distribution of hashtag frequencies based
on the number of tweets containing each hashtag. The x-axis bins hashtags by
the number of tweets they appear in. The y-axis shows the frequency—how
many hashtags occur in each bin’s tweet count range, on a logarithmic scale
to enhance the visibility of the data. The distribution demonstrates a long-tail
effect, with most hashtags tweeted infrequently (left bins) and few achieving
widespread use (right bins).

2) Pretraining Methods: To leverage hashtag-gathered con-
text in pretraining, we exploit contrastive learning and train
#Encoder to identify pairwise posts sharing the same hashtag
for gaining topic relevance, as illustrated in (2).

To effectively encode the topic information, half of the
input is constructed by concatenating posts with the same
hashtag to the max sequence length, resulting in a single long
document. The other half is present in individual posts. This
way, #Encoder can explore topic information in a context-rich
setting while considering the limited length of social media
posts. Furthermore, we engage MLM with loss coefficient
α as an auxiliary pretraining task to the aforementioned
hashtag-driven contrastive learning. It is to retain the word
representation capability in #Encoder pretraining.

For evaluation of sentence encoding models on downstream
tasks, we refer to SimCSE [22] and find that its results are
inferior when directly fine-tuned for classification. Likewise,
#Encoder is pretrained on paired posts to learn topic rele-
vance, which may better gain text-matching capability than
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classification. We, hence, apply #Encoder to retrieve posts in
HICL fine-tuning, which will be discussed below.

C. HICL Fine-Tuning

In fine-tuning, most NLU downstream tasks are formulated
as a classification problem, which is to maximize posterior
probability P(y|x), meaning the most likely class y given a
post x. Due to data sparsity, the limited features in x may
challenge NLU models to explicitly connect x to y. We,
hence, introduce a latent variable x′ (from unlimited post space
on social media) to mitigate their information gap, and the
theoretical formulation is as follows:

P(y|x) =
∑

x′
P

(
y | x, x′

)
P

(
x′ | x

)
. (3)

In practice, rather than sampling from an unlimited collec-
tion of posts, we use the #Encoder to retrieve the top-K most
relevant posts x′ given an input post x, denoted as P(x′|x).
Since #Encoder is designed to capture topical information,
such retrieval provides posts on the same topic as x (indicated
by hashtags). This allows richer topical context for models to
connect the sparse information in post x with supplementary
topical knowledge in post x′ to make the classification pre-
diction y, formulated as P(y|x, x′). We design the following
processes to run HICL fine-tuning and show the workflow in
Fig. 4.

First, the #Encoder is pretrained in an unsupervised man-
ner using hashtag-driven contrastive learning (detailed in
Section III-B) to encode the latent topic semantics. This allows
mapping input x to a high-dimensional embedding hx , which
implicitly represents its latent topic z. Then, for each input x
in the fine-tuning dataset, the pretrained #Encoder retrieves the
most topic-related post x′ from a large external corpus based
on the similarity between embeddings hx and hx ′ . In this way,
the retrieved x′ acts as supplementary contextual information
reflecting the latent topic indicated by the #Encoder’s con-
tinuous representation for input x. This allows providing an
enriched contextual representation for task-specific NLU fine-
tuning and inference, without requiring predefined discrete
topics. Finally, the retrieved x′ connects x and y through the
concatenation of the x with originally limited context and
expanded x′ containing relevant latent topic information. This
enriched representation mitigates data sparsity challenges and
enhances NLU modeling with flexible topic encoding.

For the setup of a retrieval dataset, we consider the obser-
vations in Fig. 3, where most hashtags have a 100-scale
frequency while very few million scale. To enable a reasonable
search space for efficient and balanced retrieval, we randomly
sampled at most 500 tweet samples from each hashtag group,
resulting in 45 M unique tweets from 178 657 hashtags.
The dataset then bases the #Encoder retrieval in the HICL
framework (thereby, #Database).

