
A General Analysis Framework for Soft
Real-Time Tasks

Zheng Dong , Cong Liu,Member, IEEE, Soroush Bateni, Zelun Kong , Liang He , Senior Member, IEEE,

Lingming Zhang, Ravi Prakash, and Yuqun Zhang

Abstract—Much recent work has been conducted on supporting soft real-time tasks onmultiprocessors due to themulticore revolution.

Whilemost earlier works focus on the traditional sporadic taskmodel with deterministic worst-case specification, several recent works

investigate the stochastic nature ofmany workloads seen in practice, specifying task execution times using average-case provisioning

instead of theworst case. Unfortunately, all the existingwork on supporting soft real-timeworkloads ignores a simple practical fact that

the job inter-arrival time (or task period) is also stochastic for many real-world applications. Adopting a fixedworst-case period tomodel

all the arriving pattern is rather pessimistic andmay result in significant capacity loss in practice. Based on these observations, we present

a general soft real-timemultiprocessor schedulability analysis framework in this paper for practical sporadic task systems specified

by stochastic period and execution demand, following probability distributions. Our analysis can be generally applied to global tunable

priority-based schedulers, which allow any job’s priority to be changed dynamically at runtimewithin a priority window of constant length.

We have extensively evaluated the analysis framework using aMPEG video decoding case study and simulation-based experiments.

Experimental results demonstrate significant advantages of our analysis, which yields over 200 and 50 percent improvements compared

to existing analysis assumingworst-case task periods in terms of schedulability andmagnitude of the derived tardiness bound, respectively.

Index Terms—Real-time scheduling, stochastic tasks, schedulability test, tardiness bound, probability distribution

Ç

1 INTRODUCTION

THE growing prevalence of multicore platforms has stimu-
lated much recent work on scheduling hard and soft real-

time workloads on multiprocessor platforms. Due to various
complexities that arise in multicore architecture such as cache
and bus contentions, multicores are arguably better suited to
support soft real-time (SRT) tasks than hard real-time (HRT)
ones that require hard deadlines to be met. In practice, many
applications run on multicore only require SRT constraints
where deadlines can be occasionally missed but any such
misses must be provably bounded. Examples include multi-
media decoding [26], real-time video and image processing
[7], and computer vision applications [28], [30] such as

colliding face detection [33]. In such applications, providing
predictable and short response times for individual video
frames is important, which ensures smooth video output.

Traditionally, a worst-case system provisioning is used
for modeling HRT applications [12], [23] to ensure timing
correctness even in the worst case. The classical sporadic task
model represents such a worst-case provisioning [24]: when
a task’s utilization specifies its long-term required processor
share, a deterministic worst-case execution time and a fixed
period denoting the minimum job inter-arrival time are
assumed. A key difference in supporting SRT applications
in real-time systems is the consideration of many such
applications’ stochastic nature [5] observed in practice. That is,
the actual execution times of jobs released by a task are often
stochastically distributed.1 For SRT tasks that only require
bounded response times, it is thus not worth conservatively
dedicating aworst-case amount of processing time. For exam-
ple, in computer vision [19], [25], [32], object recognition tasks
are executed to recognize certain objects, where objects often
arrive in a stochastic manner and analyzing different objects
incurs different execution times. In light of this observa-
tion, several researchers have recently developed scheduling
algorithms and schedulability test algorithms for SRT tasks
with stochastic execution demand, which use an average-case
provisioning to allocate processing capacity based on tasks’
average-case execution times [27].

Research Motivation. While placing an average-case provi-
sioning for a task’s execution demand helps reduce the

� Z. Dong is with the Department of Computer Science, University of Texas
at Dallas, Richardson, TX 75080, and also with the Department of Com-
puter Science and Engineering, Southern University of Science and Tech-
nology during his visit to the University in December, 2017.
E-mail: zheng@utdallas.edu.

� C. Liu, S. Bateni, Z. Kong, L. Zhang, and R. Prakash are with the Department
of Computer Science, University of Texas at Dallas, Richardson, TX 75080.
E-mail: {cong, soroush, zelun.kong, lingming.zhang, ravip}@utdallas.edu.

� L. He is with the Department of Computer Science and Engineering, Univer-
sity of Colorado Denver, Denver, CO 80124. E-mail: liang.he@ucdenver.edu.

� Y. Zhang is with the Department of Computer Science and Engineering,
Southern University of Science and Technology, and also with the Shenzhen
Key Laboratory of Computational Intelligence, University Key Laboratory of
Evolving Intelligent Systems, Shenzhen, Guangdong Province 518055,
China. E-mail: zhangyq@sustc.edu.cn.

Manuscript received 7 Apr. 2018; revised 19 Nov. 2018; accepted 21 Nov.
2018. Date of publication 6 Dec. 2018; date of current version 15 May 2019.
(Corresponding author: Yuqun Zhang.)
Recommended for acceptance by P. Balaji.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2018.2884980

1. It is actually extremely hard (if possible) to derive accurate timing
analysis tools that determine the worst-case execution times for multi-
core-based platforms [34].

1222 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

1045-9219� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0692-7486
https://orcid.org/0000-0002-0692-7486
https://orcid.org/0000-0002-0692-7486
https://orcid.org/0000-0002-0692-7486
https://orcid.org/0000-0002-0692-7486
https://orcid.org/0000-0002-8045-7494
https://orcid.org/0000-0002-8045-7494
https://orcid.org/0000-0002-8045-7494
https://orcid.org/0000-0002-8045-7494
https://orcid.org/0000-0002-8045-7494
https://orcid.org/0000-0003-0741-8795
https://orcid.org/0000-0003-0741-8795
https://orcid.org/0000-0003-0741-8795
https://orcid.org/0000-0003-0741-8795
https://orcid.org/0000-0003-0741-8795
https://orcid.org/0000-0002-1499-5729
https://orcid.org/0000-0002-1499-5729
https://orcid.org/0000-0002-1499-5729
https://orcid.org/0000-0002-1499-5729
https://orcid.org/0000-0002-1499-5729
mailto:
mailto:
mailto:
mailto:

unnecessary conservativeness in specifying an SRT task’s
required processor share (i.e., task utilization), an equally par-
amount parameter in defining task utilization has been
largely ignored in the existing SRT systems research, i.e., the
job inter-arrival time (or the task period). Assuming a mini-
mum job inter-arrival time for an HRT task is often necessary
for guaranteeing timing correctness in the worst case, but
can be a serious impediment for modeling SRT tasks. Existing
works ignore a simple fact in practice, i.e., job arrival patt-
erns are stochastic in nature, which has beenwidely validated
using real traces found in many application systems [14],
[16]. For example, in many event-driven control systems, job
releasing is triggered by stochastically occurring events [3],
thus resulting in highly variable job inter-arrival patterns.

In many such application scenarios [6], [8], [11], [37],
a pre-fixed minimum job inter-arrival time (i.e., a fixed task
period parameter) could be particularly smaller than the
job’s average period. Clearly, similar to the worst-case
execution time assumption for SRT tasks, assuming a mini-
mum job inter-arrival time for SRT tasks is questionable in
practice. Such an assumption may cause rather conservative
task utilization provisioning and thus significant capacity
loss for SRT systems in practice.

Inspired by those observations, we develop a multipro-
cessor scheduling analysis framework for supporting SRT
workloads with stochastic periods and execution demand.
We adopt common probability distributions as a natural
model for describing execution times and periods that vary
among different jobs. This general framework can be directly
applied to analyze a wide set of global scheduling methods
such as global earliest-deadline-first (EDF), global first-in-
first-out (FIFO), and global least-laxity-first (LLF), or pre-
cisely any global tunable priority scheduler (TPS) that allows
jobs’ priorities to be dynamically changed within a priority
range of constant length at runtime. We believe that this
work closes the loop for supporting practical SRT tasks with
stochastic characteristics on multiprocessors, generalizing
previous work on deriving response time bounds assuming
deterministic task periods and/or execution times [9], [18].

Related Work. Our work is built based upon the tardiness
bound analysis in window constrained priority schedule by
Leontyev and Anderson [18] and the expected tardiness
bound analysis with stochastic execution times by Mills and
Anderson [27]. Some of the presented results have also been
similarly proved by Devi and Anderson [9], and Liu and
Anderson [21], [22] for different task models assuming
deterministic periods.

In [18], a tardiness bound analysis has been presented for
scheduling SRT tasks under any window-constrained global
scheduling algorithms. However, it assumes worst case task
parameters. In [27], a tardiness bound analysis is presented
under the global EDF scheduler for SRT tasks with deter-
ministic periods and stochastic execution times. The derived
expected (mean) tardiness bound in [27] thus cannot be
applied to tasks with stochastic periods and any scheduler
other than global EDF. The key differences between our
analysis framework and the ones presented in [18] and [27]
work are listed in Fig. 1.

Our Contribution. As discussed above, none of the exist-
ing techniques can be applied to derive expected (mean)
tardiness bounds for truly stochastic SRT task systems with

stochastic periods and execution times under a general set
of global scheduling algorithms. This lack of support is the
key motivation behind this work. Specifically, in this paper
we propose a tardiness abound analysis under global sched-
uling for SRT task systems whose periods and execution
times are defined stochastically. The resulting SRT schedul-
ability condition only requires that the expectation of the task
system’s total utilization is no greater than the multiproc-
essor’s capacity. Thus, the task system is allowed to be over-
utilized under our analysis in the worst case scenario. Our
analysis allows both tasks’ periods and execution times to
be stochastically specified, following probability distribu-
tions. Our analysis can be generally applied to any global
tunable priority-based scheduler (TPS) that allows any job’s
priority to be changed dynamically at runtime within a pri-
ority window of constant length. TPS includes a large set of
global schedulers such as EDF, FIFO, LLF, earliest deadline
zero laxity (EDZL), etc. Finally, we have conducted evalua-
tions to check the applicability of the proposed schedul-
ability test and tardiness bounds. Experimental results
demonstrate that our analysis framework can achieve over
500 and 90 percent improvements over the prior determin-
istic tardiness bound analysis [18], in terms of schedulability
and magnitude of the derived tardiness bound. Similarly,
compared with the experimental results yielded by the tech-
niques given in [27], our analysis framework can achieve
over 200 and 50 percent improvements over the tardiness
bound analysis assuming stochastic execution times but
deterministic periods, in terms of schedulability and magni-
tude of the derived tardiness bound.

The rest of this paper is organized as follows. Section 2
introduces the formal task system model. Sections 3, 4, and
5 explain our main results. Section 6 shows a case study.
Section 7 presents the evaluation results and Section 8
concludes.

2 SYSTEM MODEL

In this paper, we study the problem of scheduling a set
t ¼ t1; t2; . . .; tn of n independent real-time stochastic tasks
on a multi-processor platform, which consists of m identical
processors. A task may release an infinite sequence of jobs.
The jth job of tl, denoted as tl;j, has three parameters:
release time rl;j, execution time el;j, and priority value �l;jðtÞ
at time t. Jobs from the same task must be processed
sequentially.

We consider the above system under the following
assumptions:

Fig. 1. Key differences compared to previous work.

DONG ET AL.: A GENERAL ANALYSIS FRAMEWORK FOR SOFT REAL-TIME TASKS 1223

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

Assumption 1. The el;j values are independent random variables
with identical probability distributions. The mean is �el and the
variance is s2

l .

Assumption 2. Let pl;j be the time interval between the release
times of two consecutive jobs tl;j and tl;jþ1 from the same task tl.
The pl;j values are independent random variables with identical
probability distributions. The mean is �pl and the variance is s

02
l .

