
An Empirical Study of Boosting Spectrum-Based
Fault Localization via PageRank
Mengshi Zhang , Yaoxian Li, Xia Li, Lingchao Chen, Yuqun Zhang ,

Lingming Zhang, and Sarfraz Khurshid

Abstract—Manual debugging is notoriously tedious and time-consuming. Therefore, various automated fault localization techniques

have been proposed to help with manual debugging. Among the existing fault localization techniques, spectrum-based fault localization

(SBFL) is one of themost widely studied techniques due to being lightweight. The focus of the existing SBFL techniques is to consider

how to differentiate program entities (i.e., one dimension in program spectra); indeed, this focus is alignedwith the ultimate goal of finding

the faulty lines of code. Our key insight is to enhance the existing SBFL techniques by additionally considering how to differentiate tests

(i.e., the other dimension in program spectra), which, to the best of our knowledge, has not been studied in prior work.We present our

basic approach, PRFL, a lightweight technique that boosts SBFL by differentiating tests using PageRank algorithm. Specifically, given

the original program spectrum information, PRFL uses PageRank to recompute the spectrum by considering the contributions of different

tests. Next, traditional SBFL techniques are applied on the recomputed spectrum to achievemore effective fault localization. On top of

PRFL, we explore PRFL+ and PRFLMA, two variants which extend PRFL by optimizing its components and integratingMethod-level

Aggregation technique, respectively. Though being simple and lightweight, PRFL has been demonstrated to outperform state-of-the-art

SBFL techniques significantly (e.g., ranking 39.2% / 82.3%more real/artificial faults at Top-1 compared with themost effective traditional

SBFL technique) with low overhead (e.g., around 6minutes average extra overhead on real faults) on 395 real faults from 6 Defects4J

projects and 96925 artificial (i.e., mutation) faults from 240GitHub projects. To further validate PRFL’s effectiveness, we compare PRFL

with multiple recent proposed fault localization techniques (e.g., Multric, Metallaxis andMBFL-hybrid-avg), and the experimental results

show that PRFL outperforms them as well. Furthermore, we study the performance of PRFLMA, and the experimental results present it

can locate 137 real faults (73.4% / 24.5%more compared with themost effective SBFL/PRFL technique) and 35058 artificial faults

(159.6% / 28.1%more than SBFL/PRFL technique) at Top-1. At last, we study the generalizability of PRFL on another benchmark,

Bugs.jar, and the result shows PRFL can help locate around 30 percentmore faults at Top 1.

Index Terms—Software testing, automated debugging, spectrum-based fault localization, SBFL, PageRank analysis

Ç

1 INTRODUCTION

SOFTWARE debugging is an expensive and painful process
that costs developers a lot of time and effort. For example,

it has been reported that debugging can take up to 80 percent
of the total software cost [1], [2]. Thus, there is a pressing
need for automated debugging techniques. In the last two
decades, various fault localization approaches have been pro-
posed to help developers locate the root causes of failures,
e.g., spectrum-based [3], [4], [5], [6], [7], [8], slicing-based [9],
[10], machine-learning-based [11], [12], and mutation-
based [13], [14], [15], [16] techniques. The recent survey by

Wong et al. [2] shows more details about various fault locali-
zation approaches.

Among the existing fault localization approaches, spec-
trum-based fault localization (SBFL), is one of the most
widely studied fault localization techniques in the litera-
ture [6], [7], [8], [17]. Despite that SBFL is a particularly
lightweight approach, it has been shown to be competitive
compared to other approaches [18]. SBFL techniques take
as input a set of passing and failing tests, and analyze
program execution traces (spectra) of successful and failed
executions. The execution traces record the program enti-
ties (such as statements, basic blocks, and methods) exe-
cuted by each test. Intuitively, a program entity covered by
more failing tests but less passing tests is more likely to be
faulty. Hence, SBFL applies a ranking formula to compute
suspiciousness scores for each entity based on the program
spectra. Suspiciousness scores reflect how likely it is for
each program entity to be faulty, and can be used to sort
program entities. Then, developers can follow the suspi-
ciousness rank list (from the beginning to the end of the
list) to manually inspect source code to diagnose the actual
root causes of failures. Recently, SBFL techniques have also
been utilized by various automated program repair techni-
ques to localize potential patch positions [19], [20], [21],
[22], [23], [24].