We acknowledge the potential scalability concerns raised by
a direct retrieval approach, as it requires comparing every post
against a potentially vast database of encoded representations.
However, at our current database scale of 45 M tweets, direct
embedding retrieval is still highly efficient. As a reference,

previous study [53] has shown that direct embedding simi-
larity search over 1B vectors takes only around 0.2 s.3 Our
strategy benefits from cutting-edge algorithms tailored for
rapid and voluminous retrieval tasks, ensuring that scalability
remains manageable. Furthermore, the direct retrieval method
bypasses the need for explicit topic classification, eliminating
the risks associated with misclassification and the propagation
of errors through the retrieval process. By directly comparing
embeddings, we ensure that the most topical similar posts are
retrieved, reflecting a comprehensive understanding of latent
topics inherent in social media content. Hence, for the sake of
clarity, we concentrate on the direct retrieval method in our
research.

D. Trigger Terms Search Algorithm

Here, we further discuss how to fuse the retrieved and
source context in fine-tuning. Although the retrieved posts are
intended to provide supportive background, directly append-
ing the two posts may be ineffective, because the retrieved
posts may not share the classification labels with the source
and potentially confuse the model. Accordingly, we propose
inserting trigger terms optimized to combine the information
from the retrieved text and source input, resulting in a coherent
representation conducive to classification. Inspired by previous
work [54], we employ continuous vectors as trigger terms
rather than utilizing natural language trigger terms. Concretely,
given post x, retrieved post x′, and series of trigger terms
T1, T2, . . . , Tn , we reformulate the input in the following form:

[T1, . . . , Tl], x,
[
T(l+1), . . . , Tm

]
, x′,

[
T(m+1), . . . , Tn

]
. (4)

For a reformulated input x, x′, T , the model’s training loss is
calculated as follows:

argmin
θ,T

L = −
∑

log Pθ

(
y|x, x′, T

)
. (5)

The algorithm is summarized in Algorithm 1. To seek effec-
tive trigger terms, we first initialize trigger terms with random
continuous embeddings (Lines 2) and train the embeddings
of the set of trigger terms, T , alongside other input tokens
to establish a strong initialization (Lines 3–6). After that,
we freeze the other model parameters (Lines 7) and solely
fine-tune the embeddings of these trigger terms for optimal
solutions (Lines 8–11). Note that tuning the trigger terms is
computational efficient as we freeze the model parameters and
only update the trigger embeddings.

We also present an ablation study on this separate training
process to evaluate its contributions (see Section V).

IV. EXPERIMENTAL SETUP

We set up the evaluation of HICL on the Twitter data,
where we test our fine-tuned results on seven popular tasks
to examine generic capability in social media NLU. In the
experimental discussion, a Twitter post is thereby referred to
as a tweet.

3https://github.com/facebookresearch/faiss/tree/main/benchs
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Fig. 4. Workflow of HICL fine-tuning. A tweet x is first encoded with #Encoder, and the output embedding hi is then used to search the #Database to
retrieve the most topic-related tweet x′, which has an embedding hr with the smallest distance to hi . After that, x′ and x are paired in concatenation and
inserted with trigger terms for task-specific fine-tuning. Here, HICL can both work for tweets with and without hashtags.

Algorithm 1 Trigger Terms Search Algorithm
Input: Model θ, trigger term T, Dataset D
Output: Optimized Model θ and trigger term embd.

Tembd.

1 Function TriggerTermSearch(θ, T, D):
2 Randomly Initialize trigger term embd. Tembd

3 for x in D do
4 L = − log Pθ (y|x, x′, T ) ▷ Compute loss in Eq.

5
5 g← ∇L(x, x′, T ) ▷ Compute gradient for all

the input
6 update(θ, Tembd )← g ▷ update all the

parameters

7 Freeze θ , only update trigger embd. Tembd

8 for x in D do
9 L = − log Pθ (y|x, x′, T )

10 g← ∇L(T ) ▷ Compute gradient only for
trigger terms

11 update(Tembd )← g ▷ Only update trigger
embd.