Note that we only require such distributions to have finite
mean and variance, and the above assumed properties hold
for any standard probability distributions, such as the expo-
nential [4], Weibull [29] distribution. Moreover, we assume
the expected value of the maximum execution time is upper
bounded by �l and the consecutive inter release time is lower
bounded by zl—a maximum execution time and a minimum
release time interval will suffice, where �l � el;j and zl � pl;j
for j ¼ 1; 2; These upper/lower bounds are needed in
order to guarantee the correctness of our analysis. Based on
the above definitions, �ul ¼ �el

�pl
denotes tl’s expected utilization.

Therefore, the expected total utilization of the task system is
denoted by �U ¼Pn

l¼1 �ul.

Definition 1 (tardiness). The first job of any task can be released
at any time t � 0. tl;j is released at rl;j and its successive job
tl;jþ1’s release time is rl;jþ1. If tl;j completes execution at f�

l;j,
then tl;j’s tardiness is defined asmaxð0; f�

l;j � rl;jþ1Þ.
A task’s tardiness is defined to be the maximum tardi-

ness of all its jobs. We require that

�U < m; (1)
and

�ul � 1: (2)

Otherwise, tasks’ tardiness will grow infinitely.
The release time of tl;jþ1 will not be altered when tl;j does

not complete by rl;jþ1. Thus, at any time instant, a task may
have at most one job execute, even if multiple jobs have
been released by that task.

For readability, the notation used throughout this paper
is summarized in Table 1.

2.1 Tunable Priority-Based Scheduler

We define the Tunable Priority-based Scheduler in this section.
Note that the scheduling of jobs does not affect the release
time and the execution time of any job tl;j.

Definition 2 (Job prioritization functions). Each released
job has an associated prioritization function �l;jðtÞ. For any jobs
tl;j and ti;k, tl;j has higher priority than ti;k at t, if �l;jðtÞ <
�i;kðtÞ, or�l;jðtÞ ¼ �i;kðtÞ and l < i.

Since jobs’ priorities are functions of time, they can be
dynamically tuned at runtime within a time window of
constant length, as defined below.

Definition 3 (Tunable window of priorities). To guarantee
each task has bounded tardiness, the priority of job tl;j can be
tuned within a specific window:

rl;j � fl � �l;jðtÞ � rl;jþ1 þ ’l; (3)

where fl � 0 and ’l � 0 are arbitrary constant values.

To illustrate the tunable property of jobs’ priorities, we
show an example to convert a preemptive EDF schedule into
a non-preemptive schedule by tuning the jobs’ priorities
dynamically.

Example 1. We show how to convert a preemptive EDF
schedule into a non-preemptive EDF schedule by tuning
each job’s priority in two steps: (i) when jobs are released,
they are prioritized by their deadlines, and (ii) at any time
instant twhen a job is scheduled to execute on a processor,
its priority is tuned to t. Then, the preemptive GEDF sched-
ule is converted into a non-preemptiveGEDF schedule.

Compare to traditional real-time schedulers, TPS is more
flexible. TPS can dynamically simulate a set of schedules at
runtime, and guarantee bounded tardiness for each task, for
instance under EDF, FIFO, LLF, etc. Thus, TPS inherits all
the practical benefits of these schedulers. Furthermore, TPS
also can simulate non-preemptive scheduling: when tl;j gets
into a non-preemptive region, set�l;jðtÞ to be rl;j � fl, where
fl is large enough to ensure that tl;j’s priority is higher than
that of any unscheduled or newly-released job.

Definition 4 (Pending Jobs). In any schedule S, if tl;j does
not complete execution by time instant t and rl;j � t, tl;j is
pending at t. Task tl is pending at time instant t.

Definition 5 (Pending Tasks). Task tl is pending at time
instant t if a job released by tl is pending at time instant t.

Definition 6 (Ready Jobs). In a schedule S, tl;j is ready at
time instant t if all previous jobs released by tl have completed
execution by time instant t and rl;j � t.

Definition 7. A TPS schedule has the following properties: (i)
a single global priority queue is constructed to accommodate the
released jobs in the priority decreasing order; (ii) a job’s priority
can be tuned to any value within its priority window (Definition
3) at any time after its release and before its completion; (iii) at
each time instant where more than m jobs are ready, the m jobs,
which have the highest priorities, are scheduled.

2.2 Processor-Sharing

In this section, we introduce a processor-sharing (PS) sched-
ule. Jobs released by different tasks will not preempt each

TABLE 1
Notation Summary

Parameters Descriptions

el;j the execution time of tl;j.
pl;j the period of tl;j.
el the average execution time of tl;j.
pl the average period of tl;j.

s2
l the variance of tl’s execution time.

sl
02 the variance of tl’s period.

m the number of identical processors.
ul tl’s expected utilization.

U expected total utilization of all tasks.
rl;j the release time of tl;j.

�l;jðtÞ job prioritization function.
f�l;j the completion time of tl;j in TPS.

f̂l;j the completion time of tl;j in PS.
ûl the execution rate of tl in PS.
êl;j max1�j0�jfel;j0 g.
r maxti2tfi þmaxtl2t’l.
UL

Pm�1
i¼1 ûi.

ûi the ith largest value of fûig.

1224 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

other in a PS schedule. PS is considered to be an ideal sched-
ule where for each tl 2 t, at every time instant that tl has
pending jobs, a fraction ûl of the processing capacity of one
processor is allocated to tl, where

Xn
l¼1

ûl � m; (4)

�ul < ûl � 1; 8tl 2 t: (5)

Different choices of ûl will lead to different derived tardi-
ness bounds (we will optimize the choice of ûl in Section 4).
Sufficient processing capacity must be allocated to each
task, which satisfies (4) and (5), in order to guarantee that
each task has bounded tardiness in PS on m processors.
Although PS cannot be implemented in practice, it provides
an ideal allocation strategy that can be used as a reference
for our tardiness analysis.

Note that our definition of PS is different from the PS
schedule defined in [9]. In our defined PS, the processing
capacity obtained by tl is strictly greater than the processing
capacity it needed to end its execution on time in the aver-
age case (i.e. Eqs. (4) and (5) are satisfied), but some jobs of
tl may not complete execution by the release time of the
successive jobs. This is because jobs’ execution times and
periods (the minimum length of the time interval between
the release times of two consecutive jobs) are stochastic in
our model. When jobs of tl execute in PS at a constant rate
ûl, they may not complete execution by the release time of
their successive jobs.

Example 2. Suppose we have a task system where three
stochastic tasks are scheduled on two identical processors,
which have the following specifications: ð�p1; �e1Þ ¼ ð1; 0:5Þ;
ð�p2; �e2Þ ¼ ð2:3; 1:1Þ; ð�p3; �e3Þ ¼ ð1:6; 1:3Þ. One feasible choice
for fû1; û2; û3g is f0:5; 0:5; 1g.

2.3 Analysis Overview: Combining TPS-Induced
and Stochastic-Induced Tardiness

We derive tardiness bounds for tasks with stochastic periods
and execution times under TPS in this paper. For the deter-
ministic sporadic task model [9], jobs complete with no tardi-
ness under PS. Thus, tardiness under the deterministic
sporadic task model is merely due to the use of non-optimal
schedulers (such asGEDF).

Due to the stochastic nature of jobs’ execution times and
arrival pattern, there may be stochastic-induced tardiness
under the PS schedule. Our result generalizes [9] for the
stochastic case. Fig. 2 intuitively illustrates the analysis flow.
In the TPS schedule, tl;j may be preempted by jobs with
higher priorities, and occupies an entire processor when it
executes. Suppose tl;j completes execution at f�

l;j in TPS. In the

PS schedule, tl;j will not be preempted by other jobs and
executes at rate ûl. Suppose tl;j completes execution at f̂l;j in
PS. From this example, we can see a job’s tardiness under
TPS has two contributors: (i) stochastic-induced tardiness of
(f̂l;j � rl;jþ1), which is due to the stochastic periods and execu-
tion times,2 and (ii) scheduler-induced tardiness of (f�

l;j � f̂l;j),
due to using a specific non-optimal schedule TPS.

We first derive TPS-induced tardiness and stochastic-
induced tardiness individually in Sections 3 and 4, respec-
tively. Then in Section 5, we combine these two parts to
obtain the final tardiness bound for any task tl scheduled
under a TPS scheduler.

3 BOUNDING TPS-INDUCED TARDINESS

In this section, we bound TPS-induced tardiness by com-
paring the job’s completion time in TPS and its completion
time in PS.

Definition 8 (Allocation). Let Aðtl;j; t1; t2; SÞ represent the
processing capacity allocated to tl;j during ½t1; t2Þ in S, where S
can be an arbitrary schedule. Aðtl; t1; t2; SÞ represents the total
processing capacity allocated to all jobs of tl during ½t1; t2Þ in
S. Since every job executes in TPS at rate 1, Aðtl; t1; t2; TPSÞ
denotes the amount of processing time that tl’s jobs receive dur-
ing ½t1; t2Þ in TPS; Aðtl; t1; t2; PSÞ denotes ûl multiplying the
length of execution of tl’s jobs in PS (as the jobs of tl execute at
rate ûl in PS).

Similar to the reasoning in [9], [21] (despite different defi-
nitions of PS and TPS in this paper), we define the difference
between the allocation to job tl;j in PS schedule and the allo-
cation in TPS schedule using lag reasoning that is defined as
follows:

lagðtl;j; t; TPSÞ ¼ Aðtl;j; 0; t; PSÞ �Aðtl;j; 0; t; TPSÞ: (6)

Lag represents the difference of processing time allocated
to tl;j in TPS and PS before t. tl’s lag is defined as:

lagðtl; t; TPSÞ ¼
X
j�1

Aðtl;j; 0; t; PSÞ �
X
j�1

Aðtl;j; 0; t; TPSÞ: (7)

Similarly, we define the lag for a job set V at time instant
t in TPS as LAG

LAGðV; t; TPSÞ ¼
X
tl;j2V

lagðtl;j; t; TPSÞ

¼
X
tl;j2V

ðAðtl;j; 0; t; PSÞ �Aðtl;j; 0; t; TPSÞÞ:
(8)

Since LAGðV; 0; TPSÞ ¼ 0, the Eq. (9) holds when t0 � t.

LAGðV; t; TPSÞ ¼ LAGðV; t0; TPSÞ þAðV; t0; t; PSÞ
�AðV; t0; t; TPSÞ: (9)

Lag indicates the difference of the processor capacity
allowed to the same jobs between PS and TPS. The key fact
behind the lag reasoning is that if a job’s tardiness in PS and
its lag are both bounded then its total tardiness is also
bounded.

Fig. 2. tl;j executes in TPS schedule and PS schedule.

2. Note that jobs incur zero tardiness in the PS schedule for ordinary
sporadic task systems with deterministic periods and execution times.

DONG ET AL.: A GENERAL ANALYSIS FRAMEWORK FOR SOFT REAL-TIME TASKS 1225

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

Definition 9 (busy/non-busy intervals). For a job set V, if
all processors perform jobs from V at each time instant during
a time interval ½t1; t2Þ, we define that ½t1; t2Þ is busy for V. Note
that V may contain jobs released by multiple tasks. ½t1; t2Þ is
non-busy for V if there is at least one processor that does not
execute jobs from V at each instant in ½t1; t2Þ.

Lemma 1. For a job set V, if the time interval ½t1; t2Þ is busy,
LAGðV; t2; TPSÞ � LAGðV; t1; TSP Þ.

Proof.

