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Automated code completion, aiming at generating subsequent tokens from unfinished code, has significantly
benefited from recent progress in pre-trained Large Language Models (LLMs). However, these models often
suffer from coherence issues and hallucinations when dealing with complex code logic or extrapolating beyond
their training data. Existing Retrieval Augmented Generation (RAG) techniques partially address these issues
by retrieving relevant code with a separate encoding model where the retrieved snippet serves as contextual
reference for code completion. However, their retrieval scope is subject to a singular perspective defined by
the encoding model, which largely overlooks the complexity and diversity inherent in code semantics. To
address this limitation, we propose ProCC, a code completion framework leveraging prompt engineering and
the contextual multi-armed bandits algorithm to flexibly incorporate and adapt to multiple perspectives of
code. ProCC first employs a prompt-based multi-retriever system which crafts prompt templates to elicit LLM
knowledge to understand code semantics with multiple retrieval perspectives. Then, it adopts the adaptive
retrieval selection algorithm to incorporate code similarity into the decision-making process to determine the
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most suitable retrieval perspective for the LLM to complete the code. Experimental results demonstrate that
ProCC outperforms a widely-studied code completion technique RepoCoder by 7.92% on the public benchmark
CCEval, 3.19% in HumanEval-Infilling, 2.80% on our collected open-source benchmark suite, and 4.48% on the
private-domain benchmark suite collected from Kuaishou Technology in terms of Exact Match. ProCC also
allows augmenting fine-tuned techniques in a plug-and-play manner, yielding an averaged 6.5% improvement
over the fine-tuned model.
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1 Introduction
Automated code completion aims at generating subsequent code tokens based on the ongoing

incomplete code segments [19, 37, 45, 47, 56, 58, 59, 67, 69, 85]. Typically, it can significantly en-
hance the efficiency of software developers and reduce operating costs for corporations [36, 73].
Therefore, automated code completion has become widely incorporated into Integrated Devel-
opment Environments (IDEs). For example, Microsoft’s Pyright [49], a static type-checking tool,
powers the auto-completion feature for Python in VScode. Conventional automated code com-
pletion techniques generally rely on program analysis to generate syntax-conforming comple-
tions [19, 47, 56]. However, they are often argued to be limited in capturing code semantics to
generate line-level completions for real-world development [73]. To alleviate such issues, many
existing techniques [37, 58, 59, 69] adopt statistical or corpus-based techniques like N-Gram, Deep
Neural Network [33] (DNN), Recurrent Neural Network [64] (RNN), and Long Short-Term Mem-
ory [20] (LSTM) models to learn program semantics. However, they do not easily generalize across
domains and require expensive data collection, annotation, and training efforts to adapt to new
tasks, limiting their real-world applicability.

Recently, by leveraging pre-training, large language models (LLMs) have been largely adopted for
code and shown capable of varied tasks including code completion [26, 39, 62, 66, 74, 77, 81]. These
models, trained on large code corpora with trillions of tokens, can encode code knowledge and
programming patterns into their large-scale parameters, remarkably outperforming the existing
non-pre-trained techniques in both code understanding and generation tasks [83]. For instance,
Qwen2.5-Coder-7B [22] is capable of completing 61.6% of the text-to-code programming problems
upon the HumanEval [5] benchmark with no additional adaptation. However, when faced with
complex code logic or required to extrapolate beyond their training data, LLMs can struggle
with incoherent or repetitive generations [70]. They may also hallucinate plausible but incorrect
outputs [41, 48]. One potential solution to these issues is fine-tuning [68, 82, 86], i.e., adapting a pre-
trained language model to the code completion task by incrementally updating its parameters on the
task-oriented dataset. However, this proves to be a costly endeavor both in terms of computational
resources and time, making it impractical for many applications. For instance, fine-tuning the
smallest LLaMA model typically requires a GPU workstation with eight A100 [9, 80]. On the other
hand, the Retrieval Augmented Generation [35] (RAG) techniques offer a more feasible solution.
Specifically, for an RAG-based technique, given an input, related information is retrieved from a
pre-defined knowledge source and then used to assist the generation process. This retrieval process
enables models to generate outputs that are coherent and relevant to the given context without the
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need for expensive fine-tuning. Accordingly, multiple code completion techniques [18, 43, 45, 67, 85]
have been proposed to leverage the power of RAG and have shown promising performance.
Despite the promising results shown in the RAG-based techniques, they are still somewhat

limited. First, they depend on extrinsic encoding models. Existing techniques construct code
representations for retrieval mainly by encoding the code with auxiliary models, which requires
additional efforts for training the encoding model. Second, the representational scope of these
techniques is subject to a singular perspective on lexical semantics defined by the corresponding
encoding model, i.e., they fail to account for the complexity and diversity inherent in code semantics.
To illustrate, for a complex missing line with rich context, only offering lexical semantics by the
incomplete code is unlikely to fully represent the code intention. Under such a circumstance, we
should retrieve code snippets that are most likely to produce analogous content, i.e., adopting
more encoding perspectives other than lexical semantics only. However, existing systems based
on pre-defined encoding models require substantially additional training to encode the code from
more perspectives, making it impractical for the existing RAG-based techniques. Therefore, it is
essential to adopt a flexible retrieval approach to code context with multiple perspectives for code
completion.

In this paper, we propose ProCC, a code completion framework leveraging prompt engineering
and the contextual multi-armed bandit algorithm [38] for the first time to flexibly incorporate
and adapt to multiple perspectives of code. ProCC consists of two components—the prompt-based
multi-retriever system and the adaptive retrieval selection algorithm. In particular, the prompt-based
multi-retriever system provides diverse perspectives of code while enabling flexible implementation
and seamless integration with existing retrieval systems. Instead of creating a series of new em-
bedding models with significant extra cost, we adopt prompt engineering which advances LLMs
to understand code semantics via following human preferences and instructions [24, 27, 76] such
that we can access code semantics from different lenses for more comprehensive retrieval in a
cost-effective manner. More specifically, our prompt-based multi-retriever system examines three
perspectives that are prominently used in RAG-based techniques, namely lexical semantics [45],
hypothetical line [85], and code summarization [78]. We craft the prompt “Embedding the following
code snippets: [code]” to encode the lexical semantics, and “<PRE> [Prefix] <SUF> [Suffix] <MID>”
to generate the hypothetical line serving as its representation, and “This code snippets of [code]
means” to obtain the code summarization. To illustrate, “[code]” refers to the unfinished code,
“[Prefix]” and “[Suffix]” represent the code snippets before and after the target insertion point. As
our prompt-based multi-retriever system presents three distinct perspectives, directly concatenating
all three retrievals with input may overwhelm the completion model with misaligned perspectives.
To optimally select retrieved information with respect to the complex nature of incomplete code, we
adopt the adaptive retrieval selection algorithm based on a contextual multi-armed bandit algorithm
where the different retrieval perspectives are seen as the “arms” of the bandit and the goal is
to identify which arm (i.e., perspective) yields the highest reward or performance for individual
incomplete code, conditioned on the similarity between retrieved snippets and incomplete code.
Accordingly, ProCC adapts to the dynamic nature of code completion, handles the uncertainty, and
reliably determines the most suitable perspective for the LLMs to utilize in the code completion
process.

To evaluate ProCC, we have formulated the following three research questions:
RQ1: How does ProCC perform compared with state-of-the-art code completion techniques?
RQ2: How do individual components of ProCC impact the performance?
RQ3: How does ProCC perform compared with fine-tuning? Can it further improve a fine-tuned
model?
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We evaluate the effectiveness of ProCC using the state-of-the-art (SOTA) models DeepSeek-
Coder [17] and Qwen2.5-Coder [22] as the base models on two widely-adopted benchmarks,
CrossCodeEval (CCEval) [7] and HumanEval-Infilling [12]. Meanwhile, we collected 20 open-
source repositories to form our ProCC-Infilling benchmark, and 58 private-domain repositories
from Kuaishou Technology, a billion-user e-commerce company, for extensive evaluation. We also
evaluate each component of ProCC and investigate how ProCC impacts the performance of the
fine-tuned models. Our evaluation results indicate that ProCC outperforms the widely-studied
code completion technique RepoCoder [85] by 7.92% on the CCEval benchmark, 3.19% on the
HumanEval-Infilling benchmark, 2.80% on our collected ProCC-Infilling open-source benchmark
suite, and 4.48% on the Kuaishou private-domain benchmark suite in terms of Exact Match using
DeepSeek-Coder-6.7B. Additionally, our evaluation results indicate that our single retrievers are
robust across instructions and comparable to external encoders. Meanwhile, designing multiple
retrievers to elicit distinct interpretations enables us to obtain a wider range of code semantics.
Furthermore, incorporating the varied perspectives enriches the multifaceted representations,
improving the code completion effectiveness. Finally, ProCC also allows augmenting the fine-tuned
techniques in a plug-and-play manner, yielding an average 6.5% improvement over our studied
fine-tuned model.

In summary, the contributions of this paper are listed as follows:
• Novelty. This paper opens up a new direction for multi-perspective code representation in
retrieval-augmented code completion. We are the first to show incorporating prompt engineering
and contextual multi-armed bandit can adapt to the most suitable code perspective without
needing extra encoders. This provides a more comprehensive and adjustable encoding strategy
compared to rigid representations in prior work [25, 45, 65].
• Technique.We propose and implement ProCC with two components, the prompt-based multi-
retriever system and the adaptive retrieval selection algorithm. The prompt-based multi-retriever
system examines three essential perspectives via crafted instructions for code semantics. The
adaptive retrieval selection algorithm dynamically chooses the most relevant perspective based
on incomplete code context to provide the optimal contextual support for code completion.
• Evaluation.We perform an extensive evaluation on ProCC against the SOTA techniques. ProCC
outperforms the widely-studied technique RepoCoder [85] by 7.92% on the CCEval benchmark,
3.19% on the HumanEval-Infilling benchmark, 2.80% on the ProCC-Infilling benchmark, and 4.48%
on the Kuaishou private-domain benchmark in terms of Exact Match. We also show that our
single retrievers are robust across instructions and comparable to external encoders. Meanwhile,
designing instructions to elicit distinct semantic interpretations could obtain a wider range of
code semantics. Furthermore, incorporating the varied perspectives enriches the multifaceted
representations for improving the code completion effectiveness. Moreover, applying ProCC to
fine-tuned models results in a 6.5% gain.