12 return θ, Tembd

A. #Encoder Pretraining Settings

The hashtag-driven contrastive learning is implemented with
PyTorch4 and hugging face transformers library.5 For post
representation, we use the embedding from the last hidden
layer of #Encoder for the “< s >” token [22], [30]. This “< s
>” token is inserted at the start of the sentence to signify the
beginning [4], [10], [23]. For hyperparameters, we primarily
follow BERTweet configurations and initialize the #Encoder
parameters with BERTweet checkpoint for continued pretrain-
ing based on four NVIDIA RTX3090 GPUs. The pretraining
is conducted by Adam optimizer with a peak learning rate set
to 1e−5, maximum sequence length to 128, and batch size to
512. We set temperature τ = 0.05 in contrastive learning [as
shown in (2)] and MLM loss coefficient α = 0.1. #Encoder is
pretrained for ten epochs, roughly taking 7 days.

4https://pytorch.org/
5https://github.com/huggingface/transformers

B. Benchmark Datasets

The evaluation presented in this article is based on seven
widely used SemEval Twitter benchmark datasets, each related
to a different popular NLU task. In the following, we briefly
introduce each benchmark, and the corresponding statistics are
presented in Table I.

Stance detection focuses on understanding the author’s
stance and is formulated as follows. Given a tweet, the model
aims to predict whether the author has a favorable, neutral,
or unfavorable position toward a proposition or target. Here,
we employ SemEval-2016 task 6 on Detecting Stance in
Tweets, which provides five target domains: abortion, atheism,
climate change, feminism, and Hillary Clinton. In this study,
we merge the target domains and predict the stance.

Emotion recognition is to recognize the author’s emotion
evoked by a tweet. We use SemEval-2018 task 1 dataset
following TweetEval’s practice, where the model should dis-
tinguish four emotions: anger, joy, sadness, and optimism.

Irony detection focuses on recognizing whether a tweet
includes ironic intents or not, making it a binary classification
task. Here, we use the data from SemEval-2018 task 3.

Offensive language identification aims to allow models to
predict whether or not some offensive language is present in
an input tweet, whose data are from SemEval-2019 task 6.

Hate speech detection is to predict whether a tweet is
hateful against any of two target communities: immigrants and
women. Our dataset comes from SemEval-2019 task 5.

Humor detection is to enable automatic detection of whether
a given tweet exhibits a sense of humor, and the data are from
SemEval-2021 task 7.

Sarcasm detection is a binary classification task of predict-
ing whether a tweet shows a sense of sarcasm. The benchmark
is set up based on SemEval-2022 task 6, which the tweet
authors themselves labeled.

C. Evaluation Metrics

The evaluation metrics we use for each dataset are the same
as those employed in the original paper that introduced the
dataset. For emotion, offensive, hate, humor, and sarcasm
benchmarks, macroaveraged F1 over all classes is employed.
For stance benchmark, macroaveraged of F1 of “favor” and
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TABLE I
BENCHMARK DATASET STATISTICS

“against” classes is used. As for irony benchmark, we adopt
F1 of ironic class as evaluation metric.

Overall, these seven tweet classification benchmarks reflect
a wide range of NLU capabilities to tackle social media data
and comprehensively assess our proposed HICL framework’s
effectiveness in understanding such data.

D. Comparison Setup

We thoroughly experiment with the proposed HICL on the
backbone of widely employed bidirectional language models:
BART and RoBERTa, and the state-of-the-art model for tweet
NLU, BERTweet. In the following, we provide a concise
overview of each model.

Bidirectional and autoregressive transformer (BART) [23]
is a pretrained language model that employs the vanilla trans-
former architecture. It can be viewed as a combination of the
bidirectional encoder, similar to BERT, and an autoregressive
decoder, akin to GPT, into a single Seq2Seq model. BART is
trained via a two-step process involving the corruption of text
using an arbitrary noising function and the subsequent learning
of a model to reconstruct the original text.