LAGðV; t2; TPSÞ
¼ LAGðV; t1; TPSÞ þAðV; t1; t2; PSÞ �AðV; t1; t2; TPSÞ
¼ LAGðV; t1; TPSÞ þAðV; t1; t2; PSÞ �m� ðt2 � t1ÞÞ
� LAGðV; t1; TPSÞ:

tu
Example 3. Consider that a task set t ¼ ft1 ¼ ð1; 3Þ; t2 ¼

ð2; 6Þ; t3 ¼ ð3; 9Þ; t4 ¼ ð10; 12Þg is scheduled upon a two-
processor platform. t1, t2, t3 and t4 release the first jobs at
time instances 2, 1, 0 and 0 respectively. Assume that tasks
are scheduled under FIFO, i.e., the job prioritization func-
tion is �l;jðtÞ ¼ rl;j. As shown in Fig. 3, under FIFO, t1;1
misses its deadline at time instance 5 by one time unit
because it cannot preempt t2;1 or t4;1 under FIFO, which
have earlier release times.

Let V ¼ ft1;1; t1;2; t1;3; t2;1; t3;1; t4;1; g be the set of jobs
with absolute deadlines no greater than 12. The time
interval ½3; 6Þ in Fig. 3 is a busy interval for V. By Eq.
(9), LAGðV; 6; TPSÞ ¼ LAGðV; 3; TPSÞ þAðV; 3; 6; PSÞ
�AðV; 3; 6; TPSÞ. The allocation of V in the PS schedule
during ½3; 6Þ is AðV; 3; 6; PSÞ ¼ 3

3 þ 6
6 þ 9

9 þ 30
12 ¼ 5:5. The

allocation of V in TPS throughout [3, 6) is 6. Thus,

LAGðV; 6; TPSÞ � LAGðV; 3; TPSÞ ¼ 5:5� 6 ¼ �0:5.
Let V ¼ ft1;1g be the set of jobs with deadlines no

greater than 5. Since the jobs t2;1; t3;1; t4;1, which have
deadlines after time 5, execute within the interval
½0; 5Þ in Fig. 3, ½0; 5Þ is non-busy for V in TPS. By Eq.
(9), LAGðV; 5; TPSÞ ¼ LAGðV; 0; TPSÞ þAðV; 0; 5; PSÞ�
AðV; 0; 5; TPSÞ. The allocation of V in the PS schedule
throughout the interval ½0; 5Þ is AðV; 0; 5; PSÞ ¼ 3� 1

3.
The allocation of V in TPS is AðV; 0; 5; TPSÞ ¼ 0. Thus,
LAGðV; 5; TPSÞ ¼ 1. Fig. 3 shows that at time 4, t1;1 is
pending. This job has 1 unit execution cost, which is
equal to the amount of pending work given by
LAGðV; 5; TPSÞ.
Lemma 1 indicates a very important observation, that is

for a specific job set, if its LAG increases throughout a time

interval, then this time interval is non-busy. Such non-busy
intervals make jobs tardy. Based on this observation, we use
lags to upper bound TPS-induced tardiness. In the rest of
the paper, t denotes a concrete task system, which satisfies
Eqs. (4) and (5). t has a PS schedule, with fixed fûlg
(1 � l � n). rl;j, el;j and fl;j for all tl;j 2 t are given, because
this is a posteriori analysis:

� rl;j (the release time of tl;j).
� el;j (the actual execution time of tl;j).
� fl;j (the completion time of tl;j in PS).

Definition 10. f̂l;j ¼ maxffl;j; rl;jþ1g represents the earliest
time instant, which is not earlier than rl;jþ1, by which tl;j has
completed execution in PS.

According to the definition of fl;j, job tl;j
0s tardiness in PS

schedule is f̂l;j � rl;jþ1.

Definition 11. Let f�
l;j denote tl;j’s completion time in TPS.

TPS-induced tardiness equals ff�l;j � f̂l;j; 0g, as illustrated
earlier in Fig. 2

Definition 12. êl;j ¼ max1�j0�jfel;j0 g denotes the maximum
execution time of jobs released by tl at or before rl;j.

Definition 13. Let r ¼ maxti2tfi þmaxtl2t’l. According to
Definition 2, r represents the maximum range of a job’s tunable
priority window.

We first assume that the following property for TPS
schedule exists. Then we calculate the corresponding x to
validate its existence.

(P) The TPS-induced tardiness of every job ti;k satisfying
f̂i;k < f̂l;j is at most xþ êi;k, where x � r.

Upper bounding the TPS-induced tardiness of tl;j equals
to determining the smallest x � r such that property (P)
holds, which implies a TPS-induced tardiness of at most
xþ êi;j for all jobs of every task ti 2 t by induction.

A simple case is that tl;j completes by f̂l;j, so we assume
otherwise. tl;j’s completion time depends on the jobs that can
compete with tl;j after f̂l;j. Similar to the analysis framework
used in [9], [21], a minimum value for x can be calculated
through the following three steps.

1) Calculate an upper bound on pending workloads of
tasks in t (including tl;j) that have priorities no lower
than tl;j after f̂l;j. (Section 3.1)

2) Determine the amount of such workloads necessary
for tl;j’s tardiness to exceed xþ êl;j. (Section 3.2)

3) Identify the smallest x � r such that property (P)holds
by requiring that the upper bound in Step 1 is no larger
than the necessary condition in Step 2. (Section 3.3)

Determine how other jobs delay tl;j
0s execution is the key

in reasoning about tl;j’s tardiness. We classify such higher
priority jobs according to the relation between their and tl;j’s
prioritization functions and f̂ , as following four categories:

� f̂L ¼ fti;k :: 9t : �i;kðtÞ > �l;jðtÞ ^ ðf̂i;k � f̂l;jÞg
� F̂L ¼ fti;k :: 9t : �i;kðtÞ > �l;jðtÞ ^ ðf̂i;k > f̂l;jÞg
� f̂H ¼ fti;k :: 9t : �i;kðtÞ � �l;jðtÞ ^ ðf̂i;k � f̂l;jÞg
� F̂H ¼ fti;k :: 9t : �i;kðtÞ � �l;jðtÞ ^ i 6¼ l ^ ðf̂i;k > f̂l;jÞg

Fig. 3. A schedule for t in Example 3.

1226 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

In this classification, f̂ and F̂ indicate that the completion
times of the corresponding jobs in PS are no later and later
than f̂l;j, respectively. H represents that the priority of ti;k
is at least tl;j’s priority, and L denotes that the priority of ti;k
is lower than tl;j’s priority. It is evident that tl;j 2 f̂H.

LetV ¼ f̂H [f̂L. In PS schedule, the completion times of
jobs in V are no later than f̂l;j. Jobs in V are not performed
beyond f̂l;j in the PS schedule. Because the jobs in f̂H [F̂H
have priorities no lower than tl;j, tl;j’s execution may be
delayed (in the worst case scenario) until the number of
ready jobs in f̂H [F̂H including tl;j is at mostm.

3.1 Step1: Determining an Upper Bound on
Competing Work

As we discussed earlier, a minimum value for x can be
calculated through three steps. In this section, we perform
the first step and calculate an upper bound, denoted by

W ðf̂H [F̂H; f̂l;j; TPSÞ, on competing workload for tl;j.
According to the definitions of task subsets, priorities of

jobs in f̂H [F̂H are no lower than those of tl;j. Thus, the com-
peting workloads from f̂H [F̂H for tl;j beyond f̂l;j,Wðf̂H [
F̂H; f̂l;j; TPSÞ, can be upper bounded by the sum of (i) the
amount ofworkloads pending at f̂l;j for jobs in f̂H, and (ii) the

amount of workloads WðF̂H; f̂l;j; TPSÞ required by jobs in
F̂H which canpostpone tl;j’s execution after f̂l;j. For thework-
loads described in (i), since the completion times of jobs from
V in PS are no later than f̂l;j, they are not performed in the PS

schedule after f̂l;j. Thus, LAGðf̂H; f̂l;j; TPSÞ, which denotes

the workload pending from jobs in f̂H, must be positive so
that tl;j can execute beyond its completion time in PS at f̂l;j.

Instead of bounding LAGðf̂H; f̂l;j; TPSÞ, We bound

LAGðV; f̂l;j; TPSÞ because LAGðf̂H; f̂l;j; TPSÞ � LAGðV; f̂l;j;

TPSÞ. This inequality holds because V ¼ f̂H [f̂L, and

LAGðf̂L; f̂l;j; TPSÞ is non-negative since according to the

definition of f̂L, the jobs in f̂L cannot execute moreworkload

by the time instant f̂l;j in TPS than that they have executed in

PS. Thus, we have Wðf̂H [F̂H; f̂l;j; TPSÞ � LAGðV; f̂l;j;

TPSÞ þWðF̂H; f̂l;j; TPSÞ. Therefore, Wðf̂H [F̂H; f̂l;j; TPSÞ
can be obtained by determining upper bounds for LAGðV;

f̂l;j; TPSÞ andWðF̂H; f̂l;j; TPSÞ.
Upper bound on LAGðV; f̂l;j; TPSÞ. Becasue we are deriv-

ing the upper bound on LAGðV; f̂l;j; TPSÞ, all busy and
non-busy intervals discussed herein are w.r.t. V and TPS
represents any scheduler, which can be realized by TPS,
unless stated otherwise.

According to Lemma 1, we know that if there is no non-
busy interval for V existing in ½0; f̂l;jÞ, then LAGðV; f̂l;j;
TPSÞ � LAGðV; 0; TPSÞ ¼ 0. We thus discuss the more com-
plicated case where some non-busy intervals exist in ½0; f̂l;jÞ.
There are two reasons for an interval to be non-busy for
jobs inV:

� The number of ready jobs in V is less than the num-
ber of available processors. In this case, it does not
matter whether jobs from F̂H or F̂L are performed
in this interval. Such intervals are called non-busy
non-occupation.

� Some ready jobs in V are not performed within some
sub-intervals in ½0; f̂l;jÞ, since one or more processors

are occupied by jobs in F̂H, which have higher prior-
ities. Therefore, such intervals are called non-busy
occupation.

Definition 14. tc;h is a carry-in job from task tc if rc;h � f̂l;j <
f̂c;h holds.

For each task tk, at most one such job could exist. The LAG
forV can be increased by such carry-in jobs, because they can

postpone the execution of jobs inV before time instance f̂l;j.

Definition 15. Let tH represent a task set. tH includes all the
tasks having carry-in jobs in F̂H.

Definition 16. Suppose tc;h is a carry-in job. dc represents the

amount of workload performed by tc;h in TPS by the time

instant f̂l;j.

In the following analysis, we consider a time instant t2:

before the time instant f̂l;j, if some non-busy non-occupation
intervals exist and throughout this time interval LAG for V
increases, then ½t1; t2� denotes the latest such interval; other-
wise, t1 ¼ t2 ¼ 0. Note that by Lemma 1, for V LAG increase
only across non-busy intervals.

Proofs for Lemmas 2 and 3 have also been provided pre-
viously in [9], [18], [21] for ordinary sporadic task systems
with deterministic execution times and periods. Intuitively,
when we derive TPS-induced tardiness, LAGðV; f̂l;j; TPSÞ
þWðF̂H; f̂l;j; TPSÞ’s value only depends on allocations to

jobs in V [F̂H in PS and allocations to the same jobs in
TPS, which can compete processing time with tl;j.

Thus, the derivation of the TPS-induced tardiness is not
affected by the task’s stochastic properties in the PS sched-
ule. Also, Property (P) alone is sufficient to determine the
amount of workload in V [F̂H which competes processing
capacity with tl;j.

Based on these intuitions, Lemmas 2 and 3 still hold
under the stochastic task model.