� M. Zhang and S. Khurshid are with the Department of Electrical and
Computer Engineering, University of Texas at Austin, Austin, TX 78712
USA. E-mail: {mengshi.zhang, khurshid}@utexas.edu.

� Y. Li and Y. Zhang are with the Department of Computer Science and
Engineering, Southern University of Science and Technology, Shenzhen
Shi, Guangdong Sheng 518055, China.
E-mail: {liyx, zhangyq}@sustech.edu.cn.

� X. Li, L. Chen, and L. Zhang are with the Department of Computer Science,
University of Texas at Dallas, Richardson, TX 75080USA.
E-mail: {xia.li3, lxc170330, lingming.zhang}@utdallas.edu.

Manuscript received 11 Mar. 2018; revised 22 Mar. 2019; accepted 27 Mar.
2019. Date of publication 25 Apr. 2019; date of current version 14 June 2021.
(Corresponding author: Yuqun Zhang.)
Recommended for acceptance by A. Mesbah.
Digital Object Identifier no. 10.1109/TSE.2019.2911283

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021 1089

0098-5589 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0025-6837
https://orcid.org/0000-0002-0025-6837
https://orcid.org/0000-0002-0025-6837
https://orcid.org/0000-0002-0025-6837
https://orcid.org/0000-0002-0025-6837
https://orcid.org/0000-0002-1499-5729
https://orcid.org/0000-0002-1499-5729
https://orcid.org/0000-0002-1499-5729
https://orcid.org/0000-0002-1499-5729
https://orcid.org/0000-0002-1499-5729
mailto:
mailto:
mailto:

The advantage of SBFL is quite obvious – it is an
extremely lightweight approach that is scalable and applica-
ble for large-scale programs. An ideal fault localization tech-
nique would always rank the faulty program entities at the
top. However, in practice, although various SBFL techniques
have been proposed (such as Jaccard/Ochiai [4], Op2 [6],
and Tarantula [3]), no technique can always perform as the
best – the developers usually have to check various false-pos-
itive faults before finding the real one(s). We believe the cur-
rent form of spectrum analysis is a key reason that limits the
effectiveness of all existing SBFL techniques. Although dif-
ferent existing SBFL techniques use different formulas for
suspiciousness computation, all of them only consider how
to differentiate program entities (i.e., one dimension in program
spectra). Our key insight is that a richer form of spectrum
analysis that additionally considers how to differentiate tests
(i.e., the other dimension in program spectra), which, to the best
of our knowledge, has not been studied in previous work,
can provide more effective fault localization. For instance,
consider two tests t1 and t2 that are both failing, where t1
covers 100 program entities and t2 only covers one. By our
intuition, t2 can bemuchmore helpful than t1 in fault local-
ization since t2 has a much smaller search space to localize
the fault(s). However, the traditional SBFL techniques ignore
this useful information and consider t1 and t2 as making
the same contribution on SBFL, e.g., a program entity exe-
cuted by t1 or t2 once will be treated the same regardless of
the number of entities covered by the tests.

To overcome the limitations of the existing SBFL techni-
ques, we utilize the existing program spectra more effectively
by explicitly considering the contributions of different tests.
Based on our insight, we present PRFL [25], a lightweight
technique that boosts SBFL by considering the additional test
information via PageRank algorithm [26]. PRFL captures the
connections between tests and program entities (e.g., the tra-
ditional spectrum) as well as the connections among program
entities (e.g., the static call graphs) via bytecode instrumenta-
tion and analysis. Then, PageRank is used to recompute the
program spectra: (1) program entities connected with more
important failing tests (which cover smaller number of pro-
gram entities) may be more suspicious, and (2) program enti-
ties connected with more suspicious program entities may
also be more suspicious since they may have propagated the
error states to the connected entities. Finally, PRFL employs
existing SBFL ranking formulas to compute the final suspi-
ciousness score for each program entity. We have used our
PRFL prototype to localize the faulty methods for 395 real
faults in Defects4J [27] benchmark. Since mutation faults
have also been shown to be suitable for software testing
experimentation [28], [29], to further validate the effectiveness
of the proposed approach, we applied PRFL to localize 96925
artificial mutation faults generated from 240 GitHub Java
projects. The experimental results demonstrate that our
technique can outperform state-of-the-art SBFL techniques
significantly (e.g., ranking 39%/103% more real/artificial
faults within Top-1) with negligible overhead (e.g., around
6minutes average overhead on real faults).