Robustly optimized BERT pretraining approach (RoBERTa)
[4] is an optimized BERT pretraining model through the use
of larger data scales, longer training time, dynamic masking
strategies, and optimized hyperparameters.

BERTweet [10] is the first large-scale pretrained model for
the NLU of English tweets. It leverages an 80-GB corpus
consisting of 850 M tweets. BERTweet adopts the RoBERTa
architecture and training strategy and yet concatenates tweets
to achieve the maximum sequence length. In addition, the
model provides a specialized tokenizer for tweets.

Our experiments consider taking these three models as the
baselines to fine-tune the original datasets (namely, Base).
For comparable results, HICL fine-tuning (see Section III-C)
is also carried out on varying base models, which takes
paired input from a given tweet and its match retrieved by
#Encoder. To allow the easy use of HICL, the pretrained
#Encoder is directly applied for retrieval without task-specific
fine-tuning. Here, we employ Faiss Library [53] to speed up
retrieval and costs around 30 ms/45 M search on an Intel
Xeon Gold 6248R CPU. We empirically insert five trigger
terms between the given tweet and its matched retrieved text.
Following this setup, we also examine HICL variants with
pretrained retrieval counterparts, enriching a tweet’s context
with SimCSE (namely, SimCSE). We fine-tune BERTweet for

30 epochs for each task with a warm-up learning rate of
1e − 5 and a batch size of 16. We apply early stopping if no
improvement is observed on validation for over five continuous
epochs. All models run for ten times, and we report their
average results in Section V.

In addition, we evaluate the effectiveness of conventional
ICL, which involves conditioning the model’s inferences on
several demonstrations from training samples (namely, ICL).
We follow the methods LMBFF proposed in [55] to implement
this baseline. Concretely, we first sample a single example
from each class for each input to create a demonstration set
and then perform prompt-tuning to enable the model to learn
from the demonstrations in the training set.

V. EXPERIMENTAL RESULTS

We first discuss the main comparison results and ablations
in Section V-A. Then, a quantitative analysis is presented in
Section V-B to examine how trigger terms and retrieved tweets
perform in varying scenarios, followed by a case study in
Section V-C to interpret how HICL benefits social media NLU.

A. Main Comparison Results and Ablation Study

The fine-tuned results on the seven Twitter benchmarks
(Section IV) and the averages are shown in Table II.

Our experimentation results provide support for our asser-
tion that topic-related information, as obtained through the
#Encoder retrieved tweets, is more effective in enhancing
generic NLU than semantic-related information (SimCSE-
retrieved tweets) or demonstrations from similar training
samples (+ICL). These results suggest that enriching a tweet’s
context with relevant tweets is a simple yet effective approach
for improving generic NLU in data sparsity. As social
media tweets face several sparsity problems, enriching the
topic-related context becomes even more crucial in helping
the language model understand the given scenario. On the
other hand, concatenating a semantic-similar tweet to the input
may not be as helpful. While a semantic-similar tweet may
contain similar words or phrases to the input tweet, it may
not necessarily provide additional context or information that
can help the model better understand the topic being discussed.

Furthermore, ICL is generally effective in improving
downstream task performance. This is done by providing
demonstration tweets that are derived from training samples.
These demonstrations could guide the model in NLU train-
ing and have been shown to improve the model’s overall
performance on downstream tasks. However, the degree of
improvement achieved by the basic ICL or SimCSE is limited.
The possible reason is that demonstration tweets from training
samples are already familiar to the model or have been
incorporated into its training. Meanwhile, HICL shows larger
performance gains, implying that the topic-related tweets
found by #Encoder can better help the model comprehend the
topic at hand and offer a relevant yet supplementary view.