Lemma 2. LAGðV; f̂l;j; TPSÞ � LAGðV; t2; TPSÞ þ
P

tc2tH
dcð1� ûcÞ.

Proof. By Eq. (8),

LAGðV; f̂l;j; TPSÞ � LAGðV; t2; TPSÞ þAðV; t2; f̂l;j; PSÞ
�AðV; t2; f̂l;j; TPSÞ:

(10)

We split ½t2; f̂l;j� into k non-overlaping consecutive inter-
vals ½tvx ; twyÞ, where 1 � i � k. We have t2 ¼ tv1 , twði�1Þ ¼
tvi and twk

¼ f̂l;j. After splitting, each such interval ½tvi ; twi
Þ

belongs to one of the three categories: (i) busy, (ii) non-
busy occupation, or (iii) non-busy non-occupation. Sup-
pose ½tvi ; twi

Þ is an occupation interval, if any task tc 2 tH is
performed at some time instants in the interval, then it
must execute continuously across this interval. Note that tc
executing continuously throughout ½t2; f̂l;jÞ is not neces-
sary. In order to calculate LAG, let ac 	 tH denote a set of
tasks that are performed continuously across ½tvi ; twi

Þ for
any occupation interval ½tvi ; twi

Þ. Across the interval
½t2; f̂l;jÞ, for tasks in V, the total allocation difference
can be denoted as AðV; t2; f̂l;j; PSÞ �AðV; t2; f̂l;j; TPSÞ ¼Pb

i¼1ðAðV; tvi ; twi
; PSÞ� AðV; tvi ; twi

; TPSÞÞ. Then, the

DONG ET AL.: A GENERAL ANALYSIS FRAMEWORK FOR SOFT REAL-TIME TASKS 1227

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

workload performed in PSminus the workload performed
in the TPS throughout every such intervals ½tvi ; twi

Þ can
be upper bounded. We then upper bound the total

allocation difference throughout ½t2; f̂l;jÞ by summing all

these bounds together. According to the above discussed

three categories, there are three possible cases.
Case 1. ½tvi ; twi

Þ is busy.AðV; tvi ; twi
; TPSÞ ¼ mðtwi

� tviÞ,
since all processors are busy and used by jobs inV in TPS.
AndAðV; tvi ; twi

; PSÞ � Usumðtwi
� tviÞ. Because Usum �m,

then

AðV; tvi ; twi
; PSÞ �AðV; tvi ; twi

; TPSÞ � 0: (11)

Case 2. ½tvi ; twi
Þ is non-busy non-occupation. According

to the definition of LAG, LAG is not increased for tasks in
V across ½tvi ; twi

Þ by the selection of ½t1; t2�. Therefore,
from Eq. (9), we have

AðV; tvi ; twi
; PSÞ �AðV; tvi ; twi

; TPSÞ � 0: (12)

Case 3. ½tvi ; twi
Þ is non-busy occupation. Let

P
tc2ac ûc

denote the total utilization of tasks tc 2 ac. According to

the definition of V, these tasks’ carry-in jobs are not in V.

Thus, the total allocation to jobs in V during ½tvi ; twi
Þ

in PS is no more than AðV; tvi ; twi
; PSÞ ¼ ðtwi

� tviÞ
ðm�Ptc2ac ûcÞ. Every processor is busy at each time

instant during the interval ½tvi ; twi
Þ, since the interval

is occupation. Thus, AðV; tvi ; twi
; TPSÞ ¼ ðtwi

� tviÞðm�
jacjÞ holds. Put all pieces together, the allocation differ-

ence for jobs in V across the interval is

AðV; tvi ; twi
; PSÞ �AðV; tvi ; twi

; TPSÞ

� ðtwi
� tviÞ

m�

X
tc2ac

ûc

!
� ðm� jac j Þ

!

¼ ðtwi
� tviÞ

X
tc2ac

ð1� ûcÞ:
(13)

To complete the proof, for any busy interval ½tvi ; twi
Þ or non-

busy non-occupation interval ½tvi ; twi
Þ, define ac ¼ null.

The total allocation differences between PS and TPS for all

intervals ½tvi ; twi
Þwhich are provided by Eqs. (11), (12), and

(13), then

AðV; tvi ; twi
; PSÞ �AðV; tvi ; twi

; TPSÞ

�
Xb
i¼1

X
tc2ac

ðtwi
� tviÞð1� ûcÞÞ:

(14)

For each task tc 2 tH , the amount of workload
executed by tc’s carry-in job is no more than dc during

all sub intervals. Thus, AðV; tvi ; twi
; PSÞ �AðV; tvi ; twi

;

TPSÞ �Ptc2tH dcð1� ûcÞ. Setting it into Eq. (10), we

obtained that LAGðV; f̂i;j; TPSÞ � LAGðV; t2; TPSÞ
þPtc2tH dcð1� ûcÞ. tu

Lemma 3. Let etp denote the maximum job released by tp before t,

then lagðtp; t; TPSÞ � x� ûp þ etp for any task tp and

t 2 ½0; f̂l;j�.
Proof. f̂p;j represents the completion time of tp;j, which is

tp’s earliest pending job pends at time instant t in TPS. gp

denotes the amount of workload tp;j has executed by t.
First we consider the case where f̂p;j < t. By Eq. (7),

lagðtp; t; TPSÞ ¼
X
q�j

lagðtp;q; t; TPSÞ

¼
X
q�j

ðAðtp;q; 0; t; PSÞ �Aðtp;q; 0; t; TPSÞÞ:
(15)

Aðtp;q; 0; t; TPSÞ ¼ Aðtp;q; rp;q; t; TPSÞ, because tp;q does

not execute if it is not released. Thus,

lagðtp; t; TPSÞ
¼
X
q > j

ðAðtp;q; rp;q; t; PSÞ �Aðtp;q; rp;q; t; TPSÞÞ

þAðtp;j; rp;j; t; PSÞ �Aðtp;j; rp;j; t; TPSÞ:
(16)

According to PS’s definition,
P

q > j Aðtp;q; rp;q; t; PSÞ �
ûpðt� f̂p;jÞ. It is evident that Aðtp;j; rp;j; t; PSÞ ¼ ep;j,

Aðtp;j; rp;j; t; TPSÞ ¼ gp and
P

q > j Aðtp;q; rp;q; t; TPSÞ ¼ 0

based on the selection of tp;q. Putting these results into

Eq. (11), then

lagðtp; t; TPSÞ � ûpðt� f̂p;jÞ þ ep;j � gp: (17)

According to Property (P), tp;j’s tardiness is no greater

than xþ êp;j, thus tþ ep;j � gp � f̂p;j þ xþ êp;j. Therefore,

t� f̂p;j � xþ êp;j þ gp � ep;j. From Eq. (17), then

lagðtp; t; TPSÞ � ûpðt� f̂p;jÞ þ ep;j � gp

¼ ûpðxþ êp;j þ gp � ep;jÞ þ ep;j � gp

� x� ûp þ êp;j � x� ûp þ etp:

Then, we consider the case f̂p;j � t. Based on Eq. (7) and
the definition of tp;j,

lagðtp; t; TPSÞ ¼
X
q�j

lagðtp;q; t; TPSÞ

¼
X
q�j

ðAðtp;q; 0; t; PSÞ �Aðtp;q; 0; t; TPSÞÞ

¼
X
q < j

ðAðtp;q; rp;q; t; PSÞ �Aðtp;q; rp;q; t; TPSÞÞ

þAðtp;j; rp;j; t; PSÞ �Aðtp;j; rp;j; t; TPSÞ:

(18)

According to PS’s definition and f̂p;j � t,
P

h< j Aðtp;h;
rp;h; t; PSÞ �

P
h< j ep;h; because in the schedule TPS, tp;j

is the earliest pending job of tp at time t,
P

h< j Aðtp;h;
rp;h; t; TPSÞ ¼

P
h< j ep;h. Also, Aðtp;j; rp;j; t; PSÞ � ep;j and

Aðtp;j; rp;j; t; TPSÞ ¼ gp � 0, and setting these values into

Eq. (18)

lagðtp; t; TPSÞ

�
 X

q < j

ep;q �
X
q < j

ep;q

!
þ ep;j � gp

� ep;j � etp:

(19)

Therefore, lagðtp; t; SÞ � x� ûp þ etp holds for any task tp

and t 2 ½0; f̂l;j�. Thus, the lemma is proved. tu
Before we prove the upper bound on LAG of jobs in V

at time t2, we introduce two definitions first. Let k0 ¼

1228 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

maxfk : ti;k 2 V; ri;k � f̂l;jg. Define

UL ¼
Xm�1

i¼1

ûi; (20)

where ûi is the ith largest value of fûig and define

hl;j ¼
Xm�1

i¼1

êi; (21)

where êi is the ith largest value of fêi;k0 g.
Lemma 4. LAGðV; t2; SÞ � x� UL þ hl;j.

Proof. Based on the definition of LAG, we sum individual
task lags at t2 to upper bound LAGðV; t2; TPSÞ. The
lemma holds trivially if t2 ¼ 0 and LAGðV; t2; TPSÞ ¼ 0.
We discuss the case where t2 > 0. Since t2 is non-busy
non-occupation, jx j � ðm� 1Þ. If no jobs from a task are
pending at t2, then lagðti; t2; SÞ ¼ 0. Thus, according to
Eq. (7) and Lemma 3, the following equation holds:

LAGðV; t2; SÞ
¼

X
ti :ti;j2V

lagðti; t2; TPSÞ �
X
ti2x

lagðti; t2; TPSÞ

�
X
ti2x

ûi � xþ e
t2
i � hl;j þ x� UL:

(22)

tu
Thus, LAGðV; f̂i;j; SÞ is upper bounded by x� ULþ hl;j þP
tc2tH dcð1� ûcÞ according to Lemmas 2 and 4.

Upper Bound onWðF̂H; f̂i;j; TPSÞ. To calculate a bound on
W ðF̂H; f̂i;j; TPSÞ, which denotes the total workload of jobs
that can delay tl;j after time instant f̂l;j, first we consider
such a job with the latest possible release time. If a job’s
release time is far behind f̂i;j, it may not be able to compete
with tl;j since its priority cannot be tuned higher than tl;j’s
priority because the range of the priority window is limited.

Lemma 5. If ti;k 2 F̂H [f̂H, then ri;k � f̂l;j þ ’l þ fi.

Proof. Given that rl;j � fl � �l;jðtÞ � rl;jþ1 þ ’l holds for any

job tl;j and rl;jþ1 � f̂l;j (by Definition 11), if ti;k 2 F̂H [f̂H,

then at time t, ri;k � fi � �i;kðtÞ � �l;jðtÞ � f̂l;j þ ’l holds.

This implies ri;k � f̂l;j þ ’l þ fi. tu
Corollary 1. All jobs in F̂H [f̂H are released no later than

f̂l;j þ r according to the definitions of those job sets, where
r ¼ maxth2tðfhÞ þmaxth2tð’hÞ.