2 Background and Motivation
2.1 Code Completion

Recent natural language processing (NLP) breakthroughs have facilitated large pre-trained lan-
guage models for the code completion task [52, 77, 84]. In general, LLMs are built on the Transformer
architecture and pre-trained on large-scale text corpora using self-attention mechanisms [72]. LLMs
efficiently model contextual relationships and facilitate the learning of general linguistic interpreta-
tions. In particular, LLMs exhibit substantial model size and volume of training data. For instance,
the smallest version of the LLaMA2 model [71], launched in 2023, enables 7 billion parameters and
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is trained on 2 trillion tokens. LLMs predominantly adopt a decoder-only architecture, in which
they aim to auto-regressively generate tokens based on all previously generated ones.

The training loss for typical LLMs, depicted in Equation 1, minimizes the negative log probability
for the ground truth token 𝑥𝑖 :

L = −
∑︁
𝑖

log 𝑃𝑖 (𝑥𝑖 |𝑥1, 𝑥2, ..., 𝑥𝑖−1;𝜃 ) (1)

where the conditional probability 𝑃 is modeled using a pre-trained language model M with
parameters 𝜃 . These parameters are optimized by applying the gradient descent algorithms [63]
with respect to the input sequence 𝑥1, 𝑥2, ..., 𝑥𝑖−1 preceding the given token 𝑥𝑖 .

In particular, emerging code LLMs such as InCoder [12], StarCoder [39], Code Llama [62],
DeepSeek-Coder [17], and Qwen2.5-Coder [22] are trained using the Fill-in-the-Middle (FIM) ob-
jective [4]. This technique involves randomly rearranging parts of a training sequence by moving
them to the end and then generating predictions auto-regressively based on the reordered sequence.
The pre-training loss for FIM remains consistent with Equation 1. Specifically for the code comple-
tion task, during inference, FIM leverages additional surrounding context by taking a prefix and
suffix around the insertion point and generating the missing middle code tokens. Formally, the
goal is to generate the token 𝑥𝑖 that minimizes the negative log likelihood based on prefix tokens
[𝑃𝑟𝑒 𝑓 𝑖𝑥] = 𝑥1, ..., 𝑥𝑖−1 and suffix tokens [𝑆𝑢𝑓 𝑓 𝑖𝑥] = 𝑥𝑖+1, ..., 𝑥 𝑗 before and after the insertion point:

L = − log 𝑃 (𝑥𝑖 | [𝑃𝑟𝑒 𝑓 𝑖𝑥], [𝑆𝑢𝑓 𝑓 𝑖𝑥];𝜃 ) (2)

For abbreviation,𝑋 = [𝑃𝑟𝑒 𝑓 𝑖𝑥], [𝑆𝑢𝑓 𝑓 𝑖𝑥] is denoted as the full unfinished code. Unlike conventional
text generation models that are only conditional on preceding tokens, as formulated in Equation
1, access to suffix code is critical and practical for code completion. As a result, these infilling
models largely outperform previous models in code completion. For instance, Qwen2.5-Coder-7B
achieves an impressive pass@1 rate of 86.2% on the infilling benchmark [12], surpassing previous
non-infilling SOTA techniques by a significant margin.

While LLMs have shown impressive capabilities on code completion tasks, they still face limita-
tions when dealing with complex logic or are required to generalize beyond their training data [70].
They may produce incoherent text when the generation requires long-term reasoning or even
generate hallucinated outputs that seem plausible but do not actually reflect valid behaviors [41, 48].

2.2 Retrieval-Augmented Generation
To address challenges on hallucination and enhance the production of coherent code, researchers

have proposed that the models should be capable of accessing external memory or knowledge
through information retrieval techniques, a.k.a. retrieval augmented generation (RAG) [35]. The
RAG process can be formulated as follows. First, the code database is split into snippets𝐶 = 𝑐1, 𝑐2, ...,
which are encoded by the retrieval model R to derive their representations ℎ𝑅𝑐1 , ℎ

𝑅
𝑐2 , ... and form the

corresponding database 𝐷 . Second, for an incomplete snippet 𝑋 , the retrieval model R encodes it as
ℎ𝑅
�̂�
to retrieve relevant snippets𝐶𝑅 based on distance functions between ℎ𝑅

�̂�
and the representations

ℎ𝑅𝑐1 , ℎ
𝑅
𝑐2 , ... stored in database 𝐷 . The retrieval process can be described as:

𝑝𝑅 (𝐶 |𝑥1, 𝑥2, ..., 𝑥𝑖−1, 𝐷) (3)

The retrieved context, denoted as 𝐶𝑅 , along with unfinished code 𝑋 are then consumed by the
model to conduct the code completion:

𝑝𝜃 (𝑥𝑖 |𝑋,𝐶𝑅) (4)
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Consequently, the retrieved code snippets can be perceived as supplemental knowledge and inter-
preted by the LLMs to facilitate coherent generation.
There are two primary strategies for RAG—per-token and per-output [35]. In per-token RAG

(RAG-token), distinct code snippets are assigned to individual tokens, whereby each new token
generation requires the retrieval of a new code snippet. Therefore, this strategy escalates the
retrieval and the encoding demands proportionally with the length of the generated sequence,
leading to increased computational time. Moreover, the necessity for accessing each stage of token
generation constrains its integration with closed-source systems, such as GPT [53], which operate as
black boxes, i.e., exposing no intermediate generations. In contrast, per-output RAG (RAG-sequence)
leverages the same code snippet to conduct the generation of the entire sequence, necessitating
only one retrieval phase prior to generation. This strategy not only enhances efficiency of the
retrieval process but also facilitates a more streamlined integration into the existing frameworks.
Consequently, our subsequent discussions and analyses will be exclusively concentrated on the
per-output RAG.
Following the standard RAG-sequence framework, the pioneering work ReACC [45] utilizes a

dual-encoder model to function as a code-to-code search retriever and employs an auto-regressive
language model to execute code completion. RepoCoder [85] suggests refining the retrieval process
by iteratively utilizing the most recently generated content to retrieve information.
More complex RAG-based techniques have been recently proposed. GraphCoder [43] utilizes

a code context graph (CCG), which includes control-flow, data-flow, and control-dependence
relationships between code statements, to understand the context of the completion target. It
further incorporates decay-with-distance subgraph edit distance to refine the CCG retrieval results.
Similarly, FT2Ra [18] draws inspiration from the fine-tuning process and underscores the role of
delta logits in boosting model predictions. It introduces a retrieval paradigm with a learning rate
and multi-epoch retrievals that mimics fine-tuning. Despite the promising performance of these
complex RAG-based techniques, they face significant challenges in integrating widely-employed
retrieval acceleration frameworks like FAISS [60] and generation optimizations like vLLM [31].
As a result, they require substantial implementation effort for time-constraint and real-time code
completion task. More detailed analysis will be provided in Section 4.2.1.

2.3 Motivation
As discussed in Section 1, the existing RAG-based techniques rely on external encoding models

and are constrained to a singular perspective defined by the corresponding encoding model. They
fail to account for the complexity and diversity inherent in code semantics.

Figure 1 presents three distinct code completion scenarios that illustarte the importance of differ-
ent retrieval perspectives. In Scenario 1, Retriever 1 provides the relationship between “sslContext”
and “SSLContext.getInstance()” which gives relevant context to assist the generator in completing
the line. While Retriever 2 also hints “sslContext()”, it is insufficient to bridge the gap for completing
the “SSLContext.getDefault()”. Conversely, in Scenario 2, Retriever 2 presents the list of parameters,
i.e., “ResourceURL, UriPath, IndexFile, DefaultMediaType, DefaultCharset”, that should be included
in the function “createServlet()”. This can be easily integrated by the generator to complete the
return line “return new AssetServlet(resourcePath, uriPath, indexFile, defaultMediaType, Stan-
dardCharsets.UTF_8);”, whereas Retriever 1 presents noisy context and hinders the correct code
completion. In Scenario 3, Retriever 2 retrieves a code segment that closely matches the source
code in terms of lexicon. Note that this segment includes the line “sessionFactory = null;” which
potentially misleads the generator towards an erroneous completion context. To address such
an issue, Retriever 1 operates from a summary perspective, identifying segments with similar
functionality to stopping and shutting down the “Factory” as in the source code which intends to
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LLM Generation

Retriever 1: Hypothetic Line Unfinished Code
private void 
addSSLConfiguration(ClientBuilder 
clientBuilder) {
    FileInputStream fin = null;
    try {
    if (systemSSL) {

[FILL_IN]
    }
    else if (trustStoreFileName != null) {
  ...

clientBuilder.hostnameVerifie
r(new HostnameVerifier();

private PoolingHttpClientConnectionManager 
createCustomSslCM() {

FileInputStream fin = null;
try {

SSLContext sslContext = 
SSLContext.getInstance(PROTOCOL_S
CHEME);
KeyStore sslKeyStore = 
KeyStore.getInstance(…);
...

Retrieval Augmented Generation

clientBuilder.sslContext(
SSLContext.getDefault()); 

Retriever 2: Lexical Semantics
public EurekaJerseyClientBuilder 
withDecoderWrapper(DecoderWrapper 
decoderWrapper) {

this.decoderWrapper = decoderWrapper;
return this;

}
public EurekaJerseyClientBuilder 
withCustomSSL(SSLContext sslContext) {

this.sslContext = sslContext;
...