To further investigate the relative contributions of varying
HICL modules, we present the ablation studies in Table III,
where “base” refers to the vanilla base models. For other
ablations, we first examined the effectiveness of trigger terms,
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TABLE II
COMPARISON RESULTS OF DIFFERENT MODELS WITH VARYING BIDIRECTIONAL BACKBONES. THE BEST RESULTS IN EACH COLUMN UNDER A

BACKBONE ARE UNDERLINED. ON AVERAGE, OUR HICL FRAMEWORK SIGNIFICANTLY OUTPERFORMS OTHER COMPARISON MODELS WITH
p < 0.05

TABLE III
AVERAGE RESULTS FOR DIFFERENT TRAINING METHODS

with “+HICL w/o Tri.” denoting simply concatenating the
retrieved tweet with the source input. Second, recall that in
Section III-D, we described that during training, we simul-
taneously train the embeddings of trigger terms and other
tokens for initialization, followed by further fine-tuning the
trigger embeddings separately. An alternative approach would
be to train the trigger embeddings jointly with the other token
embeddings without additional separate tuning. We present
comparative results to validate the importance of this separate
tuning—“+HICL w/o Sep.” indicates training without further
separate tuning. “+HICL” denotes the full model with separate
fine-tuning to optimize the trigger embeddings.

The averaged results on seven benchmarks are detailed
in Table III. It demonstrates that inserting trigger terms
between the source and retrieved tweets can enhance the
final performance. Moreover, additional optimization of the
trigger embeddings exhibits further downstream performance
gains. These results support our hypothesis that trigger terms
facilitate the merging of semantic information carried by the
retrieved text and the source input. Thus, our study under-
scores the potential utility of trigger embeddings for generally

TABLE IV
AVERAGE RESULTS VARYING THE NUMBER OF TRIGGERS

improving the automatic NLU capability on social media
language.

B. Quantitative Analysis

In the previous section, we have shown the benefits of
leveraging #Encoder-retrieved tweets through our trigger term
search algorithm. In the following, we quantify how the
trigger term usage and retrieved tweets help social media
NLU learning. The analyses of the sensitivity of trigger terms
regarding their quantity and position are presented first. Then,
we examine the impact of the number of retrieved tweets on
performance of the downstream tasks.

1) Varying the Number of Trigger Terms: Here, we investi-
gate how language models handle trigger terms with varying
numbers and show the all-task average results in Table IV,
where “T. #N” indicates that N trigger terms are inserted
between the retrieved and source tweet. We observe that
although trigger terms are helpful, adding more trigger terms
shows minimal impact on the average performance. Notably,
even a single trigger can positively affect the downstream task,
reinforcing our argument that trigger terms are critical for
facilitating the integration of information between the source
and matched retrieved tweets.
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TABLE V
AVERAGE RESULTS VARYING THE PLACING POSITIONS OF TRIGGERS

2) Varying the Position of Trigger Terms: In the previ-
ous experiments, the trigger term was empirically inserted
between the source and retrieved tweets. We are then interested
in how the varying placement positions affect in the NLU
learning outcome. The overall average results across all the
tasks are illustrated in Table V. We utilize the terminology
“front,” “middle,” “end,” and “all” to denote different trigger
placements. Expressly, “front” signifies the insertion of trigger
terms before all the tweets, “middle” refers to the placement
of trigger terms between the source and retrieved tweets, and
“end” represents the concatenation of trigger terms at the
end. “All” denotes the including of trigger terms in all of
the positions above. “No trigger” indicates that source and
retrieved tweets are concatenated directly without triggers.

Table V shows that trigger terms placed at the front or
middle of tweets effectively facilitate information integration.
In contrast, trigger terms placed at the end are generally
unhelpful. It is intuitive why trigger terms in the middle
produce the best results—their position provides explicit cues
for connecting the source and retrieving information, acting
as a “bridge” between the two. Trigger terms at the front also
help, as they prime the language model to make a connection.
However, when placing the trigger terms at the end, the hint of
such a “connection” may be weaker. A possible explanation for
this phenomenon is that placing trigger terms at the end may
interfere with the natural sentence structure and disrupt the
model’s understanding of the input. The models are trained on
data where relevant information is usually close to each other,
which can bias the models to favor attending more strongly to
adjacent or near-adjacent parts of the input. Therefore, placing
the trigger terms at the end could cause the model to focus on
resolving the unexpected input structure rather than integrating
the source and retrieving information.