Lemma 6. Let ~pi denote the minimum release time interval
and ~ei denote the maximum job execution time of ti
before f̂l;j þ ’l þ fi. W ðF̂H; f̂l;j; TPSÞ �

P
ti2tH ðei;k � diÞþP

ti2tntlðd
’lþfi
~pi

eÞ~ei holds.
Proof. F̂H includes two types of jobs: a carry-in job or a job,

the release time of which is later than f̂l;j. Suppose ti;k in
F̂H belongs to the latter case. According to Lemma 5, the
release time of ti;k is in the interval ðf̂l;j; f̂l;j þ ’l þ fi�.
Therefore, every task ti possibly has a carry-in job in F̂H
and at most d’lþfi

~pi
e jobs in F̂H with release times later

than f̂l;j. If ti;k in F̂H belongs to the first case, ti has a
carry-in job. According to the definition of tH , ti is in tH ,

and the workload generated by ti;k after f̂l;j is no greater
than ei;k � di. It is evident that the workload produced by
any job of ti in F̂H with release time later than f̂l;j is no
greater than ~ei. From these facts, the lemma follows. tu
Upper Bound onWðf̂H [F̂H; f̂l;j; TPSÞ. SinceWðf̂H [F̂H;

f̂l;j; TPSÞ � LAGðV; f̂l;j; TPSÞ þWðf̂H; f̂l;j; TPSÞ, by Lemmas
2, 4, and 6,we have

W ðf̂H [F̂H; f̂l;j; TPSÞ
� x� UL þ hl;j þ

X
tc2tH

ðdcð1� ûcÞ þ ðec;k � dc;kÞÞ

þ
X

ti2tntl

�l ’l þ fi

~pi

m�
~ei

� x� UL þ hl;j þ
X

ti2tntl

�l ’l þ fi

~pi

m
þ 1
�
~ei:

(23)

3.2 Step 2: Determining Necessary Condition for
Tardiness to Exceed xþ êl;j

In this section, a lower bound on the amount of workload
with priorities higher than tl;j is derived, which is necessary
for tl;j to complete execution more than xþ êl;j time units
after its deadline.

Lemma 7. If tl;j’s tardiness exceeds xþ êl;j, where x � r (r is
defined in Definition 13), then Wðf̂H [F̂H; f̂l;j; TPSÞ >
rþm� ðx� rÞ þ êl;j.

Proof. This lemma is proved by contraposition. That is, we

prove that Wðf̂H [F̂H; f̂l;j; SÞ � rþm� ðx� rÞ þ êl;j
and show that tl;j’s tardiness is no larger than xþ êl;j. Since

jobs in f̂L [F̂L cannot preempt tl;j and thus they can not

postpone the completion time of tl;j, they are ignored for

this proof. By Corollary 1, the release times of jobs in

f̂H [F̂H are no later than f̂l;j þ r. Therefore, after f̂l;j þ r,

the number of tasks, which have pending jobs in f̂H [F̂H,

decreases.
Consider the time instant bl;j ¼ maxff�

l;j�1; vl;jg, where

vl;j ¼ minft � f̂l;j : ½t;1Þ is a non-busy interval}.
Since bl;j � vl;j � f̂l;j � rl;jþ1 � rl;j, tl;j must have

started executing in TPS at bl;j. tl;j1 has completed (since

bl;j � f�
l;j�1), and at least one processor is idle after bl;j. It

is evident that tl;j will complete execution by bl;j þ el;j,

which means that

f�l;j � maxff�
l;j�1 þ el;j; vi;j þ el;jg

� maxff̂l;j�1 þ xþ êl;j�1 þ el;j; vl;j þ el;jg:
(24)

There exist two possible cases depending on the

relationship between f̂l;j�1 þ xþ êl;j�1 þ el;j and vl;j þ el;j.

Case 1. f̂l;j�1 þ xþ êl;j�1 þ el;j � vl;j þ el;j. According to
the definition of PS, tl’s jobs are performed sequentially
in PS schedule at a constant rate of ûl, and do not start
executing until their previous jobs complete execution,
thus,

fl;j � fl;j�1 þ ei;j=ûi

� fl;j�1 þ el;j:
(25)

DONG ET AL.: A GENERAL ANALYSIS FRAMEWORK FOR SOFT REAL-TIME TASKS 1229

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

Also, jobs cannot execute in PS before they are released,
thus,

fi;j � ri;j þ ei;j=ûl;

� rl;j þ el;j:
(26)

Combine Eq. (25) with Eq. (26), we get fl;j � maxffl;j�1;

rl;jg þ el;j ¼ f̂l;j�1 þ el;j. Thus, Eq. (24) becomes

f�
l;j � max

n
f̂l;j�1 þ xþ êl;j�1 þ el;j; vl;j þ el;j

o
¼ f̂l;j�1 þ xþ êl;j�1 þ el;j

� fl;j þ xþ êl;j�1

� f̂l;j þ xþ êl;j;

(27)

which indicates that tl;j’s tardiness is not greater than
xþ êl;j.

Case 2. f̂l;j�1 þ xþ êl;j�1 þ el;j < vl;j þ el;j. Since êl;j�1 �
êl;j and el;j � êl;j (by Definition 12) , if vl;j � f̂l;j þ x, then

according to vl;j’s definition, tl;j’s tardiness is no greater

than xþ êl;j. Thus, we consider the other case, i.e.,

vi;j > f̂l;j þ x, where ½f̂l;j þ r; f̂l;j þ x� is a busy interval.

The reason is that according to Corollary 1, the release

times of all jobs in f̂H [F̂H are no later than f̂l;j þ r.

Therefor, after f̂l;j þ r, the number of tasks, which have

pending jobs in f̂H [F̂H, decreases. When vi;j > f̂l;j þ x,

the earliest non-busy time instant after f̂l;j þ r is vl;j, which

is illustrated in Fig. 4. No job will be assigned to a proces-

sor, which becomes available at any non-busy time instant

t � f̂l;jþr, because no job is released after f̂l;j þ r. Therefore,

the time interval after time instant t is non-busy. According

to the selection of vl;j, vl;j equals to t. The amount of

workload in TPS during ½f̂l;j þ r; f̂l;j þ x� is no smaller

than ðx� rÞ �m. Because W ðf̂H [F̂H; f̂l;j; SÞ � rþm�
ðx� rÞ þ êl;j, the amount of workload in TPS during

½f̂l;j; f̂l;j þ r� and ½f̂l;j þ x; f̂l;j þ xþ êl;j� is no greater than

rþ êl;j. tl;j will hence complete by f̂l;j þ xþ êl;j since

x � r, even if all the workloads are performed sequen-

tially. Thus, f�
l;j � f̂l;j þ xþ êl;j and the contraposition

holds. tu

3.3 Step 3: Deriving TPS-Induced Tardiness Bound

According to Lemma 7, requiring Eq. (23), which is an

upper bound on Wðf̂H [F̂H; f̂l;j; TPSÞ, to be no greater
than rþm� ðx� rÞ þ êl;j will enforce that tl;j’s TPS-
induced tardiness is no greater than xþ êl;j. The following
inequality holds.

x� UL þ hl;j þ
X

ti2tntl

 &
’l þ fi

~pi

’
þ 1

!
~ei

� rþm� ðx� rÞ þ êl;j:

(28)

Thus,

x � hl;j þRðlÞ
m� UL

; (29)

where

RðlÞ ¼ ðm� 1Þr� êl;j þ
X

ti2tntl

 &
’l þ fi

~pi

’
þ 1

!
~ei: (30)

If x equals to the right-hand side of Eq. (29), then the TPS-
induced tardiness of tl;j will not be greater than xþ êl;j.

Theorem 1. The TPS-induced tardiness for a task tl;j in TPS
schedule is at most xþ êl;j, where x is obtained above.

4 BOUNDING STOCHASTIC-INDUCED TARDINESS

We consider the stochastic-induced tardiness as a stochastic
variable and derive a bound on its expected value in this
section. Specially, under the PS schedule, we demonstrate
that any job’s expected tardiness can be upper bounded by
a constant value that only depends on tasks’ period distribu-
tion, execution time distribution, and the values of ûl. Our
analysis is motivated by the stochastic analysis framework
first presented by Mills and Anderson [27]. We leverage and
extend this framework by considering an additional stochas-
tic task property, i.e., the stochastic task period.

4.1 The Stochastic Model

As we discussed in Section 2.2, PS can be viewed as a system
consisting of n processors, and the processing capacity of the
ith processor is a fraction ûi of one processor in a real system.
The ith processor is dedicated to execute ti. Thus, jobs from
different tasks do not have interference with each other in PS
andwe can consider each task independently.

Consider task ti for example. Jobs of ti are executed
sequentially. Let Zi;j denote the tardiness of ti;j in PS. Thus,

Zi;j ¼ maxf0; f̂i;j � ri;jþ1g and Zi;j is the stochastic-induced
tardiness for ti;j. Zi;j can be denoted by Zi;j�1 as a recursion,
i.e. ti;j’s tardiness can be calculated using three values: the
tardiness of ti;j�1 plus the execution time of ti;j in PS sched-
ule (i.e. ei;j=ûi), and minus its period (i.e. pi;j)

Zi;j ¼ maxf0; Zi;j�1 þ ei;j=ûi � pi;jg: (31)

This recursion is visualized in Fig. 5, Zi;j ¼ Zi;j�1

þei;j=ûi � pi;j and Zi;0 ¼ 0.

Fig. 4. The structure of workload on processers after f̂l;j. When

vi;j > f̂l;j þ x, the earliest non-busy time instant after f̂l;j þ r is vl;j.

Fig. 5. Recursion for tardiness in PS. Zi;j denotes the tardiness of ti;j in
PS and Zi;j can be denoted by Zi;j�1 as a recursion: Zi;j ¼ Zi;j�1

þei;j=ûi � pi;j.

1230 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

Similar recursive equations in queuing theory are used to
represent the customers’ waiting time in a queue under the
single server G/G/1 queuing model. The queueing model
and Eq. (31), were first studied in 1952 by Lindley [20].

Theorem 2 ([20]). The stochastic process fZi;j; j � 1g has a
limit probability distribution function pið
Þ as j increases if and
only if EðSi;j � Ii;jÞ < 0.

According to the above Theorem, Zi;j has a limit proba-
bility distribution function pið
Þ as j increases if and only if

EðSi;j � Ii;jÞ < 0; (32)

where EðSi;j � Ii;jÞ represents the expectation of ðSi;j � Ii;jÞ,
Si;j denotes the service time provided by the server and Ii;j
is the inter arrival time between consecutive customers. We
set Si;j ¼ ei;j=ûi and Ii;j ¼ ri;jþ1 � ri;j, therefore,

EðSi;j � Ii;jÞ ¼ Eðei;j=ûi � pi;jÞ ¼ �ei=ûi � �pi < 0; (33)

where �ei=ûi � �pi is negative by Eq. (5). Thus, Zi has a proba-
bility distribution function pið
Þ as j increases. According to
[15] (p. 474), the expectation of Zi can be upper bounded by
Eq. (34)

EðZiÞ � s02
i þ s2

i

2ð�pi � �ei=ûiÞ ; (34)

where s02
i and s2

i are the variance of the period and execu-
tion time distributions of ti, respectively, as defined earlier
in Assumptions 1 and 2.

Lemma 2 implies that as j becomes large, Zi;j gets close to
a limit probability distribution function pið
Þ, and Zi;j has a
finite mean by Eq. (34). Based on these results, we bound all
jobs’s tardiness next.

4.2 Tardiness Bound for All Jobs

Based on the expected tardiness bound for ti;j with large j,
in this section, we bound the expected tardiness for all j by
constructing a new execution schedule ~PS for ti. Intuitively,
if each job ti;j’s tardiness in ~PS schedule is no less than that
of ti;j in PS, then ti’s tardiness bound under ~PS can also
bound its tardiness under PS.