Retrieval Augmented Generation

clientBuilder.sslContext();

Scenario 1: Retriever based on the hypothetic line contributes to the correct completion 

LLM Generation

Retriever 1: Hypothetic Line Unfinished Code
...
public String getDefaultMediaType() {

return defaultMediaType;
}

protected AssetServlet createServlet() {
[FILL_IN]

}
...

return new AssetServlet(resourcePath, 
indexFile, StandardCharsets.UTF_8, 
defaultMediaType);

...
assertThat(servletPath).isEqualTo("/what/*
");

assertThat(servlet.getIndexFile()).isEqual
To("index.txt");

assertThat(servlet.getResourceURL()).isEqu
alTo(normalize("/json"));
...

Retrieval Augmented Generation
return new AssetServlet(resourcePath, 
indexFile, StandardCharsets.UTF_8, 
defaultMediaType);

Retriever 2: Lexical Semantics
public URL getResourceURL() {

...
public String getUriPath() {

...
public String getIndexFile() {

...
public String getDefaultMediaType() {

...
public Charset getDefaultCharset() {

...

Retrieval Augmented Generation
return new AssetServlet(resourcePath, 
uriPath, indexFile, defaultMediaType, 
StandardCharsets.UTF_8);

Scenario 2: Retriever based on the lexical context contributes to the correct completion 

LLM Generation

Retriever 1: Summary Unfinished Code
...
@AfterEach 
void tearDown() { 
    if (sessionFactory != null) { 

[FILL_IN]
}
...

sessionFactory = null;

...
void closesTheFactoryOnStopping() throws 
Exception { 

verify(factory).close(); 
}
...

Retrieval Augmented Generation
sessionFactory.close();

Retriever 2: Lexical Semantics
...
void tearDown() {
    if (sessionFactory != null) {

sessionFactory = null;
    }
...

Retrieval Augmented Generation

sessionFactory = null;

Scenario 3: Retriever based on the summary contributes to the correct completion 

Fig. 1. Code completion scenarios demonstrating the contextual dependence for optimal retrievals. Red
indicates the misleading information, Green represents the helpful hint.

“tearDown” the “sessionFactory”. The hint “verify(factory).close();” can properly lead the generator
to correctly manage the closure of the “sessionFactory”.
These scenarios indicate the need to retrieve the code from multiple perspectives and select

optimal retrieval. Thus, the complex nature of incomplete code poses the need for adjustable
encoding perspectives to cover as much code semantics as possible. However, existing systems rely
on pre-defined encoding models and require substantially additional training to encode the code
from more perspectives. Thus they are limited in adjusting the retrieval perspective to cope with
multifaceted code semantics. Accordingly, we can infer that it is essential for a flexible retrieval
approach to adapt to code context with multiple perspectives for code completion.
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In this paper, we attempt to address the limitations of prior code completion techniques by
taking a more flexible approach based on prompt-based multi-retriever system and adaptive retrieval
selection algorithm (as illustrated later). First, we leverage prompt engineering techniques to elicit a
deeper, multi-faceted interpretation of the incomplete code based on LLM. By crafting prompts that
guide the LLM to focus on multiple perspectives, we can expand the code representation beyond
lexical features with no extra cost to train additional encoding models. This allows us to retrieve
code snippets that can hint the completion even upon lexical dissimilarity. Second, we could attempt
to employ adaptive selection to choose the most suitable retrieved results, i.e., dynamically making
decisions from different retrieved information based on the specifics of the semantics of the target
incomplete code snippet.

Embedding the following 
code snippets:  [code]

Prompt for lexical semantics Sim. CodeDatabaseLLM

Sim. Retri.

<PRE> [Prefix] <SUF> 
[Suffix] <MID>

Prompt for hypo. line

Gen.

[Code]
private void
addSSL(…){

if (…){

...

Augmented 
Code

clientBuilder.host
nameVerifier(new
HostnameVerifier();

Hypo. line

…

…

…

…

Avg. Embd.

Sim. CodeDatabase

Sim. Retri.

Avg. Embd.

Sim.LLM

…

…

…

…Generation

clientBuilder.sslContext(
SSLContext.getDefault()); 

[FILL_IN]} 

4

1

2

SSLContext.
getInstance

5 C-MAB Code Pair

This code snippet of 
[code] means

Prompt for summarization

Gen. This code snippet is 
adding SSL config to 
a ClientBuilder ...

Summarization Sim. CodeDatabase

Sim. Retri.

Avg. Embd.3

Prompt-based multi-retriever system 

Adaptive retrieval selection algorithmRetrieval Augmented Generation

Selected 
Code

Fig. 2. The ProCC framework. The prompt-based multi-retriever system encodes the lexical semantics ①,
hypothetical line ②, and code summarization ③ to derive multi-perspective representations. The adaptive
retrieval selection algorithm ④ makes decisions based on code semantics similarities and selects the optimal
context from retrievals. Finally, the selected code is concatenated with the unfinished code for augmented
generation ⑤.

3 Approach
3.1 Overview
In this paper, we introduce ProCC, a novel framework leveraging prompt engineering and the

contextual multi-armed bandit algorithm [38] to select suitable perspectives for code completion.
As shown in Figure 2, ProCC adheres to the Retrieval-Augmented Generation (RAG) framework,
as outlined in Equation 3 (the retrieval phase) and Equation 4 (the augmented generation phase).
ProCC consists of two components—the prompt-based multi-retriever system and the adaptive
retrieval selection algorithm. In particular, by adopting prompt engineering, the prompt-based multi-
retriever system encodes the lexical semantics, hypothetical line, and code summarization to derive
multi-perspective representations. More specifically, we employ three prompt retrieval models R1,
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R2, R3 that encode the lexical semantics (①Lexical Retri.), generate a hypothetical line (②Completion
Retri.), and produce the code summarization (③Summarization Retri.) respectively. This allows
retrieving relevant snippets𝐶𝑅1 ,𝐶𝑅2 , and𝐶𝑅3 from the database based on representation similarities.
Moreover, we use the contextual multi-armed bandit algorithm (④) to make decisions based on
code semantics and select the optimal context from retrieved 𝐶𝑅1 ,𝐶𝑅2 , and 𝐶𝑅3 . Note that we are
the first to introduce such an adaptive retrieval selection mechanism for code completion. The
selected retrieval, for example, 𝐶𝑅1 , along with unfinished code 𝑋 is then consumed by the model
to perform the code completion, i.e. 𝑃 (𝑥1 |𝑋,𝐶𝑅1 ;𝜃 ) (⑤).

3.2 Prompt-based Multi-Retriever System
We formulate the multi-retriever in a unified paradigm by prompting the LLMs with designed

prompt templates (or prompts for short for the rest of the paper). The construction of the retriever in
the existing techniques is performed by encoding the code using auxiliary models, which requires
additional resources for training the encoding model. By leveraging the LLM knowledge and
crafting prompts, we can seamlessly represent code semantics from diverse perspectives with no
need for extra models. This unified paradigm offers the advantage of flexibility and efficiency,
thereby simplifying the process of constructing a multi-retriever system. Formally, given a language
modelM, incomplete snippet 𝑋 , and a crafted prompt 𝑃𝑟𝑜𝑚𝑝𝑡 , we execute the model to process
the input as Equation 5:

𝑂𝑢𝑡 =M(𝑃𝑟𝑜𝑚𝑝𝑡 ;𝑋 ) (5)
We then extract the corresponding hidden states ℎ of the output 𝑂𝑢𝑡 as the representation for the
target perspective of the code 𝑋 . Finally, by crafting the prompts towards the lexical semantics,
hypothetical line, and code summarization perspectives, we construct the following three retrievers.

Lexical Semantics. Incorporating lexical semantics into the retrieval process allows us to fetch
relevant code snippets in terms of lexical semantics. Conventional techniques leverage contrastive
pre-training to learn the code similarity [25, 45, 65]. For example, ContraCode [25] employs pre-
training of an LLM to differentiate functionally similar program variants against non-equivalent
distractors. However, in the domain of code completion, the code is typically unfinished and may
not express coherent or consistent meaning, which is significantly different from the training
samples of these contrastive models. Note that for code LLMs, as in Equation 2, they are pre-trained
to auto-regressively generate the next token and complete the code. Hence, we deeply explore the
knowledge embedded within LLMs by crafting prompts to encode incomplete snippets, as in Figure
2 ①. In particular, we craft the prompt, “Embedding the following code snippets: [code]” to encode
the lexical semantics, where the “[code]” refers to the unfinished code. Then we extract the last
hidden layer for the whole prompt and average them as the representation for lexical semantics. We
name this retriever Lexical Retri., which indicates that, despite its semantic retrieval intentions, its
effective functionality is more aligned with lexical-level processing. This phenomenon largely stems
from using the same model for both generation and embedding. Although this base model excels in
generation, its direct application as an embedding model tends to prioritize textual information over
semantic context. To address this, we attempt to design the prompts that could guide the model to
focus on more in-depth contexts. This reclassification of lexical semantics helps understanding the
capabilities and scope of different retrieval methodologies.

Hypothetical Line. Hypothetical line refers to the potential line that can complete the code,
motivated by the concept of Hypothetical Document Embeddings (HyDE) [13]. In HyDE, a query
question is passed into the model and guided to “write a document that answers the question”, lead-
ing to the generation of a hypothetical document. This hypothetical document is then transformed
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into an embedding in a vector space, enabling database search for retrieval. In our prompt-based
multi-retriever system, as illustrated in Figure 2 ②, we use the prompt “<PRE> [Prefix] <SUF> [Suf-
fix] <MID>” to generate the hypothetical line that acts as its representation where “[Prefix]” and
“[Suffix]” represent the code snippets before and after the target insertion point respectively. Note
that this structure is consistent with the pre-training format for Code Llama. For the code snippet
𝐶 , we mask the line and input the surrounding code into the modelM to generate the hypothetical
line, storing the corresponding embedding to build the retrieval database 𝐷 . For each incomplete
code snippet 𝑋 , we follow the same process to generate its embedding for database search. Em-
ploying hypothetical line representations provides a critical benefit for retrieval—enriching the
representation of incomplete code beyond the surrounding context. Generating embeddings solely
from the available lexical semantics is prone to lack important semantics and patterns contained
in the missing line itself. On the other hand, by prompting the model to generate a hypothetical
line, the produced text exhibits relevant attributes like variable names, data types, and function
signatures even when the lexical semantics alone does not offer such information. In other words,
if two incomplete snippets generate hypothetical completions with similar or analogous variable
names, function calls, etc., their overall functionality can be likely similar. This facilitates retrieving
code snippet with conceptually relevant but lexically dissimilar information to the incomplete code.
We name this retriever Completion Retri..