To enhance our prior conference paper [25], we extend the
evaluation in three aspects to further validate the effective-
ness of our approach. First, we compare PRFLwith a recently
proposed learning-based SBFL technique (i.e., Multric [12]).

Second, we compare PRFL with two recent proposed muta-
tion-based fault localization (MBFL) techniques (i.e., Metal-
laxis [30], andMBFL-hybrid-avg [18]). Moreover, we study a
simple integration of PRFL and MBFL, and compare its per-
formance with PRFL and MBFL. Third, we study the perfor-
mance of PRFL using three different link analysis techniques
(i.e., standard PageRank [26], HITS [31] and SALSA [32]).
The experimental results demonstrates that PRFL still out-
performs the compared and integrated approaches.

On the other hand, to improve the efficacy of PRFL, we
further extend the study and propose PRFL+. To be more
specific, first, in PRFL, the static call graph analysis is applied
to reflect the connections among program entities for sim-
plicity. However, it might not be accurate to reflect the actual
runtime connections. Hence, we study the effectiveness of
PRFL by using dynamic call graphs to collect the runtime
information. Second, PRFL originally assigns the same
weight to all passing tests though their test scopes (i.e., num-
bers of covered program entities) are different. We extend
thework bymodifying theweights of passing tests to investi-
gate their influence. Third, it is observed that some tests and
methods make negligible contribution for fault localization
in PRFL. To reduce the computational complexity of PRFL,
we add a coverage-refinement module to remove the irrele-
vantmethods and tests prior to PageRank analysis.

Furthermore, we propose an aggregation and PageRank-
based fault localization technique, PRFLMA, which applies
Method-level Aggregation [33] to PRFL. The Method-level
Aggregation first derives the program spectra of all state-
mentswithin amethod and applies SBFL formula to calculate
their suspiciousness scores. Next, for each method, it chooses
the most suspicious statement, and uses its coverage to sub-
stitute the coverage of given method. Finally, PRFLMA exe-
cutes PRFL on the updated coverage to rank all the methods.
We also evaluate PRFLMA on the Defects4J benchmark. The
experimental results show that PRFLMA successfully locates
73.4%/24.5%more real faults, and 159.6%/28.1%more artifi-
cial faults than the state-of-the-art SBFL/PRFL techniques.
Moreover, to study the generalizability of PRFL, we evaluate
our approach on Bugs.jar benchmark [34], and the result
shows PRFL can rank 30 percent more faults as Top 1.

Overall, we make the following contributions [25]:

� Novel Idea. We propose a novel idea that considers
the different contributions of different tests to further
boost SBFL.

� Lightweight Technique. We implement the proposed
idea as a lightweight fault localization technique,
PRFL, that uses PageRank to consider the weights of
different tests to enhance SBFL.

� Extensions.We study our PRFL technique by replacing
static call graphs with dynamic call graphs, adjusting
the modeled weights of passing tests, and reducing
the size of tests and methods. Moreover, we propose
PRFLMA which utilizes statement-level information to
improve the fault localization accuracy of PRFL.

� Practical Tool. We implement all the proposed techni-
ques (PRFL and PRFLMA) as a practical Maven Plugin,
IntelliFL, which is publicly available onMaven Central
Repository, and supports Java programs with JUnit
tests developed under a variety of JDK and JUnit
versions.

1090 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

� Evaluation. We evaluate PRFL and its extensions on
both real and artificial faults. First, we evaluate our
approach on 395 real faults from all 6 projects in the
Defects4J benchmark. To reduce the threats to exter-
nal validity, we further evaluate PRFL and PRFLMA

on 96925 mutation faults of 240 GitHub projects. The
experimental results demonstrate that PRFL and
PRFLMA can outperform the state-of-the-art SBFL
techniques significantly (e.g., ranking 39 and 73 per-
cent more faults within at Top-1 on Defects4J bench-
mark, respectively). Moreover, we further compare
PRFL to the recent proposed fault localization techni-
ques, study the integration of PRFL and MBFL, and
investigate the impact of different link analysis
approach on PRFL. The experimental results show
that PRFL still outperforms the compared and inte-
grated approaches. At last, we study the generaliz-
ability of PRFL on another benchmark Bugs.jar [34],
and the result shows PRFL can help locate around
30 percentmore faults at Top 1.