In order to clearly illustrate the process of constructing the
~PS schedule, we shall first describe a stochastic property of

ti;j’s tardiness in the PS. It is evident that Zi;j is a Markov
process. This is because Zi;j’s future value only depends on
its present state. For example, by examining Eq. (31), it can
be observed that Zi;jþ1 depends only on Zi;j, ei;j and pi;j.
According to Lemma 2, Zi;j has a limit probability distribu-
tion function pið
Þ as j increases. Therefore, if we randomly
draw Zi;0 from the distribution piðxÞ instead of 0, then Zi;j

has the probability distribution function pið
Þ for all j. In
other words, the expected tardiness bound in PS would
apply for all j. Based on this observation, we construct ~PS
schedule for ti. Let ~fi;j represent ti;j’s completion time in ~PS.

Constructing ~PS. We now construct the ~PS schedule by
modifying PS schedule. Note that only one modification
needs to be made on PS schedule. That is, for each task ti,
we randomly draw a value Zi;0 from the distribution pið
Þ
instead of 0 in Eq. (31), which is shown in Fig. 6. Note that
the release time and execution time of each job ti;j are not

altered in both PS and ~PS schedules. ti;1 starts executing at
Zi;0 time units after it is released in ~PS.

Based on the construction of ~PS, ti;1 starts executing in
~PS no earlier than the time it starts executing in PS, because

ti;1’s execution is postponed by Zi;0 � 0 in ~PS. Thus, the first

job of each task completes in ~PS no earlier than the time
instant it completes execution in PS. Moreover, if
~fi;j�1 � fi;j�1, then ~fi;j � fi;j. This is because in ~PS schedule
ti;j starts executing at ri;j þ zi;0 when j ¼ 1, and at
max fri;j; ~fi;j�1g, when j > 1. By this induction argument,
the completion time of any job in ~PS is no earlier than the
time it completes in PS. Due to these reasons, for all ti;j 2 ti,
~fi;j � fi;j holds. Hence, we have

ZPS
i;j � Z

~PS
i;j : (35)

Z
~PS

i;j denotes ti;j’s tardiness in ~PS schedule and ZPS
i;j

denotes ti;j’s tardiness in PS schedule. Since Z
~PS

i;j has distri-

bution pið
Þ for all j, it has EðZ ~PS
i;j Þ ¼ EðZiÞ � s02iþs2

i
2ð �pi� �ei=ûiÞ

according to Eq. (34). Thus, 8j, by Eq. (35),

E
�
ZPS
i;j

�
� s02

i þ s2
i

2ð�pi � �ei=ûiÞ : (36)

Note that any job’s expected tardiness in PS schedule is
bounded by Eq. (36). As we discussed earlier, different
choices of ûl may lead to different derived tardiness bounds.
We thus use the following Theorem to optimize ûi. To sim-
plify the notation used in the following theorem, let
ai ¼ s02

i þ s2
i . Note that si and s0

i are given constant values.

Theorem 3. A constant x exists such that for all (i,j) where ti;j is
a job of ti,

E
�
ZPS
i;j

�
ûi

� x: (37)

Proof. To prove this result, we need to find values for fûig and
x. Specially,we need x � EðZPS

i;j Þ 1
ûi
, 8l. By (36), we have

x � max
i

ai
2ð�piûi � �eiÞ
� �

: (38)

In (38), ûi is a variable and it can be any value that satis-
fies (4) and (5). Thus, the values for fûig and x should be
identified simultaneously. To achieve this goal, we charac-
terize these requirements using a linear programming:
let z ¼ x�1 and ûi; l ¼ 1; 2; 3; . . . be decision variables,

z ¼ x�1 � min
i
f2ð�piûi � �eiÞ

ai
g: (39)

Solving the following linear programming will yield a
valid group of ûi and an upper bound on the expected tar-
diness inPS schedule.

Fig. 6. Recursion for tardiness in ~PS.

DONG ET AL.: A GENERAL ANALYSIS FRAMEWORK FOR SOFT REAL-TIME TASKS 1231

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

max z (40)

s:t: �piûi � ai
2
z � �ei; 8i (41)

Xn
i¼1

ûi � m (42)

�ui � ûi � 1; 8i: (43)

In the above linear programming, constraint (41)
enforces (39) and constraint (42) enforces (4). We use
constraint set (43) to enforce (5). Note that in (43), ûi may
equal �ui. However, it is evident that ûi ¼ �ui can only
occur if s02

i þ s2
i ¼ 0 holds by satisfying the above con-

straints. Given that z is maximized, s02
i þ s2

i ¼ 0 becomes
the deterministic case, where ti’s tardiness in PS is 0.

We denote û�
i and z� as the solution to the above linear

programming, and x ¼ 1
z�. Then the theorem is proved. tu

5 COMBINE TPS-INDUCED AND

STOCHASTIC-INDUCED TARDINESS

Wenow combine the TPS-induce tardiness (Section 3) and the
stochastic-induced tardiness (Section 4) to show that tardiness
in TPS is bounded.

We denote these random variables by capital letters: let
X̂l;j ¼ êl;j, i.e., X̂l;j ¼ maxj0<jel;j0 ; let ~Xl ¼ ~el; let ~Yl denote the

stochastic equivalent of ~pl. The definitions of ~el and ~pl are
given in Lemma 6. Let El;j denote the stochastic equivalent
of hl;j. hl;j is defined in Eq. (21).

Theorem 4. t is a stochastic task system, then the expected tardi-
ness of each job tl;j in TPS is upper bounded by

bl;j � xûl þ

1� 1

m� UL

!
� EðX̂l;jÞ þ ðm� 1Þr

m� UL

þ
EðEl;jÞ þ

P
ti2tntl

�
E
�l

’lþfi
~Yi;k

m�
þ 1
�
Eð ~Xi;kÞ

m� UL
;

(44)

where x ¼ 1
z� and z� is the solution to the linear programming

(Eqs. (40), (41), (42), and (43)), provided �U < m holds.

Proof. Recall that f�l;j denotes the completion time of tl;j in
TPS. Then, based on Property (P) and Eq. (29),

f�l;j ¼ f̂l;j þ xþ êl;j

¼ f̂l;j þ êl;j

þ
hl;j þ ðm� 1Þr� êl;j þ

P
ti2tntl

�l
’lþfi
~pi

m
þ 1
�
~ei

m� UL
:

(45)

By Eq. (45) and f̂l;j � rl;jþ1 by Definition 10, the tardiness

of tl;j in TPS, denoted as ZTPS
l;j , is

ZTPS
l;j ¼ maxff�l;j � ri;jþ1; 0g

� f̂l;j þ êl;j � ri;jþ1

þ
hl;j þ ðm� 1Þr� êl;j þ

P
ti2tntl

�l
’lþfi
~pi

m
þ 1
�
~ei

m� UL
:

(46)

The quantity f̂l;j � rl;jþ1, which represents the time from
job tl;jþ1’s release time until it is completed in PS, is not
given. However, we know that Eq. (46) holds regardless

of the value of f̂l;j � rl;jþ1 is. Thus, f̂l;j � rl;jþ1 is just the

random variable TTPS
l;j . By taking the expectation of both

sides of Eq. (46) and ZPS
l;j ¼ f̂l;j � ri;jþ1, we obtain

E
�
ZTPS
l;j

�
� E

�
ZPS
l;j

�
þ EðX̂l;jÞ þ ðm� 1Þr

m� UL

þ
Eðhl;jÞ �EðX̂l;jÞ þ

P
ti2tntl

�
E
�l

’lþfi
~Yi;k

m�
þ 1
�
Eð ~Xi;kÞ

m� UL
:

(47)

By Theorem 3, EðZPS
l;j Þ � xûl;j. Substituting it into Eq. (47)

makes Eq. (49) hold. tu
If every task tl has a maximum execution time el and

minimum release time interval pl, then EðX̂l;jÞ � el,
Eð ~Xl;jÞ � el and EðIl;jÞ � pl for all tl;j 2 t (recall that Il;j is
defined below Eq. (32)), and

EðEl;jÞ �
X

tk2"0max

ei; (48)

for each tl;j, where "0max denotes a task set consisting of m-1
tasks having largest el. Then, bl;j (derived in Theorem 4) is
bounded by Eq. (49), which is a constant value, for all ðl; jÞ.
The following corollary immediately follows.

Corollary 2. If worst-case execution times fel; tl 2 tg and
worst-case release time interval fpl; tl 2 tg exist, then for all
ðl; jÞ, bl;j is upper-bounded by a constant.

6 VIDEO DECODING CASE STUDY

In this section, we illustrate the application of our theoretical
results using a real-world case study conducted involving
video decoding. Several practical reasons motivate us to
choose video decoding as a case study. First, video processing
is now pervasively used in many cyber-physical embedded
systems such as autonomous driving. For example, Volvo
used the latest NVIDIA DRIVE PX2 GPU computing engine
to power a fleet of 100 Volvo XC90 SUVs starting to hit the
road in 2017 [2]. In autonomous driving systems, multiple
real-time video streams may compete for the limited comput-
ing resources for data processing (e.g., object recognition).
Thus, designing a capable real-time scheduler to properly
schedule the video steams among processors is critical to
guarantee the efficiency of the entire embedded system. Sec-
ond, video decoding times vary from frame to frame with
MPEG, and the frames per second (FPS) of video streams fluc-
tuates over time. An interesting observation from our experi-
ments is that decoding times are higher for scenes with
background changes. Therefore, the MPEG video decoding
tasks have stochastic execution times and stochastic periods,
which are more suitable to be analyzed using our proposed
method, rather than the traditional worst-case analysis.

Experimental Setup. Our scheduler is implemented as a
plugin of LITMUSRT [1] on a GPU server with a 12-core Intel
Xeon CPU and a NVIDIA “Pascal” GTX 1080 TI GPU, which
has 16 SMs. In our case study, we target at a multi-tasking
environment where a system of 12 tasks is processed in our
experiments,where each taskdecodes a separatemovie trailer
and each job of each task decodes one frame of video. The
GPU kernel code is only written for handling decoding tasks.
For each kernel, a configuration is created which indicates

1232 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

that 4 SMs are grouped together to decode one frame (one job)
at a time. This configuration also specifies that at most 4 tasks
can execute simultaneously. To enable preemptive schedul-
ing on GPU, we apply our previously developed GPGPU
runtime module GPES [38], which indirectly enables limited
preemptiveGPGPU execution through breaking both compu-
tation and data into fine-grained sub-chunks. To obtain per-
job execution times and periods, tasks are run in isolation and
all videos are preloaded into memory to avoid page faults.
The calculated information for each trailer is given in Table 2.
The time unit in the tables isMillisecond (ms).

Scheduling Algorithm. The response time of each task also
depends on the scheduling algorithm used to schedule the
task system. In our case study, prioritization function�l;jðtÞ is
used to simulate Global-FIFO: when jobs are released, they
are prioritized by their release times. In other words, accord-
ing to the definition of the prioritization function,�l;jðtÞ ¼ rl;j,
fl ¼ 0 and ’l ¼ 0. Based on Theorem 4, the expected tardiness
of each job tl;j in FIFO is upper bounded by

bl;j � xûl þ

1� 1

m� UL

!
� EðX̂l;jÞ þ ðm� 1Þr

m� UL

þ EðEl;jÞ þ
P

ti2tntl Eð ~Xi;kÞ
m� UL

;

(49)

where x ¼ 1
z� and z� is the solution to the linear program-

ming (Eqs. (40), (41), (42), and (43)), provided �U < m holds.