Code Summarization. Code summarization allows capturing the overall functionality and the
purpose of a code snippet in natural language. As humans tend to reason about code at a higher
level of abstraction, summarization embeddings allow retrieval to focus on semantic similarity
rather than superficial syntactic matches. Furthermore, natural language summaries provide a
mechanism to inject human preferences into representation learning. This allows retrievals to
better match human judgments of conceptual similarity. In our prompt-based multi-retriever system,
as shown in Figure 2 ③, we use “This code snippet of [code] means” to produce code summarization
and average the summary embeddings as the representation for the code. We name this retriever
Summarization Retri..
In fact, our prompt engineering can be easily extended beyond these perspectives, i.e., it can

readily expand to encode any semantic dimensions of interest, which makes our prompt-based
multi-retriever system potentially robust in the real world.

3.3 Adaptive Retrieval Selection Algorithm
After gathering retrieval information from multiple retrievers, it is essential to determine the

optimal hints that aid code completion. Specifically, given the varied coverage and perspectives
of different retrievers, directly concatenating all of them with the input could cause information
overload and perspective confusion for code completion. Therefore, we aim to dynamically tailor
the selection of the most suitable perspective for incomplete code.

We propose to tackle this perspective selection challenge as a learning problem [50]. The learning
algorithm is presented with an action space that includes lexical semantics, hypothetical line, and
code summarization perspectives. The algorithm’s objective is to identify and select the most fitting
prompt perspective while receiving rewards that reflect the quality of the selected perspective. To
implement this learning approach, we adopt the multi-armed bandit algorithm, which is widely
employed for recommendation systems [15, 28]. Specifically, we use the LinUCB algorithm [6], a
variant of the multi-armed bandit algorithm that takes context into account. LinUCB is widely
used in the multi-armed bandit problem [2, 21, 51]. It allows for effective handling of contextual
information observed as the similarity between retrieved code and incomplete code. LinUCB enables
a trade-off between exploring new options and using what is already known, adapting effectively
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Algorithm 1: adaptive retrieval selection algorithm

Input: 𝛼 ∈ R+, num_arms, feature dimension 𝑑 ∈ N,Training set D,Validation set V, test set T
Output: Trained parameters 𝐴,𝑏 and chosen retrieval for test set

1 Function TrainLinUCB(𝛼, num_arms, 𝑑,V):
2 for 𝑎 = 1 to num_arms do
3 𝐴[𝑎] ← 𝐼𝑑 ⊲ Identity matrix for arm 𝑎

4 𝑏 [𝑎] ← 0𝑑 ⊲ Zero reward vector for arm 𝑎

5 for 𝑡 in V do
6 𝜃𝑡 ← 𝐴−1𝑏

7 for 𝑎 = 1 to num_arms do
8 Retrieve the code from D for arm 𝑎

9 Observe features 𝑥𝑡,𝑎 including cosine and jaccard similarities

10 𝑝𝑡,𝑎 ← 𝜃⊤𝑡 𝑥𝑡,𝑎 + 𝛼
√︃
𝑥⊤𝑡,𝑎𝐴

−1𝑥𝑡,𝑎

11 𝑎𝑡 ← argmax𝑎 𝑝𝑡,𝑎
12 𝑟𝑡 ← 0 ⊲ Initialize reward to 0
13 if action 𝑎𝑡 is an exact match then
14 𝑟𝑡 ← 1 ⊲ Set reward to 1 for exact match

15 𝐴← 𝐴 + 𝑥𝑡,𝑎𝑡 𝑥⊤𝑡,𝑎𝑡
16 𝑏 ← 𝑏 + 𝑥𝑡,𝑎𝑡 𝑟𝑡
17 return 𝐴,𝑏

18 Function SelectRetrieval(𝐴,𝑏, T):
19 𝜃𝑡 ← 𝐴−1𝑏

20 for 𝑎 = 1 to num_arms do
21 Retrieve the code from D for arm 𝑎

22 Observe features 𝑥𝑡,𝑎 including cosine and jaccard similarities
23 𝑝𝑡,𝑎 ← 𝜃⊤𝑡 𝑥𝑡,𝑎

24 𝑎𝑡 ← argmax𝑎 𝑝𝑡,𝑎
25 return 𝑎𝑡

to complex code completion situations. The LinUCB algorithm offers the following advantages: 1)
it enhances decision-making by continuously learning from outcomes and refining the selection
process, and 2) it adapts to different contexts, optimizing performance for each input. As illustrated
in Figure 2 ④, the different retrieval perspectives are seen as the "arms" of LinUCB and the goal is
to identify which arm (i.e., perspective) yields the highest reward for each individual incomplete
code snippet conditioned on the context. We choose the similarity score from each retriever as one
dimension of the context for our LinUCB algorithm. Additionally, we use the Jaccard similarity
between the retrieved snippets and incomplete code as another dimension of the context for our
LinUCB algorithm, following the Jaccard metrics [23] used in RepoCoder [85]. We also set the
Exact Match score as the reward for the LinUCB algorithm where the reward is 1 upon an Exact
Match and 0 otherwise. Note that the algorithm is flexible and can be readily extended to include
additional dimensions, such as other possible retrieval perspectives, techniques or reward metrics.
As a result, the LinUCB algorithm makes informed decisions about the optimal perspective for
each incomplete code snippet.
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𝐴← 𝐴 + 𝑥𝑖,𝑎𝑥⊤𝑖,𝑎
𝑏 ← 𝑏 + 𝑥𝑖,𝑎𝑟𝑖

retrieval = argmax
𝑎

(
𝐴−1𝑏𝑥𝑎

) (6)

For training LinUCB, we first set up the retrieval training set D, the validation setV and test
set in the typical 80/10/10 split manner from the RAG retrieval database. Parameters 𝐴 and 𝑏 are
initialized as the Identity matrix and zero vector for each arm, respectively (Lines 2-4). For each
entry in the validation setV , we extract similar code from the training set D, assess the cosine
and Jaccard similarity features, compute the probability for each arm, and select the arm with
the highest probability (Lines 5-11). Rewards are assigned as 1 if the code retrieved by an arm
facilitates correct code completion; otherwise, the reward is 0. Subsequently, we update the LinUCB
parameters 𝐴 and 𝑏 (Lines 12-16). After training, the updated parameters 𝐴 and 𝑏 are documented
(Line 17). During testing, we follow a similar procedure to retrieve and evaluate code, and select
the best arm based on probability calculations (Lines 19-25).

Specifically, the matrix𝐴, which accumulates the outer products of feature vectors for the samples
𝑖 , is updated as 𝐴 + 𝑥𝑖,𝑎𝑥⊤𝑖,𝑎 , while the vector 𝑏, aggregating the product of rewards and feature
vectors, is updated as 𝑏 + 𝑥𝑖,𝑎𝑟𝑖 . Here, 𝑥 denotes the feature vector of the current arm, incorporating
the Jaccard and cosine similarities between the incomplete code and the retrieval results, 𝑟𝑖 refers
to the reward reflecting the Exact Match result in our situation. Finally, the selected retrieval from
the LinUCB algorithm along with the unfinished code is then consumed by the model to conduct
the code completion (⑤).

4 Evaluation
To evaluate ProCC, we have formulated the following three research questions:
• RQ1: How does ProCC perform compared with state-of-the-art code completion techniques?
• RQ2: How do individual components of ProCC impact the performance?
• RQ3: How does ProCC perform compared with fine-tuning? Can it further improve a fine-tuned
model?

4.1 Experiment Setup
4.1.1 Models. We chose two state-of-the-art code LLMs, DeepSeek-Coder [17], and Qwen2.5-
Coder[22] as the base models for our paper.
• DeepSeek-Coder, released in October 2023, is trained on 2 trillion tokens covering more than
80 programming languages. It features a window size of 16K, supporting project-level code
completion and infilling, and achieves state-of-the-art performance among open code models. In
particular, we use its versions with 1.3B and 6.7B parameters.
• Qwen2.5-Coder, released in September 2024, built on the Qwen2.5 architecture and has been
further trained on a massive dataset of more than 5.5 trillion tokens. It’s one of the current SOTA
open-source code models.We use its version with 7B parameters.

4.1.2 Baselines. We adopt the following baseline techniques for comparison, focusing on code
completion frameworks that can seamlessly integrate with mainstream systems. Techniques that
require retrieving new context for every generated token [30, 67] are not included in our analysis,
as they are not supported by current widely employed LLM systems [32] or inference libraries [31].
Incorporating such techniques would require substantial modifications to the LLM systems and
inference pipelines, making them impractical for real-world deployment and integration with
existing systems.
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• BM25 [55]. BM25 is proposed upon the BM25 ranking algorithm [61], which is one of the
most widely employed retrieval algorithms in the Question and Answering (QA) domain. We
leverage BM25 to search for code similar to the given incomplete code. The retrieved code is
then concatenated with the incomplete code and input into the LLMs for completion.
• ReACC [45]. ReACC, published in ACL2022, employs the vanilla RAG-based framework for
code completion. Since it does not provide complete reproducible encoding models for retrieval,
we implement the framework by using the widely-adopted retrieval model GTE-large [40], which
was released in August 2023.
• RepoCoder [85]. RepoCoder, published in ENMLP2023, is a widely-studied RAG-based code
completion technique. RepoCoder refines the code retrieval process by iteratively utilizing the
most recently generated content to retrieve information. To ensure consistency, we employ
GTE-large as its embedding model.