2 BACKGROUND

2.1 Spectrum-Based Fault Localization

Spectrum-based fault localization techniques (SBFL) [3], [4],
[6], [35] help developers identify the locations of faulty pro-
gram entities (such as statements, basic blocks, andmethods)
based on observations of failing and passing test executions.
An SBFL technique sorts all program entities by their suspi-
ciousness scores and returns a rank list for manual checking.
If a program entity is more likely to be faulty, it will be
assigned a higher priority in the suspiciousness list. There-
fore, an ideal SBFL technique should always rank the faulty
entity with high suspiciousness score, which can signifi-
cantly speed up the debugging process for finding the root
causes of test failures. To compute suspiciousness scores of
program entities, a SBFL technique first runs tests on the tar-
get program and records the program spectrum of each fail-
ing or passing test, i.e., the run-time profiles about which
program entities are executed by each test. Then, based on
the program spectra and test outcomes, various statistics can
be extracted for suspiciousness computation, e.g., tuple (ef ,
ep, nf , np), where ef and ep are the numbers of failing and
passing tests executing the program entity e, while nf and np

are the numbers of failing and passing tests that do not exe-
cute e. Based on such tuples, various SBFL formulas have
been proposed. The common intuition of these formulas is

that a program entity executed by more failing tests and less
passing tests is more likely to be faulty. This paper considers
8 well-studied SBFL techniques – Tarantula, Statistical Bug
Isolation (SBI), Ochiai, Jaccard, Ochiai2, Kulczynski, Op2,
and Dstar2 [3], [4], [6], [35], [36]. Tarantula, SBI, Ochiai and
Jaccard [10], [12] are the most widely-used techniques for the
evaluation of fault localization. Ochiai2 [6] is an extension
version of Ochiai, which considers the impact of non-exe-
cuted or passing test cases. Op2 [6] is the optimal SBFL tech-
nique for single-fault program, whereas Kulczynski and
Dstar2 belong to the formula family Dstar [35], which is
shown to be more effective than 38 other SBFL techniques.
All their formulas are listed in Table 1.

2.2 Link Ranking Algorithms

Ranking plays an important role in information retrieval sys-
tems. In particular, due to the rapid growth of the World
WideWeb, an efficient search engine is expected to rank and
recommend web pages corresponding to users’ preference
to significantly save users’ time and effort to find the web
pages they are interested in. A straightforward example is
that we can utilize word frequency to rank web pages
according to their relevance to user’s query. However, this
approach may rank more web pages with low authority to
the top since they have stronger text relevance. One solution
to address this issue is to use information of the Web struc-
ture instead of text similarity only. In the recent two decades,
several such link ranking algorithms were invented to effi-
ciently extract the structural information [37], [38]. Gener-
ally, the link ranking algorithms can be classified into query
independent algorithms (e.g., PageRank [26]) and query
dependent algorithms (e.g., HITS [31] and SALSA [32]) that
are specifically introduced as follows.

2.2.1 PageRank

PageRank [26] is proposed by Larry Page and Sergey Brin for
improving search quality and speed. PageRank views the
World Wide Web as a set of linked nodes and ranks them
based on their importance. The intuition behind PageRank
is, for each node, if it is linked by important nodes, it should
be more important than the ones linked by uninfluential
nodes. Fig. 1 presents a simple directed graph to describe a
small network with four web pages, denoted by node A, B,
C andD. The edges between two nodes denote that the start-
ing node contains a hyperlink pointing to the ending node.

By our observation, the number of edges pointing to D is
larger than others, so it should be more important than
others. On the other hand, A is pointed byD and thus is also
an important node according to the assumption of Pag-
eRank. Then, B is in turn pointed by A, and also should be
assigned a high score to show the importance. Formally, the
websites are described by a directed graphG ¼ hV;Eiwith n
nodes and m edges. Let PP be the transition matrix of n by n
elements. Then, each matrix element, Pij, denotes the proba-
bility of transitioning from node j to i and its value is

1
OutboundLinkNumberofNodej, as illustrated in Fig. 1.

According to our intuition, the PageRank score of node i
depends on the PageRank scores of the nodes with edges
pointing to node i. Therefore, the PageRank score of node i
can be computed as