For simplicity, we consider the usage of FIFO herein and

the above expected tardiness bound, even though global

algorithms, which also can be simulated by the prioritiza-

tion function, with better tardiness bounds exist, such as
Global-EDF [9]. These algorithms with better bounds are

more complicated to explain, and Global-FIFO is sufficient

to illustrate our analysis.
ûl Selection. We now examine expected response time

bounds for the video decoding tasks when the 12 trailers are
scheduled together on the GPU server. In our analysis, PS is
considered to be an ideal schedule where for each tl 2 t, at
every time instant that tl has pending jobs, a fraction ûl of the
processing capacity of one processor is allocated to tl. As we
discussed in Section 2.2, different choices of ûl will lead to dif-
ferent derived tardiness bounds. Traditionally, PS is also used
to analyze the schedulability of tasks under the worst-case

scenario [10], [12] and ûl is defined to be el
pl
for ordinary spo-

radically task tl, where el is the worst-case execution time and
pl is theminimal period of tl. In the stochastic case, this defini-
tion is not applicable. Intuitively, we can define ûl as

el
pl
, where

el is the average execution time and pl is the average period of
tl. Based on this definition, we can calculate the expected
response time bound for tl using Eq. (49) and the correspond-
ing results are given in Table 3. In Section 4.2, we optimize ûl

using a linear programming (Eqs. (40), (41), (42), and (43)) to
further reduce the expected response time bound for tl and
the experimental results are given in Table 4.

Results. The results are collected and shown in Tables 2, 3,
and 4. For Table 2, the “el” columndenotes the average execu-
tion time of tl, the “s2

l “ column denotes the variance of tl’s
execution time; the “pl” columndenotes the average period of
tl; the “s02

l ” column denotes the variance of tl’s period; the
“WECT” column denotes the worst-case execution time of tl;
the minfplg column denotes the minimum period of tl. For
Tables 3 and 4, the “ûl” column denotes the selected ûl for tl,
the “actual tardiness“ column denotes the actual average
decoding tardiness of tl measured in our experiments; the
“expected tardiness bound” column denotes the expected
tardiness bound of tl calculated using Eq. (49) with the corre-
sponding ûl.

Comparison with a Worst-Case Analysis. As shown in Table
2, under a worst-case scenario, some decoding tasks are not
schedulable, since their WCETs are greater than their

TABLE 3
tl’s Actual Average Tardiness and Its Expected Tardiness

Bound, When ûl ¼ el
pl

Task ûl actual tardiness expected tardiness bound

t1 0.166 202.34 483.55
t2 0.165 207.14 490.17
t3 0.158 60.12 477.55
t4 0.156 185.51 486.12
t5 0.157 94.32 489.45
t6 0.160 170.66 510.02
t7 0.173 152.81 496.36
t8 0.158 265.91 488.23
t9 0.156 109.14 485.62
t10 0.156 201.74 464.72
t11 0.171 151.66 499.25
t12 0.168 253.80 504.55

TABLE 2
Computed Information for 12 MPEG Decoding Tasks

(All Times are in MS)

Task el s2
l pl s02

l WCET minfplg
t1 7.23 52.20 43.43 0.57 45.35 43.02
t2 7.19 51.29 43.67 0.11 35.72 42.97
t3 6.87 44.66 43.40 0.09 27.85 42.99
t4 6.79 60.17 43.48 0.10 51.26 43.11
t5 6.83 44.85 43.53 0.11 66.48 42.96
t6 6.98 46.31 43.55 0.15 48.46 43.05
t7 7.51 58.72 43.48 0.11 30.63 42.89
t8 6.84 62.90 43.37 0.10 55.46 42.94
t9 6.75 42.67 43.36 0.09 31.09 42.88
t10 6.79 43.77 43.64 0.11 44.71 43.01
t11 7.42 55.94 43.35 0.07 46.36 43.05
t12 7.27 53.24 43.38 0.08 38.30 43.08

TABLE 4
tl’s Actual Average Tardiness and Its Expected Tardiness

Bound, When ûl is Calculated by the LP

Task ûl actual tardiness expected tardiness bound

t1 0.237 202.34 365.12
t2 0.300 207.14 376.75
t3 0.248 60.12 299.23
t4 0.365 185.51 388.85
t5 0.339 94.32 295.36
t6 0.272 170.66 374.23
t7 0.384 152.81 371.25
t8 0.366 265.91 375.36
t9 0.372 109.14 394.12
t10 0.367 201.74 401.23
t11 0.373 151.66 358.35
t12 0.377 253.80 384.23

DONG ET AL.: A GENERAL ANALYSIS FRAMEWORK FOR SOFT REAL-TIME TASKS 1233

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

periods. For example, the WCET of t4 is 51.26 ms, which is
larger than 43.11 ms, which is the worst-case period of t4. In
contrast, as shown in Tables 3 and 4, by selecting ûl for each
task tl, all tasks are schedulable and the expected tardiness
is bounded. For example, in Tables 3 and 4, the expected tar-
diness bounds of t4 is 486.12 ms and 388.85 ms, respectively.

Tardiness Bounds with Different ûl.As seen in Tables 3 and 4,
we compute the expected tardiness bound for each task using

Eq. (49) with different ûl. As shown in Table 3, when ûl ¼ el
pl
,

all tasks have bounded expected tardiness, which is larger
than the actual tardiness obtained from our experiments. The
reason is our analysis techniques admit additional pessimism
when we upper bound tardiness for each task. Similarly,
as seen in Table 4, when ûl is calculated by the linear program-
ming (Eqs. (40), (41), (42), and (43)), all tasks are still schedu-
lable with bounded tardiness. An interesting observation
from Tables 3 and 4 is that the derived tardiness bound for
each task tl in Table 4 is smaller than that in Table 3. In other
words, the derived tardiness bound is optimized when ûl is
calculated by the linear programming. For example, the actual
average tardiness of t7 is 152.81mswhile the derived expected
tardiness of t7 is 496.36 (371.25) ms in Table 3 (Table 4) when
ûl is 0.173 (0.384). The reason is that each ûl calculated by

the linear programming is greater than el
pl
and according to

Eq. (49), where x ¼ 1
z� and z� is the solution to the linear pro-

gramming, when ûl is greater, tl’s tardiness bound is smaller.

7 EXPERIMENTS

In this section, we randomly generate task sets and conduct
extensive experiments to evaluate the practicality of our pro-
posed results given in Theorem 4. Our objective is to validate
whether the obtained test’s utilization cap is reasonable or
not, and how practical the derived schedulability is. Our
method is also compared with prior methods[18], [27]. In the
experimental results, our proposed stochastic schedulability
test is denoted as “DL”, the test presented in [18] is denoted
as “LA”, and the test introduced in [27] is denoted as “MA”.

Experiment Setup. The UUnifast-Discard method propo-
sed by Emberson et al. [36] was applied to generate a set of uti-
lization values with the given utilization and we adopted
amulticore platform in our local cluster to performour simula-
tions, which has eight 64-bit Intel processors running at

2.0 GHz with 16 GB DDR3 RAM. Tasks’ average inter arrival
times were randomly selected over ½50 ms; 200 ms� under
uniform distribution and the variances were uniformly
selected over ½0; 10000 ms2�. The average utilizations of Tasks
were randomly selected over ½0:005; 0:8� under uniform distri-
bution. Average execution time for each task was derived by
multiplying its average period and average utilization. The
variances of tasks’ average execution timewere uniformly dis-
tributed over ½0; 6400 ms2�. Note that the tasks’ execution times
and periods were distributed using two independent normal
distributions and the means for the two distributions are iden-
tical to the calculated average release time interval and the
average execution costs. For each category of tasks’ average
utilization, period, and Usum, 10,000 task sets were randomly
produced for multiprocessor platforms consisting of 4 and 8
processors. Every set of Tasks was produced by randomly
generating tasks and stopped until the total utilization of all
generated tasks was larger than the given utilization cap, and
then remove the last task from the task set then the total utiliza-
tion was equaled to the utilization cap. For every task set, SRT
schedulability was tested by “DL,” “LA,” and “MA”. Spe-
cially, for DL, we use Theorem 4 to calculate the expected tar-
diness of each job in TPS, i.e., if all tasks in a task set have finite
expected tardiness, this task set is schedulable; otherwise, it is
unschedulable.

Fig. 8. m = 8, Schedulability.Fig. 7. m = 4, Schedulability.

Fig. 9. m = 4, Magnitude of tardiness bound.

1234 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

Experimental Results. The experimental results are pre-
sented in Figs. 7 and 8. X-axis represents the total utilization
of each task set and y-axis represents percentage of produced
task sets which passed the SRT schedulability test. In Fig. 7,
m = 4. In Fig. 8, m = 8. As seen, in experimental results, our
proposed test significantly outperform LA andMA by a nota-
ble gap. For instance, as shown in Fig. 7, when m = 4, DL can
achieve 100 percent schedulability when Usum equals 3.25
while LA and MA cannot achieve 100 percent schedulability
when Usum is merely larger than 0.5 and 1.25, respectively. In
general, our DL achieves an around 500 percent improvement
over LA and an around 200 percent improvement overMA in
terms total average utilization.

In Figs. 9 and 10, we compared the magnitude of the
tardiness bounds derived by three methods, and the actual
observed tardiness at runtime. To ensure all three methods
can successfully derive tardiness bounds, the total average
utilization is fixed to 0.5. The x-axis denotes the length of
tardiness bounds and the y-axis denotes the cumulative per-
centage of tasks whose tardiness is bounded. In Fig. 9, m =
4. In Fig. 10, m = 8. In all tested scenarios, DL derives a
closer tardiness bound to the actual observed tardiness
(denoted as AT in figures). In general, DL achieves an
around 90 percent improvement over LA and an around 50
percent improvement over MA on average in terms of the
magnitude of the derived tardiness bound.

8 CONCLUSION

We derive a a general soft real-time multiprocessor schedul-
ability analysis framework for practical sporadic task systems
specified by stochastic period and execution demand, follow-
ing probability distributions. We show that this analysis
framework can be generally applied to global tunable prior-
ity-based schedulers, which allow any job’s priority to be
changed dynamically at runtime within a priority window of
constant length. Experiments demonstrate that our analysis is
able to achieve over 500 (200) and 90 percent (50 percent)
improvements over the prior deterministic tardiness bound
analysis [18] (tardiness bound analysis assuming stochastic
execution times but deterministic periods [27]), in terms of
schedulability andmagnitude of the derived tardiness bound,
respectively. A major practical implication is that the task

parameters (mean and variance of both execution times and
job inter-arrival times) needed to schedule SRT task systems
and derive a tardiness bound can be easily estimated from
observational data. Many SRT applications [13], [17], [31], [35]
in practice where bounded tardiness is acceptable can benefit
from our analysis in terms of both schedulability and magni-
tude of the derived tardiness bound.

ACKNOWLEDGMENTS

This work was supported in part by National Key R&D
Program of China (Grant No. 2017YFC0804002), Shenzhen
Peacock Plan (Grant No. KQTD2016112514355531),
the Science and Technology Innovation Committee Founda-
tion of Shenzhen (Grant No. ZDSYS201703031748284 and
No. JCYJ20170817110848086) and the Program for Univer-
sity Key Laboratory of Guangdong Province (Grant No.
2017KSYS008). This work also supported in part by US NSF
under Grants CNS 1527727 and CNS CAREER 1750263.
Zheng Dong and Yuqun Zhang work was partially accom-
plished during the visit to Southern University of Science
and Technology. This work was partially accomplished dur-
ing Z. Dong’s visit to Southern University of Science and
Technology.

REFERENCES

[1] LITMUS-RT, (2017). [Online]. Available: https://www.litmus-rt.org/
[2] NVIDIA accelerates race to autonomous driving at CES, (2016).