4.1.3 Benchmarks. To comprehensively evaluate the performance of LLMs for code completion
tasks, we first adopt two widely-adopted public benchmarks CrossCodeEval (CCEval) [7] and
HumanEval-Infilling [12]. However, CCEval does not fully reflect the real-world deployment
scenarios in industry settings. In particular, during our deployment of the code completion systems
in Kuaishou Technology, we observed that over 70% of code completion requires involving suffix
information, i.e., the code following the insertion point, as illustrated in Equation 2. However,
CCEval does not provide such suffix information, causing a potential gap in practice. To bridge this
gap, we decided to build new datasets that incorporate suffix information which are sourced from
both open-source repositories and industry codebases.

Table 1. Statistics of test datasets

Domain Type Abb. Count

ProCC-Infilling Open-Source
Function Body FB. 1692
Random Lines RL. 1096
ALL - 2788

Kuaishou Private-Domain
Function Body FB. 1972
Random Lines RL. 1102
ALL - 3074

We follow the protocol of previous work [85] to crawl 20 high-quality code repositories from
GitHub, covering multiple levels of code completion—random line completion and function body
completion. These scenarios, often encountered by developers, can largely reflect real-world de-
velopment scenarios. We randomly split 10% of the files as the test set, 10% for validation used in
training the adaptive retrieval selection algorithm, and the rest as retrieval data. Following [85], for
the line completion, we randomly select three lines from each test file, and for the function body
completion, we extract all functions in test files. Eventually, we obtained a test dataset with 2788
instances. We conduct the same process for the validation set with each test file as a test case. We
name this benchmark as the ProCC-Infilling benchmark.

Given that LLMs are pre-trained on expanded GitHub datasets, it might inadvertently encompass
elements from our test set and lead to the risk of test set contamination. To alleviate this issue,
we construct another benchmark based on private-domain code from the Kuaishou Technology.
We collect 58 repositories and construct the dataset with the same protocol as discussed above. In
total, we construct a test dataset with 3074 instances. We name this benchmark as the Kuaishou
private-domain benchmark. Table 1 shows the test set details.
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4.1.4 Metrics. Following previous studies [45, 85], we select two widely recognized evaluation
metrics for code generation—Exact Match (EM) and Edit Similarity (ES). In particular, EM quantifies
the percentage of generated code snippets that exactly match the ground truth. ES, adapted from the
Levenshtein Edit Distance [34], measures the required edit operations from generated content to
the ground truth. For the evaluations on the CCEval benchmark, we use the same metrics including
the identifier match as in the original paper [7].

4.1.5 Implementation. We use the Python implementation of the DeepSeek-Coder models and
Qwen2.5-Coder obtained onHugging Face [79]. they are employed for encoding the incomplete code
from various perspectives through prompt engineering, and concurrently, for executing the code
completion task.We implement the dense vector retrieval using Faiss [60]. For the LinUCB algorithm,
we set the coefficient of the upper confidence bound 𝛼 = 0.1. We conduct LLM generation and
embedding using the vLLM framework [31]. For fine-tuning (Section 4.2.3), we set 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 = 64
and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 2𝑒−5 and train the models with the AdamW optimizer [44] for 2 epochs. To
ensure fairness in the analysis of time and space complexity, all experiments are performed on a
cluster equipped with 8 NVIDIA A100-80GB GPUs.

4.2 Results and Analysis

Table 2. Results of the CCEval benchmark. Numbers are shown in percentage (%)

Model/Retireval
Code Match Identifier Match

Java TypeScript C# Java TypeScript C#

EM ES EM ES EM ES EM F1 EM F1 EM F1

DeepSeek-Coder-1.3B 6.36 56.73 6.59 55.91 3.17 58.27 12.30 45.65 11.26 46.43 6.90 32.50
+ bm25 13.46 59.78 12.22 59.46 12.95 62.14 21.41 50.89 17.76 51.17 17.14 41.65
+ ReACC 14.12 59.55 11.68 58.67 13.57 63.58 21.46 50.61 16.90 50.19 17.59 43.62

+ RepoCoder 14.35 59.60 12.66 59.47 14.38 64.28 21.88 50.99 17.94 51.33 18.51 44.69
+ Lexical Retri. 11.78 58.55 11.17 58.85 10.75 61.24 19.17 49.47 16.84 50.43 14.42 39.64

+ Completion Retri. 13.62 59.65 11.89 59.35 10.97 61.77 20.82 50.15 17.46 51.55 15.10 40.48
+ Summarization Retri. 14.40 59.34 12.07 59.21 10.24 61.95 21.69 50.61 17.61 50.93 14.31 40.61

+ ProCC 15.24 61.40 13.29 60.24 12.16 62.66 23.19 52.91 18.98 52.96 16.01 42.11
DeepSeek-Coder-6.7B 11.22 61.91 9.95 60.35 5.88 60.66 18.09 52.59 15.11 51.65 8.82 35.80

+ bm25 20.15 63.78 16.06 63.81 16.40 62.54 28.38 56.36 22.20 56.65 20.70 44.29
+ ReACC 19.54 63.10 15.35 63.03 16.35 63.69 27.49 56.08 21.36 55.91 20.53 45.54

+ RepoCoder 20.37 63.82 16.43 63.81 17.67 64.39 28.41 56.80 22.81 56.81 21.47 46.71
+ Lexical Retri. 18.93 63.92 13.50 62.44 15.61 62.54 27.26 56.44 19.43 54.78 18.78 43.71

+ Completion Retri. 21.60 63.79 15.88 63.72 17.19 64.54 29.87 57.12 22.14 54.79 21.72 46.75
+ Summarization Retri. 21.37 63.87 16.54 64.23 16.46 63.67 29.41 57.29 22.88 57.68 21.04 45.72

+ ProCC 23.05 65.34 17.67 65.15 18.21 65.53 31.70 59.03 23.84 58.07 22.68 47.69
Qwen2.5-Coder-7B 11.59 64.29 8.31 60.28 4.47 61.03 19.26 52.78 13.89 49.94 7.24 32.23

+ bm25 20.24 67.82 13.92 63.03 13.46 66.43 28.75 58.43 19.93 53.69 16.69 42.33
+ ReACC 20.10 67.51 13.51 62.81 13.69 66.74 28.55 58.12 19.41 53.31 16.43 43.15

+ RepoCoder 20.57 67.88 14.02 63.20 14.12 67.05 29.02 58.65 20.12 53.89 16.89 43.91
+ Lexical Retri. 19.76 67.13 13.02 62.77 12.83 66.01 27.88 57.63 19.06 52.67 15.99 41.78

+ Completion Retri. 21.87 68.74 13.89 63.55 13.94 66.64 29.18 58.39 20.12 53.76 16.89 43.56
+ Summarization Retri. 21.72 68.59 14.02 63.49 13.76 66.21 28.92 58.21 20.01 53.45 16.67 43.34

+ ProCC 23.23 69.77 14.80 64.23 14.95 67.88 32.12 59.71 21.02 54.61 18.12 44.95

4.2.1 RQ1: the overall effectiveness of ProCC. Table 2 presents the evaluation results on the CCEval
benchmark, where ProCC demonstrates significant improvements across various programming
language test sets. Specifically, for the DeepSeek-Coder-6.7B, in code match mertics, ProCC achieves
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a 13.16% EM increase in Java (from 20.37% to 23.05%), a 7.55% EM increase in TypeScript (from
16.43% to 17.67%), and a 3.06% EM increase in C# (from 17.67% to 18.21%), demonstrating superior
performance across various programming languages compared to the widely-studied RepoCoder. In
addition to the enhancements in code match metrics, ProCC also shows significant improvements
in identifier match represented by EM and F1 scores. In the Java test set, ProCC achieves an EM
increase of 11.58% (from 28.41% to 31.70%) and an F1 score improvement of 3.93% (from 56.80%
to 59.03%). In TypeScript, ProCC improves the EM by 4.52% (from 22.81% to 23.84%) and the F1
score by 2.22% (from 56.81% to 58.07%). For C#, there is an increase in EM by 5.64% (from 21.47%
to 22.68%) and an F1 score enhancement by 2.10% (from 46.71% to 47.69%). These results further
underscore the effectiveness of ProCC in handling identifier matches, enhancing both the precision
and recall of code retrieval tasks compared to previous techniques like RepoCoder. Similarly trends
are also observed on Qwen2.5-Coder-7B, with an averaged 8.12% and 5.99% EM improvement over
RepoCoder on Code Match and Identifier Match respectively.

From the experimental results, we can observe that the impact of retrieval-augmented generation
is more substantial on the DeepSeek-Coder-1.3B model than on the 6.7B model, with the former
achieving a 140% EM enhancement on CCEval-Java compared to the 105% improvement of the
latter using ProCC. This is due to the inherent limitations of small models in encoding and under-
standing extensive data. Retrieval-augmented generation addresses these limitations by integrating
external and relevant information during the generation process. Additionally, when comparing
the DeepSeek-Coder-6.7B and Qwen2.5-Coder-7B, the latter shows superior performance in Java,
while the former performs better in C# and TypeScript. Despite these differences, the consistent
performance trends across four benchmarks for both models demonstrate the robustness of ProCC.