3) Varying Number of Retrieved Tweets: We have analyzed
the effect of trigger terms in fusing source and retrieved
tweets. Then, we center on the retrieved tweets and examine
how the number of retrieved tweets affects the performance.
Fig. 5 shows the all-task average results, where “#Enc.+N”
indicates top-N retrieved tweets are selected to concretize the
context. We exclude the sarcasm dataset for averaging due to
its different trends and will discuss it later.

The findings presented in Fig. 5 suggest that augmenting
the model’s input with more contextual information generally
enhances its NLU capabilities. However, for several reasons
below, the marginal benefits of adding more text to the input
gradually diminish with a continuous increase in the retrieved

Fig. 5. Average results on varying the number of retrieved tweets, excluding
the sarcasm dataset because of its different trends (to be discussed separately).

TABLE VI
SLOPE OF LINEAR LEAST SQUARES REGRESSION WITH THE NUMBER

OF RETRIEVED TWEETS AS THE INDEPENDENT VARIABLE AND TASK
PERFORMANCE AS THE DEPENDENT VARIABLE: COEFFICIENTS

SCALED UP BY 1000 FOR CLARITY

tweet number for use. 1) Redundancy: Concatenating multiple
texts that revolve around the same topic may lead to redun-
dancy in the input. This redundancy could limit the marginal
utility of including the richer context in the input, since the
model may not obtain additional insights from repeatedly
processing similar contents. 2) Noise: Adding more tweets to
the input may introduce noise, as only part of the information
may be task-relevant. This noise can hinder the model in
identifying and concentrating on the most crucial information,
thereby impeding performance gains. 3) Model Capacity: The
capacity of a language model, which is determined by its
architecture (e.g., number of layers, hidden units, and self-
attention heads), may constrain its performance; even when
more information is provided to the model by concatenating
additional texts, the model may need the capacity to utilize
this information to enhance its performance effectively.

To probe into the impact of the retrieved tweet number on
individual tasks, we analyzed the slope of linear least squares
while varying the number of retrieved tweets concerning task
performance. The results are presented in Table VI. Aside
from the sarcasm task, BART and RoBERTa typically exhibit
performance gains, as the number of concatenated tweets in
the input increases for various tasks. In contrast, the BERTweet
model does not enjoy such benefits due to its pretraining
on randomly concatenated tweets, which lack coherence and
hinder the model’s ability to comprehend more extended
context. It is consistent with Fig. 5, where BERTweet presents
flattened trends using more than one retrieved tweet, whereas
BART and RoBERTa show a more apparent increasing trend.

Notably, the sarcasm dataset negatively relates to a longer
retrieved context with all backbones. It can be attributed to the
significant class imbalance, as only 24% of the training data
are labeled as sarcasm. This imbalance creates difficulties for
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TABLE VII
THREE CASES FROM EMOTION, STANCE, AND SARCASM DATASETS. THE COLUMNS FROM LEFT TO RIGHT SHOW TASK, SOURCE TWEET (FOR

RETRIEVAL), SEMANTIC-SIMILAR TWEET (RETRIEVED BY SIMCSE), AND TOPIC-RELATED TWEET (RETRIEVED BY #ENCODER)

the model in making accurate predictions, particularly under
noisy conditions when concatenating more retrieved tweets.

C. Qualitative Analysis

We have quantitatively shown how HICL benefits from
using trigger terms and retrieved tweets. Below, we qualita-
tively analyze some outputs of HICL to provide more insight
into how it manages NLU learning on social media.

1) Trigger Terms: We analyzed the Euclidean distance
between the embeddings of trigger terms and all other tokens
in the model vocabulary. Our findings indicate that trigger
terms exhibit relatively smaller Euclidean distance and, thus,
closer embedding similarity to the [mask], [pad], and [unk]
tokens with respect to all other tokens in the vocabulary.