[Online]. Available: https://blogs.nvidia.com/blog/2016/01/04/
drive-px-ces-recap/

[3] K. J. A
�
str€om, Introduction to Stochastic Control Theory. North

Chelmsford, MA, USA: Courier Corporation, 2012.
[4] K. Balakrishnan, Exponential Distribution: Theory, Methods and

Applications. Boca Raton, FL, USA: CRC Press, 1996.
[5] R. F. Bass, Stochastic Processes, vol. 33. Cambridge, U.K.: Cambridge

Univ. Press, 2011.
[6] A. Boukerche, R.W.N. Pazzi, andR. B. Araujo, “HPEQahierarchical

periodic, event-driven and query-based wireless sensor network
protocol,” in Proc. 30th Anniversary IEEE Conf. Local Comput. Netw.,
2005, pp. 560–567.

[7] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware image
processing with the bilateral grid,” ACM Trans. Graph., vol. 26,
no. 3, 2007, Art. no. 103.

[8] L. K. Church and R. Uzsoy, “Analysis of periodic and event-driven
rescheduling policies in dynamic shops,” Int. J. Comput. Integr.
Manufacturing, vol. 5, no. 3, pp. 153–163, 1992.

[9] U. C. Devi, “Soft real-time scheduling on multiprocessors,” PhD
thesis, Department of Computer Science, Univ. North Carolina at
Chapel Hill, Chapel Hill, NC, 2006.

[10] U. C. Devi and J. H. Anderson, “Tardiness bounds under global
EDF scheduling on a multiprocessor,” Real-Time Syst., vol. 38,
no. 2, pp. 133–189, 2008.

[11] Z. Dong, Y. Gu, J. Chen, S. Tang, T. He, and C. Liu, “Enabling
predictablewireless data collection in severe energy harvesting envi-
ronments,” inProc. IEEEReal-Time Syst. Symp., 2016, pp. 157–166.

[12] Z. Dong and C. Liu, “Closing the loop for the selective conversion
approach: A utilization-based test for hard real-time suspending
task systems,” in Proc. IEEE Real-Time Syst. Symp., 2016, pp. 339–350.

[13] M. A. El-Gendy, A. Bose, and K. G. Shin, “Evolution of the internet
QoS and support for soft real-time applications,” Proc. IEEE, vol. 91,
no. 7, pp. 1086–1104, Jul. 2003.

[14] C. Gui and P. Mohapatra, “Power conservation and quality of
surveillance in target tracking sensor networks,” in Proc. 10th
Annu. Int. Conf. Mobile Comput. Netw., 2004, pp. 129–143.

[15] D. P. Heyman and M. J. Sobel, Stochastic Models in Operations
Research: Stochastic Optimization, vol. 2. North Chelmsford, MA,
USA: Courier Corporation, 1982.

[16] S. Kumar, T. H. Lai, and A. Arora, “Barrier coverage with wireless
sensors,” in Proc. 11th Annu. Int. Conf. Mobile Comput. Netw., 2005,
pp. 284–298.

Fig. 10. m = 8, Magnitude of tardiness bound.

DONG ET AL.: A GENERAL ANALYSIS FRAMEWORK FOR SOFT REAL-TIME TASKS 1235

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

https://www.litmus-rt.org/
https://blogs.nvidia.com/blog/2016/01/04/drive-px-ces-recap/
https://blogs.nvidia.com/blog/2016/01/04/drive-px-ces-recap/

[17] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik,
“Supporting soft real-time tasks in the xen hypervisor,” ACM
SIGPLAN Notices, vol. 45, pp. 97–108, 2010.

[18] H. Leontyev and J. H. Anderson, “Generalized tardiness bounds for
global multiprocessor scheduling,” in Proc. 28th IEEE Int. Real-Time
Syst. Symp., 2007, pp. 413–422.

[19] J. Levinson and S. Thrun, “Automatic online calibration of cameras
and lasers,” inProc. Robot.: Sci. Syst., 2013, pp. 29–36.

[20] D. V. Lindley, “The theory of queues with a single server,” inMath.
Proc. Cambridge Philosoph. Soc., vol. 48, pp. 277–289, 1952.

[21] C. Liu and J. H. Anderson, “An O (m) analysis technique for
supporting real-time self-suspending task systems,” in Proc. IEEE
33rd Real-Time Syst. Symp., 2012, pp. 373–382.

[22] C. Liu and J. H. Anderson, “Task scheduling with self-suspensions
in soft real-time multiprocessor systems,” in Proc. 30th IEEE Real-
Time Syst. Symp., 2009, pp. 425–436.

[23] C. Liu and J.-J. Chen, “Bursty-interference analysis techniques for
analyzing complex real-time task models,” in Proc. IEEE Real-Time
Syst. Symp., 2014, pp. 173–183.

[24] J. W. S. W. Liu, Real-Time Systems, 1st ed. Upper Saddle River, NJ,
USA Prentice Hall PTR, 2000.

[25] D. G. Lowe, “Object recognition from local scale-invariant features,”
inProc. 7th IEEE Int. Conf. Comput. Vis., 1999, pp. 1150–1157.

[26] M. Mattavelli and S. Brunetton, “Implementing real-time video
decoding on multimedia processors by complexity prediction
techniques,” IEEE Trans. Consum. Electron., vol. 44, no. 3, pp. 760–767,
Aug. 1998.

[27] A. F. Mills and J. H. Anderson, “A stochastic framework for multi-
processor soft real-time scheduling,” in Proc. 16th IEEE Real-Time
Embedded Technol. Appl. Symp., 2010, pp. 311–320.

[28] E. Osuna, R. Freund, and F. Girosit, “Training support vector
machines: An application to face detection,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit., 1997, pp. 130–136.

[29] H. Rinne, The Weibull Distribution: A Handbook. Boca Raton, FL,
USA: CRC Press, 2008.

[30] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face
detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 1,
pp. 23–38, Jan. 1998.

[31] A. Srinivasan and J. H. Anderson, “Efficient scheduling of soft
real-time applications on multiprocessors,” J. Embedded Comput.,
vol. 1, no. 2, pp. 285–302, 2005.

[32] A. Teichman and S. Thrun, “Group induction,” in Proc. Int. Conf.
Intell. Robots Syst., 2013, pp. 2757–2763.

[33] P. Viola and M. J. Jones, “Robust real-time face detection,” Int.
J. Comput. Vis., vol. 57, no. 2, pp. 137–154, 2004.

[34] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, et al.,
“The worst-case execution-time problem–overview of methods and
survey of tools,” ACM Trans. Embedded Comput. Syst., vol. 7, no. 3,
2008, Art. no. 36.

[35] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time CPU
scheduling formobilemultimedia systems,”ACMSIGOPSOperating
Syst. Rev., vol. 37, pp. 149–163, 2003.

[36] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the
synthesis of multiprocessor tasksets,” in Proc. 1st Int. Workshop
Anal. Tools Methodologies Embedded Real-time Syst., 2010, pp. 6–11.

[37] P. Zhang and D. Ganesan, “Enabling bit-by-bit backscatter commu-
nication in severe energy harvesting environments,” in Proc. 11th
USENIXConf. Netw. Syst. Des. Implementation, 2014, pp. 345–357.

[38] H. Zhou, G. Tong, and C. Liu, “GPES: A preemptive execution
system for GPGPU computing,” in Proc. IEEE Real-Time Embedded
Technol. Appl. Symp., 2015, pp. 87–97.

Zheng Dong received the BS degree in computer
science from Wuhan University, Wuhan, China, in
2007, and the MS degree in software engineering
from the University of Science and Technology of
China, Hefei, China, in 2011. He is currently work-
ing toward the PhD degree in the Department of
Computer Science, University of Texas at Dallas.
His research interests include real-time and cyber-
physical systems, network coding and wireless
sensor network. He received the Outstanding
Paper Award at the 38th IEEE RTSS and the best
paper nomination at the 23rd IEEERTCSA.

Cong Liu received the PhD degree in computer
science from the University of North Carolina at
Chapel Hill, in Jul. 2013. He is an assistant pro-
fessor with the Department of Computer Science,
University of Texas at Dallas. His research inter-
ests include real-time systems and GPGPU. He
has published more than 30 papers in premier
conferences and journals. He received the Best
Paper Award at the 30th IEEE RTSS, the 17th
RTCSA and the 24th RTAS, and the outstanding
Paper Award at the 38th IEEE RTSS. He is the
recipient of NSF CAREER award and he is a
member of the IEEE.

Soroush Bateni is currently working toward the
PhD degree in the Department of Computer
Science, University of Texas at Dallas. He has
been a researcher in the Real-Time Systems lab
since 2017. His main research interests are
GPU-accelerated embedded cyber-physical
systems, including autonomous vehicles, and
real-time GPU-accelerated designs.

Zelun Kong received the bachelor’s degree in
computer science from Wuhan University, in June
2016. He is working toward the PhD degree in the
Department of Computer Science, the University of
Texas at Dallas. His research interests include
artificial intelligence and real-time system.

Liang He is an assistant professor with the Univer-
sity of Colorado Denver. He worked as a research
fellow at the University of Michigan, Ann Arbor,
during 2015-2017, as a research scientist with the
SingaporeUniversity of Technology&Design during
2012-2014, and as a research assistant with theUni-
versity of Victoria during 2009-2011. His research
interests include CPSes, cognitive battery manage-
ment, and networking. He has been a recipient of
the best paper/poster awards of MobiSys17,
QShine14, WCSP11, and GLOBECOM11, and a
best paper candidate of GLOBECOM14. He is a
seniormember of the IEEE.

Lingming Zhang received the BS and MS
degrees in computer science from Nanjing Univer-
sity, in 2007 and Peking University, in 2010,
respectively, and the PhD degree from the Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Texas at Austin, in May 2014. He is an
assistant professor with the Computer Science
Department, University of Texas at Dallas. His
research interests lie broadly in software engineer-
ing and programming languages, including auto-
mated software analysis, testing, debugging, and

verification, as well as software evolution and mobile computing. He has
authored more than 40 papers in premier software engineering or pro-
gramming language conferences and transactions. He has also served on
the program/organization committee or artifact evaluation committee for
various international conferences (including ICSE, ISSTA, FSE, ASE,
ICST, ICSM, and OOPSLA). He has won the Google Faculty Research
Award, his research is also being supported by NSF, Huawei, NVIDIA,
and Samsung.

1236 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 6, JUNE 2019

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

Ravi Prakash received the BTech degree in
computer science and engineering from the
Indian Institute of Technology, in Delhi, and the
MS and PhD degree from The Ohio State. He is a
professor of computer science with the University
of Texas at Dallas. His areas of teaching and
research include wireless and sensor networking,
mobile computing, multimedia streaming and dis-
tributed computing. He is the recipient of multiple
research grants from federal agencies and indus-
try including the NSF CAREER award and the

NSF Major Research Infrastructure award. He has served the technical
and university community in his roles as an editor of the IEEE Transac-
tions on Mobile Computing, as the president of the IEEE Dallas section,
technical program committee chair of various of various conferences like
SRDS, MASS, MSWiM, and is currently the Speaker of the UT Dallas
Faculty Senate.

Yuqun Zhang received the BS degree in com-
munications engineering from Tianjin University,
Tianjin, China, in 2008, and MS degree in electri-
cal and computer engineering from the University
of Rochester from Rochester, NY, in 2010, and
the PhD degree in electrical and computer engi-
neering from the University of Texas at Austin,
Austin, TX, in 2016. He is currently an assistant
professor with the Department of Computer Sci-
ence and Engineering, Southern University of
Science and Technology, Shenzhen, Guang-

dong, China. His research interests include software testing and analy-
sis, software engineering for artificial intelligence, and software services
computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DONG ET AL.: A GENERAL ANALYSIS FRAMEWORK FOR SOFT REAL-TIME TASKS 1237

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:27:21 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