Table 3. Averaged results on the HumanEval-Infilling benchmark

Retrieval DeepSeek-Coder-1.3B DeepSeek-Coder-6.7B Qwen2.5-Coder-7B

EM ES EM ES EM ES
Base 70.86 85.57 71.52 87.13 80.35 93.11
+ bm25 72.13 86.72 73.54 88.62 80.94 93.67
+ ReACC 72.45 87.05 73.73 89.03 80.54 93.43
+ RepoCoder 72.67 87.38 73.94 89.23 81.02 93.80
+ ProCC 74.25 88.25 76.30 90.40 83.45 95.78

Table 3 summarizes the experimental results on the HumanEval-Infilling dataset. This dataset,
intended for direct code completion from partial codes, is not designed for the usage of RAG-based
techniques as it does not include a retrieval dataset. To address this issue, we adopt the CCEval
benchmark dataset for the retrieval purposes. Notably, ProCC significantly enhances the code
completion performance. On DeepSeek-Coder-1.3B, ProCC records a 4.78% and 2.17% EM gain
over the vanilla model and RepoCoder respectively (increasing from 70.86%/72.67% to 74.25%).
On DeepSeek-Coder-6.7B, ProCC achieves a 6.68% increase in EM compared to the vanilla model
(improving from 71.52% to 76.30%). It also shows a 3.19% EM improvement over RepoCoder (from
73.94% to 76.30%). On the Qwen2.5-Coder-7B model, ProCC records a 3.86% and 3.00% EM gain
over the vanilla model and RepoCoder respectively (increasing from 80.35%/81.02% to 83.45%).
The performance gain of RAG-based techniques, as shown in Table 2 for CCEval, is reduced in
the HumanEval-Infilling dataset. For instance, for the Qwen2.5-Coder-7B model, while ProCC
achieved a notable 11.64 absolute EM improvement in CCEval (rising from 11.59% to 23.23%), the
performance increase in HumanEval-Infilling was only 3.10 absolute EM (from 80.35% to 83.45%).
This discrepancy is due to the mismatch between the retrieval and completion data sets used in the
experiments (CCEval for retrieval and HumanEval for completion). However, it is encouraging to
note that retrieval still benefits completion tasks, even when the datasets are not directly linked.
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Table 4. Averaged results on the ProCC-Infilling benchmark

Model/Retrieval EM ES

FB RL Avg. FB RL Avg.

DeepSeek-Coder-1.3B 42.43 54.47 47.17 68.91 81.23 73.75
+ bm25 44.86 57.12 49.68 70.41 81.13 74.63
+ ReACC 44.56 56.20 49.14 70.75 80.13 74.43
+ RepoCoder 44.93 56.03 49.69 70.81 80.67 74.69
+ Lexical Retri. 44.62 56.93 49.46 70.39 80.73 74.46
+ Completion Retri. 44.86 55.93 49.21 69.88 79.74 73.76
+ Summarization Retri. 45.04 57.48 49.93 70.57 80.56 74.50
+ ProCC 46.17 58.03 50.83 71.34 81.78 75.44
DeepSeek-Coder-6.7B 46.69 65.24 53.98 72.46 85.53 77.60
+ bm25 48.94 69.16 56.89 73.35 85.97 78.31
+ ReACC 48.94 68.34 56.56 73.73 85.81 78.48
+ RepoCoder 49.59 68.80 57.14 73.72 85.80 78.47
+ Lexical Retri. 47.93 66.33 55.16 72.72 84.40 77.31
+ Completion Retri. 49.53 68.52 56.99 73.59 86.45 78.52
+ Summarization Retri. 49.76 69.53 57.53 73.87 85.98 78.63
+ ProCC 50.98 70.73 58.74 74.56 86.42 79.22
Qwen2.5-Coder-7B 49.41 64.23 55.24 75.68 85.25 79.44
+ bm25 53.25 69.43 59.61 77.03 87.03 81.08
+ ReACC 51.48 67.43 57.57 76.17 86.69 80.31
+ RepoCoder 51.85 67.88 58.15 76.35 86.92 80.51
+ Lexical Retri. 50.12 66.71 56.64 75.82 86.02 79.83
+ Completion Retri. 51.35 67.52 57.71 76.21 86.74 80.35
+ Summarization Retri. 51.85 68.05 58.22 76.48 86.89 80.57
+ ProCC 54.12 70.05 60.38 77.82 87.89 81.78

Table 4 presents the performance comparison results between ProCC and the other RAG-based
techniques on top of the ProCC-Infilling benchmark, where “FB” refers to the function body, “RL”
refers to the random line, and “Avg” refers to averaged results. We can observe that ProCC can
significantly outperform the baseline techniques. In particular, for the average results on DeepSeek-
Coder-1.3B, ProCC significantly improves the code completion task with 7.76% EM improvement
over the vanilla model (from 47.17% to 50.83%) and demonstrates a 2.29% EM improvement over
RepoCoder (from 49.69% to 50.83%). For the average results on DeepSeek-Coder-6.7B, ProCC
achieves 8.82% and 2.80% EM gain over the vanilla model and RepoCoder respectively (from
53.98%/57.14% to 58.74%). Similarly, on Qwen2.5-Coder-7B, ProCC achieves 9.30% and 3.83% EM
improvement over the vanilla model and RepoCoder respectively (from 55.24%/58.15% to 60.38%).
These results indicate the power of ProCC for effectively retrieving relevant contextual information
to enhance code completion effectiveness.

Table 5 summarizes the experimental results for the Kuaishou private-domain benchmark suite.
Within this benchmark suite, the DeepSeek-Coder-1.3B achieves an average EM score of 33.67%, in
contrast to the 47.17% EM observed in the ProCC-Infilling benchmark. This difference indicates
that LLMs generally face challenges when dealing with domain-specific tasks where the test data
falls outside their training corpus. Notably, in this scenario, ProCC has demonstrated a significant
enhancement, achieving a 30.89% EM increase over the vanilla model (from 33.67% to 44.07%)
and surpassing the RepoCoder by 5.1% (from 41.93% to 44.07%) on DeepSeek-Coder-1.3B. On
DeepSeek-Coder-6.7B, it achieves 24.87% and 4.48% EM improvement over the vanilla model and
RepoCoder respectively (from 43.90%/52.47% to 54.82%). Meanwhile, on Qwen2.5-Coder-7B, it
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Table 5. Averaged results on the Kuaishou private-domain benchmark

Retrieval DeepSeek-Coder-1.3B DeepSeek-Coder-6.7B Qwen2.5-Coder-7B

EM ES EM ES EM ES
Base 33.67 63.30 43.90 73.10 45.48 74.49
+ bm25 41.84 67.02 51.84 75.67 53.38 77.05
+ ReACC 41.70 66.95 52.30 76.60 53.97 78.12
+ RepoCoder 41.93 67.13 52.47 76.53 53.91 78.05
+ Lexical Retri. 41.42 66.96 51.32 76.61 52.98 78.04
+ Completion Retri. 42.10 67.24 52.05 76.85 53.78 78.42
+ Summarization Retri. 42.79 67.92 52.71 76.53 54.12 78.28
+ ProCC 44.07 69.13 54.82 77.62 56.43 79.02

achieves 24.08% and 4.67% EM improvement over the vanilla model and RepoCoder respectively
(from 45.48%/53.91% to 56.43%).

Comparison with Complex RAG-based Techniques. We compare ProCC against the more complex
RAG-based techniques FT2Ra [18] and GraphCoder [43]. We refer to them as "complex" because,
unlike ReACC, RepoCoder, and ProCC, they are somewhat incompatible with standard acceleration
pipelines and are more difficult to be integrated into existing code completion frameworks. Specif-
ically, ProCC performs embedding similarity searches, which can be accelerated via Faiss [60],
allowing highly efficient, millisecond-scale lookups over millions of vectors. In contrast, Graph-
Coder relies on subgraph edit distance calculations, i.e., an approach without widespread library
support, resulting in higher computational costs for scaling. Meanwhile, ProCC uses a standard
generation pathway that can work with closed-source LLMs such as GPT. Moreover, by leveraging
mainstream inference frameworks (e.g., vLLM [31], TGI [10], and SGLang[87]), it achieves up to
10x speedups over the standard LLM generation. FT2Ra, however, must retrieve a new context
for each token it generates and thus cannot be applied to closed-source LLMs. Its token-by-token
retrieval and generation paradigm also lacks support from mainstream acceleration frameworks,
requiring substantial effort to reduce generation time for a real-world deployment.

We also evaluate the retrieval time cost of our studied techniques. To ensure fair comparison,
we conduct the experiments on using a single A100 GPU and Xeon Gold CPU on the ProCC-Infilling
benchmark with DeepSeek-Coder-1.3B as the embedding model. The retrieval time cost for ProCC,
FT2Ra, and GraphCoder is 0.080s, 0.413s, and 0.528s respectively. We can observe that ProCC
significantly outperforms both FT2Ra and GraphCoder (>3x faster). To further illustrate, it has been
surveyed that 85% developers expect autocomplete suggestions within 200ms [73] which FT2Ra
and GraphCoder both exceed.

Table 6. Comparison with complex RAG-based techniques

Retrieval ProCC-Infilling bench. Kuaishou private-domain bench.

EM ES EM ES
Base 47.17 73.75 33.67 63.30
+ bm25 49.68 74.63 41.84 67.02
+ ReACC 49.14 74.43 41.70 66.95
+ RepoCoder 49.69 74.69 41.93 67.13
+ GraphCoder 50.67 74.99 43.58 68.76
+ FT2Ra 50.71 75.35 43.42 68.65
+ Lexical Retri. 49.46 74.46 41.42 66.96
+ Completion Retri. 49.21 73.76 42.10 67.24
+ Summarization Retri. 49.93 74.50 42.79 67.92
+ ProCC 50.83 75.44 44.07 69.13
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Table 6 also highlights their performance differences on the ProCC-Infilling and Kuaishou private-
domain Benchmarks. It can be observed that FT2Ra and GraphCoder outperform the baseline
techniques (including our single retriever), achieving an absolute EM gain of 1.02/1.49 and 0.98/1.65
over RepoCoder on the ProCC-Infilling/Kuaishou private-domain benchmarks, respectively. This
indicates the benefits of introducing more complex RAG-based techniques. Note that ProCC still
performs better than these complex techniques. ProCC achieves an absolute EM gain of 0.16/0.49 and
0.12/0.65 over GraphCoder and FT2Ra on the ProCC-Infilling/Kuaishou private-domain benchmarks,
respectively. By flexibly incorporating diverse semantic cues and employing a lightweight LinUCB-
based decision engine, ProCC addresses code completion requests by autonomously choosing
the most suitable perspective at runtime. Overall, ProCC offers a lightweight, scalable, and high-
performing RAG-based solution for code completion.