These special tokens, [mask], [pad], and [unk], have diffuse
and indistinct semantic properties, as they function primarily
as placeholders rather than conveyors of specific semantic
content. Analogously, we posit that trigger terms improving
model performance are likely to have similarly indistinct and
diffuse semantic representations, as they act as placeholders
or “signal” tokens, conveying information about the structural
or intentional properties of the input rather than embedding
precise semantic content. The semantic indeterminacy of these
trigger terms may allow for a more flexible interpretation
of the surrounding context, and their use as placeholding
signals would further provide the model with useful structural
information to improve downstream predictions. These results
suggest why trigger terms are helpful in HICL design through
a qualitative lens.

2) Retrieved Tweets: For the usefulness of #Encoder-
retrieved tweets, we present some cases in Table VII to
illustrate how it benefits social media NLU. For instance,
the “home alone” in the first-row tweet is a movie’s name,
which may mislead the emotion detection model in predicting
a negative emotion. #Encoder can connect it with other movie
tweets through hashtag “#MovieTrivia” to help NLU models
cognize movie names to avoid errors in task tackling. Without
such capability, SimCSE retrieves a tweet with similar words
and offered limited help to make sense of movie names.

By qualitatively analyzing many cases, we find SimCSE
tends to find tweets with similar words and sometimes cannot
provide much extra information. On the contrary, #Encoder
can retrieve topic-related tweets, which may offer a comple-

mentary perspective to gain topic-level knowledge for better
NLU.

VI. CONCLUSION

We have proposed an HICL framework with a pretrained
#Encoder based on hashtags to retrieve topic-related social
media posts, which are combined with the source input for
context enriching via gradient-optimized trigger terms for
task-specific fine-tuning. #Encoder is pretrained on 179 M
hashtagged tweets using contrastive learning, enabling it to
associate tweets with matching hashtags and differentiate
those with divergent topics. We implemented HICL with
a #Database of 45 M hashtag-grouped tweets, allowing
#Encoder to acquire and integrate context with triggers in task-
specific fine-tuning.

We conducted experiments on seven widely used Twit-
ter benchmark datasets to evaluate #Encoder and HICL’s
effectiveness. Our results indicate that HICL significantly
enhances the performance of bidirectional language models,
such as BART, RoBERTa, and BERTweet, by incorporating the
top-retrieved tweets from #Encoder. In addition, we found that
incorporating trigger terms between the source and retrieved
tweets can improve overall performance, suggesting that trig-
ger terms facilitate effective information integration.

Through a quantitative analysis of trigger terms, we have
demonstrated that even a single trigger can positively influence
downstream tasks. Further investigation revealed that trigger
terms at the beginning or middle of sentences contribute to
effective information integration, whereas those positioned at
the end of sentences are generally less beneficial. Moreover,
supplementing the model with additional context improves lan-
guage comprehension abilities, although the marginal benefits
decrease as more information is retrieved.

Despite the promising results of the HICL framework,
it presents several limitations requiring future research.

First, our pretraining corpus relies on abundant user-
annotated hashtags, which lack quality assurance. In addition,
hashtag frequency exhibits a long-tail distribution, leading to
class imbalance challenges. Investigating automatic methods
to create a high-quality pretraining corpus could be valuable.

Second, our retrieval method utilizes a large #Database
with 45 M tweets and requires 30 ms for retrieval on an Intel
Xeon Gold 6248R CPU. Corpus distillation techniques, such
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as clustering and indexing, could improve retrieval efficiency
while maintaining acceptable performance levels.

Third, the HICL framework and #Encoder do not enforce
semantic consistency during retrieval. Although our experi-
ments have validated the effectiveness of the proposed frame-
work, extra efforts in selecting the optimal context through
reranking algorithms can allow more performance gain and
provide a better solution to the data-sparsity challenge.
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