4.2.2 RQ2: the effectiveness of the components of ProCC. In this section, we systematically evaluate
the effects of the key components in ProCC. For simplification, all the experiments are conducted
based on DeepSeek-Coder-1.3B.
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Fig. 3. Venn diagram of different retrievers. It shows the number of samples that are completed correctly in
the CCEval Java and TypeScript benchmark.

Retrieval Perspectives. Our default individual retrievers are specialized in three perspectives—
lexical semantics, hypothetical completion, and code summarization. Specifically, we plot a Venn
diagram of the unique Exact Match achieved by each retriever for the CCEval benchmark in
Figure 3. It is observed that each retriever brings to light different aspects of code semantics,
thereby achieving exclusive successes in their targeted perspectives. For example, Figure 3 shows
that the Completion Retri. uniquely retrieves correct contextual hints to complete 122 and 146
samples for Java and TypeScript respectively, demonstrating specialized strengths in its particular
facet.

We further involved an evaluation of potential facets by designing various instructions to encode
semantics from distinct perspectives. All the instruction perspectives utilized are presented in Table 7
and experiments are conducted on the ProCC-Infilling benchmark, where “[code]” symbolizes the
incomplete code snippet, structured according to the FIM paradigm as described in Equation 2.
The placeholder “[generation]” signifies the output generated by the LLM conditioned on the
corresponding instruction template. We derive the instruction’s average embedding from the last
hidden layer of LLM, which forms the basis for the code representation in the retrieval process.
Note that our default retrievers are No.1, No.3, and No.5 in Table 7. Our observations indicate
that our single retriever with the directive instructions is effective and achieves comparative
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Table 7. Retriever perspectives and instructions

No. Perspect. Instruction AVG. EM AVG. ES
0 Raw Code [code] 49.32 73.49
1 Lexicon Embedding the following code snippets: [code] 49.46 74.46
2 Lexicon Representing the following code snippets: [code] 49.17 73.51
3 Hypo. Line [code]->[generation] 49.21 73.76
4 Hypo. Line Complete the code snippets [code]->[generation] 49.12 74.18
5 Summarization This code snippets of [code] means -> [generation] 49.93 74.50
6 Summarization Summarize the code snippets [code] -> [generation] 49.21 73.76

performance (between 49.12% to 49.93%) with the external encoding model (49.14%) as in Table 4.
Note that the construction of the retriever perspectives only introduces minor variability in the
code completion performance. For instance, a small variation like substituting “Embedding” with
“Representing” in retriever No.1 leads to negligible 0.29 absolute EM differences. Nevertheless, the
overall robustness and effectiveness of code completion tasks are consistently maintained. Similarly,
using incomplete code directly (No.0) resulted in an EM score of 49.32%. In contrast, introducing
the prompt "Embedding the following code" raised the EM score to 49.46%. These findings suggest
that how prompts are structured within one perspective—whether by directly using the code or
by incorporating a prefix—affects code completion performance only slightly. Additionally, the
inference cost of five-word prefix is negligible, with no noticeable difference in timing whether the
prefix is used or not. Therefore, we focus on designing three prompts from different perspectives
which can elicit distinct semantic interpretations from the LLM to obtain a wider range of code
semantics.

Table 8. Combination of different retrievers

Metrics No.1+3 No.1+5 No.3+5 No.1+3+5 No.1-6
AVG. EM 50.27 50.33 50.46 50.83 50.98
AVG. ES 75.12 75.23 75.32 75.44 75.57

We also evaluate the combination of different retriever perspectives. Considering the prohibitive
complexity of evaluating all combinations of retrievers, our investigation is confined to include
the combinations between the most distinctive perspectives, i.e., retrievers No.1, No.3, and No.5
in Table 7. Table 8 presents the evaluation results on the ProCC-Infilling benchmark revealing
that combining various perspectives outperforms individual ones, showcasing the value of the
multi-retriever framework. For instance, combinations of retriever No.1+3, No.1+5, and No.3+5
yield EM scores of 50.27%, 50.33%, and 50.46% respectively, while the corresponding best single
retriever presents an EM score of 49.93% (retriever No.5). Additionally, incorporating all six seman-
tic perspectives from Table 7 further improves the code completion performance, though gains
are marginal with only 0.15 absolute EM gain over 50.83% EM from the combination of three
retrievers No.1, 3, and 5. This slight improvement indicates that while expanding a wide range
of perspectives can offer benefits, potential overlapping information can limit its improvement.
In conclusion, our multi-retriever framework approaches from three perspectives elicit distinct
semantic interpretations from the LLM to obtain a wider range of code semantics. Incorporating
these varied perspectives enriches the multifaceted representations and contributes to improved
code completion performance.
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Table 9. Decision-making using different algorithms

Method EM ES
Completion Retri. 49.21 73.76
Union 49.56 74.36
Max Similarity 49.57 74.48
Logistic Regression 49.71 74.68
LinUCB 50.83 75.44
LLM Decision 50.85 75.54

adaptive retrieval selection algorithm. Furthermore, we examine multiple decision-making al-
gorithms. we first directly concatenate all three retrievals with input as one compared technique,
namely “Union”. Then we apply a naive decision approach that selects the retriever retrieved
information based on the maximum dense vector similarity, called “Max Similarity”. We also re-
frame this decision task as a classification problem, implementing logistic regression to choose the
appropriate retriever, called “Logistic Regression”. At last, we instruct the LLM to make decisions as
in conventional multi-retriever systems, called “LLM”. We include the optimal single retriever with
the hypothetical completion as a reference. Table 9 shows the detailed results of the ProCC-Infilling
benchmark. Our findings indicate that directly concatenating all three retrievers’ retrievals with in-
put achieves 49.56% EM. Direct concatenating risks present excessive information and only provide
0.35 slight absolute improvement over the best single retriever with the hypothetical completion,
which achieves 49.21% EM. Employing the maximum similarity and logistic regression techniques
generally enhances the performance of the best single retriever with 0.36 and 0.50 absolute EM
improvement. The LinUCB algorithm, leveraging the similarity scores as contextual information,
achieves performance with a 1.62 absolute EM improvement over the best single retriever and
makes decisions about the optimal perspective for incomplete code. Notably, utilizing an LLM for
decision-making achieves similar results to the LinUCB algorithm, suggesting that a lightweight
decision-making approach is sufficient for the code completion task.

Model Ensemble. We attempt to assess the potential benefits of using a model ensemble strategy.
We utilize DeepSeek-Coder-1.3B and Qwen2.5-Coder-1.3B as base models in our experiments,
initially applying the same model for both embedding and code generation phases. To evaluate the
model ensemble, we assign DeepSeek-Coder-1.3B for embedding to extract relevant context, and
Qwen2.5-Coder-1.3B for the completion task, denoted as DeepSeek-Coder-1.3B + Qwen2.5-Coder-
1.3B in Table 10, and vice versa. Our findings demonstrate that this model ensemble strategy has
slight effect on the performance. While the ensemble approach achieves 46.95% EM points, using a
single model (Qwen2.5-Coder-1.3B) for both procedures achieves 46.77%.
We left the exploration of model ensemble to the future work, as this study primarily explores

the use of a single model for both retrieval and generation, highlighting that additional tuning of
the retrieval model may not be essential.

Table 10. Evaluating model ensemble on the ProCC-Infilling benchmark

Model/Retrieval EM ES

FB RL Avg. FB RL Avg.

DeepSeek-Coder-1.3B + DeepSeek-Coder-1.3B 46.17 58.03 50.83 71.34 81.78 75.44
Qwen2.5-Coder-1.5B + Qwen2.5-Coder-1.5B 46.77 58.03 51.20 72.03 82.26 76.05
Qwen2.5-Coder-1.5B + DeepSeek-Coder-1.3B 46.27 58.14 50.93 71.54 81.93 75.62
DeepSeek-Coder-1.3B + Qwen2.5-Coder-1.5B 46.95 58.92 51.66 72.12 82.43 76.17
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public boolean accept(File file, String name) {
for (int i = 0; i < this.suffixes.length; i++) {

[FILL_IN]
return true;

...

public boolean fileExtension(File[] files, String extension) {
    for (int i = 0; i < files.length; i++) {

if (files[i].getName().endsWith(extension)) {
            return true;
    ...

public boolean accept(File file) {
    if (file.isDirectory()) {
        return false;}
    for (int i = 0; i < wildcards.length; i++) {

if (FilenameUtils.wildcardMatch(file.getName(), wildcards[i])) {
            return true;
    ...

public boolean checkSuffix(List<File> files, String suffix) {
    for (File file : files) {
        String name = FilenameUtils.getExtension(file.getName());

if (!caseSensitivity.checkEndsWith(name, suffix)) {
            return false;
    ...

Incomplete code

RepoCoderLexical Retri.

Completion Retri.

Summary Retri.

FT2Ra

GraphCoderProCC

if (caseSensitivity.checkEndsWith(name, suffixes[i])) {

Groud Truth

...
  for (Iterator iter = this.fileFilters.iterator(); iter.hasNext();) {
      IOFileFilter fileFilter = (IOFileFilter) iter.next();

[FILL_IN]
          return true;
      ...

if (fileFilter.accept(file, name)) {

...
  for (Iterator iter = this.fileFilters.iterator(); iter.hasNext();) {
    IOFileFilter fileFilter = (IOFileFilter) iter.next();

if (fileFilter.accept(file)) {
        return true;
      ...

Incomplete code Retrieved Code

Groud Truth

if (fileFilter.accept(file)) {

Misleading Generation

Case Success

Case Fail

Fig. 4. Case study for the effectiveness of ProCC. Red indicates the misleading information, Green
represents the helpful hint.

Case Study. We perform a case study for the baselines and each component of ProCC in Figure 4.
In the Case Success, each component of ProCC retrieves a unique code segment. Lexical Retri.
selects a segment sharing the same function name "accept" with the incomplete code, although
the corresponding hint differs significantly from the ground truth. On the other hand, Completion
Retri. identifies the line “if (files[i].getName().endsWith(extension))” to be the most appropriate
for completing both the retrieved segment and the incomplete code. From Summarization Retri., a
summarization perspective, both the incomplete and retrieved codes primarily check the "suffix" of
the variable "name", providing the correct context needed for code completion. ProCC leverages
LinUCB to ensure that summarization provides the best guidance for completion. In the Case Fail,
the correct completion “if (fileFilter.accept(file, name))” involves two parameters, "file" and "name".
However, all retrievers favor a segment that is almost identical to the incomplete code but only
takes "file" as an input, leading to misguided completion. This issue arises because LLMs tend to
replicate the subsequent line from a closely matching retrieved snippet without accounting for
slight variations in the context of completion. This is a fundamental challenge associated with
the RAG-based techniques. While post-processing techniques such as self-reflection and agent
systems [54] can help mitigate this problem, they are beyond the scope of our current study.

4.2.3 RQ3: performance compared with fine-tuning. This section presents a systematic comparison
between ProCC and the conventional fine-tuning approach, evaluating their advantages and
limitations. Moreover, we investigate the potential of ProCC to enhance the performance of models
that have been already fine-tuned, thereby assessing its value as a supplementary optimization
technique for fine-tuned models. For simplification, all the experiments are conducted based on
DeepSeek-Coder-1.3B.

Training Dataset. For a fair comparison, the test dataset employed for fine-tuning is identical to
that used for retrieval, i.e., a total of 2788 test samples from a corpus of 20 repositories (ProCC-
Infilling). The remaining files within these repositories are utilized to construct the validation
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and training sets, following the same protocol outlined in Section 4.1.3. This process yields 22,646
training samples used for the fine-tuning of hyper-parameters and 2790 validation samples. For the
Kuaishou private-domain benchmark, we employed the same setup.
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Fig. 5. Finetune v.s. ProCC

Results. In addition to the fine-tuning experiment, we apply ProCC to the fine-tuned models.
Figure 5 presents the evaluation results which show that fine-tuning significantly enhances code
completion performance, achieving an absolute 13.58 EM gain on the ProCC-Infilling benchmark
suite and 21.51 EM gain on the Kuaishou private-domain benchmark suite compared to the baseline
model respectively (from 47.17% to 60.75% and from 33.67% to 55.18%). Furthermore, the application
of ProCC to this fine-tuned model yields an additional 2.46 EM improvement on the ProCC-Infilling
benchmark suite and 4.94 EM improvement on the Kuaishou private-domain benchmark suite.
These findings indicate that ProCC is an effective augmentation to an optimized fine-tuned system.

Table 11. Time costs (second)

Method Processing Completion Total
base - 0.261 0.261
ReACC 0.015 0.261 0.277
RepoCoder 0.285 0.261 0.547
ProCC 0.080 0.261 0.342

Training Cost. While fine-tuning demonstrates substantial efficacy in enhancing code completion
tasks, it is essential to consider the associated computational cost. Fine-tuning the DeepSeek-
Coder-1.3B model requires substantial hardware resources, typically involving a cluster with eight
NVIDIA A100 GPUs. In contrast, deploying ProCC is considerably more resource-efficient and
operable on a single A100 GPU. In terms of computation time, fine-tuning requires a training
time of approximately 2.5 hours on the 8×A100 cluster. Conversely, ProCC eliminates the need for
training time, with retrieval time aggregated to approximately 0.08 seconds on the same device.

Inference Cost. As shown in Table 11, using the 1.3b model for code completion takes an average
of 0.261 seconds. Note that when using additional retrieval context, we allocate a fixed input
length budget to the model to ensure that the prefill time remains consistent[7]. ReACC utilizes
the vanilla RAG framework for code completion, which requires an average of 0.015 seconds for
embedding and retrieval of code snippets from the memory. RepoCoder builds on ReACC by using
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the results generated by the model to iteratively retrieve similar code snippets, thus requiring
additional completion periods, i.e., 0.285 seconds in total for retrieval process. Our ProCC, which
implements a lightweight multi-retriever framework that simplifies the iterative refinement, incurs
only 0.08 seconds for the retrieval time for its retriever operation. To summarize, it could enhance
the effectiveness with reasonable computational costs.

5 Threats to validity
Internal Validity. The threat to internal validity lies in potential implementation bugs. To mitigate

this, for compared techniques, we obtained original source code from GitHub repositories and used
identical hyperparameters from their papers. And we have conducted a thorough review of our
code scripts to ensure their correctness.

External Validity. The threats to external validity mainly lie in the benchmarks and techniques
studied. To reduce these threats, we not only used established benchmarks but also included
industry data unknown to LLMs. Through an exhaustive literature review, we believe the compared
RAG-sequence models are sufficiently representative. Another threat is randomness in results. To
alleviate this threat, we averaged results over five runs, reducing variance.

Construct Validity. The threat to construct validity lies in our evaluation metrics. Following
previous work [45, 85], we adopted two widely-used metrics—Exact Match and Edit Similarity to
comprehensively assess performance. Using established metrics provides rigorous quantification of
improvements.

6 Related Work
Language Model for Code Completion. To generate code completions of arbitrary lengths, re-

searchers view code as a distinct variant of language and have subsequently used natural language
processing techniques (NLP) to model code statistically. Earlier work leveraged N-gram mod-
els [59], recurrent neural networks such as LSTM [58], and attention mechanisms [37] to encode
programming languages. With the emergence of transformer-based models, language models
(LMs) are trained on large-scale code datasets, which has significantly advanced code completion.
CodeBERT [11], one of the pioneering code LMs, performs the code completion task through
masked language modeling. To facilitate the generation capability, later LMs mainly adopt either
a decoder-only or an encoder-decoder model, which is trained to predict the subsequent token
in an auto-regressive manner. For example, CodeGPT [46], which follows the architecture of
decoder-only GPT [57], outperforms GPT2 in the code completion task. UniXCoder [16], a mixed
encoder-decoder model, integrates multi-task learning strategies and leverages code structures
to enhance pre-training and further advances code completion performance. Recent LLMs, such
as Codex [5], CodeGen [52], InCoder [12], and StarCoder [39] employ billions of parameters and
trained on trillions of code tokens, significantly excel in code generation tasks. Notably, more recent
models like DeepSeek-Coder [17] and Qwen2.5-Coder [22] adopt the fill-in-the-middle pre-training
objective [4], which resembles incomplete code contexts in code completion. This provides useful
inductive bias, enabling DeepSeek-Coder and Qwen2.5-Coder to substantially outperform prior
non-infilling models on completion benchmarks [3].

Retrieval Augmented Code Completion. Retrieval augmented generation [35] (RAG) has emerged
as a technique to inject external knowledge into large language models (LLMs) to assist coherent
text generation and mitigate hallucination for code completion. The RAG paradigm typically first
retrieves the most relevant information using similarity measures such as BM25, dense embeddings
such as SimCSE [14] or Dense Passage Retrieval [29] (DPR). The retrieved information is then
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concatenated with the original input to guide the generation of LLM. Although initially explored for
open-domain question answering, RAG has recently been adapted for code completion [45, 67, 85].
Early work in code completion [45] focused on code-to-code retrieval using dual encoder models
with the retrieved results fed to autoregressive LMs. While RepoCoder [85] advances retrieval
by iterating with incremental generations, KNM [67] incorporates in-domain code databases
and utilizes Bayesian inference to finalize the code. Recently, GraphCoder [43] utilizes a code
context graph (CCG) for retrieval and incorporates decay-with-distance subgraph edit distance
to refine the CCG retrieval results. FT2Ra [18] introduces a retrieval paradigm with a learning
rate and multi-epoch retrievals that mimics fine-tuning. Some other research works focus on
cross-file retrieval or repository-level retrieval [75], i.e., drawing context from cross-file context
dependencies like imported libraries (e.g., “𝑓 𝑟𝑜𝑚 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝐺𝑃𝑇𝑀𝑜𝑑𝑒𝑙𝐹𝑜𝑟𝐶𝐿𝑀”) or
header files (“𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑏𝑡𝑎_ℎℎ_𝑐𝑜.ℎ”). CrossCodeEval [7] and RepoBench [42] construct benchmarks
for such scenarios, while CocoMic [8] develops a cross-file context finder CCFINDER to identify
and retrieve the most relevant cross-file context and integrates cross-file context to learn the in-file
and cross-file context jointly by pre-trained code LLMs.

In this paper, we propose ProCC, a code completion framework leveraging prompt engineering
and contextual multi-armed bandit for the first time to flexibly incorporate and adapt to multiple
perspectives of code. Our extensive evaluation results indicate that ProCC can significantly en-
hance the code completion effectiveness over the existing RAG-based code completion techniques,
indicating the strengths of our proposed RAG-based mechanisms.

7 Conclusion
In this paper, we propose ProCC, the first code completion technique to integrate prompt

engineering and contextual multi-armed bandit to flexibly incorporate and adapt to multiple
perspectives of code. ProCC first employs a prompt-based multi-retriever system which crafts
prompt templates to elicit LLM knowledge to understand code semantics with multiple retrieval
perspectives. Then, it adopts the adaptive retrieval selection algorithm to incorporate code similarity
into the decision-making process to determine the most suitable retrieval perspective for the LLM to
complete the code. Extensive evaluations across the CCEval, HumanEval-Infilling, ProCC-Infilling,
and Kuaishou private-domain benchmarks demonstrate the superior performance and adaptability
of ProCC, marking a significant advancement over the widely-studied RepoCoder by 7.92%, 3.19%,
2.80%, and 4.48% in terms of EM respectively. Additionally, ProCC offers the flexibility to augment
fine-tuned techniques with an averaged 6.5% performance improvement over the fine-tuned model.

8 Data Availability
We provide the repository [1] for all the other available materials, including the source code

of the artifact and the open-source dataset. Considering the deployment of the artifact within
Kuaishou Technology and the privacy protection policy, the dataset containing the private-domain
code of the company shall remain undisclosed.
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