TABLE 1
Spectrum-Based Fault Localization Techniques and Definitions

Tech Defn Tech Defn

Tarantula
ef

efþnf
ef

efþnf
þ ep
epþnp

SBI 1� ep
epþef

Ochiai efffi
ðefþepÞðefþnf Þ

p Jaccard ef
efþepþnf

Ochiai2 efnpffi
ðefþepÞðnfþnpÞðefþnpÞðnfþepÞ

p Kulczynski ef
nfþep

Op2 ef � ep
epþnpþ1 Dstar2 e2

f

epþnf

ZHANG ET AL.: AN EMPIRICAL STUDY OF BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA PAGERANK 1091

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

PRi ¼
X
8j;j!i

PRj

Out bound Link Num of Node j
: (1)

In order to make the equation more compact, we use Pag-
eRank vector ~x to present the PageRank score for each node
and ~x is the solution of the eigenvalue equation

~x ¼ PP �~x: (2)

In some cases, a node may have no outbound links and
its PageRank score cannot be distributed to others. Consid-
ering these special nodes, an additional teleportation vector
~v weighted by the damping parameter d is attached to
Equation (2)

~x ¼ d � PP~xþ ð1� dÞ �~v; (3)

where~v is a positive vector and
P

vi is 1. When the network
scale grows, it is harder to find the exact solution for
the above equation in a reasonable time. Therefore, Page
et al. [26] introduced an iterative approach to get the approxi-
mate solution. The equation for the kth iteration is defined as

~xðkÞ ¼ d � PP~xðk�1Þ þ ð1� dÞ �~v; (4)

and the initial value of ~x can be set as~v or~0. For the example
in Fig. 1, if we use damping coefficient d ¼ 0:85, vector
~v ¼ ½1n ; 1n ; . . . ; 1n�T , and the initial PageRank vector ~xð0Þ ¼ ~v,
after 25 iterations, the PageRank scores of nodes A, B, C
and D are 0.3134, 0.2278, 0.1343 and 0.3246, respectively.
These scores indicate the importance of each node. Recall
that D is pointed by all others and becomes the most impor-
tant node. A is the only node pointed by D, hence it is the
second important node in the network. A and C together
have two outbound links pointing to B, whose importance
is lower than A. C’s score is the lowest since it only has one
inbound link from B.

Not only can PageRank rank web pages, but it also has
been widely applied to various other domains. Gleich [39]
surveyed the diversity of applications of PageRank and con-
cluded that PageRank can be applied to Chemistry, Biology
and Bioinformatics, Neuroscience, Bibliometrics, Databases
and Knowledge Information Systems, Recommender
Systems, Social Networks Web, i.e., twelve domains in total.
Recently, PageRank-based techniques have also been pro-
posed to analyze software systems. Chepelianskii [40] used
PageRank to analyze function importance for Linux kernel.
Kim et al. [41] proposed MonitorRank, a PageRank-based
approach to find the root causes of anomalies in service-
oriented architectures. Bhattacharya et al. [42] proposed the
notion of NodeRank based on PageRank to measure the
importance of nodes on a static graph for software analysis
and fault prediction. Later on,Mirshokraie et al. [43] proposed
the notion of FunctionRank, a dynamic variant of PageRank,

for ranking functions in terms of their relative importance, for
mutation testing.

2.2.2 HITS and SALSA

HITS is proposed by J.Kleinberg [31]. Different to PageRank,
HITS does not only use the connections between webpages,
it also considers the correlation between webpage and the
topic which users provide for query. This insight implies a
webpage plays two roles in the context of query. First, a web-
page can be an authority if it can provide useful information
about the topic. Second, the webpage can be a hub if it can
provide more links to good authorities on the topic. The
HITS algorithm is designed to iteratively compute the
authority and hub score of eachwebpage.

Specifically, HITS first applies the traditional text match-
ing technique to filter out a bunch of webpages which are
irrelevant to the topic, and it gets a directed and topic-
related graph G. In the next step, HITS constructs an adja-
cent matrix A based on G, and the iterative functions of
HITS can be presented as follows:

~aðkÞ ¼ fðAT~hðk�1ÞÞ; ~hðkÞ ¼ fðA~aðkÞÞ; (5)

where ~aðkÞ and ~hðkÞ denote the vector of authority and hub
scores in the kth iteration, and fð~xÞ is normalization func-
tion that fð~xÞ ¼ ~x

k~xk2. Typically, the initial values of ~a and ~h
can be selected as

~að0Þ ¼ ~hð0Þ ¼ 1ffiffiffi
n

p ;
1ffiffiffi
n

p ; . . . ;
1ffiffiffi
n

p
� �T

; (6)

where n is the number of nodes of G.
Stochastic Approach for Link Structure Analysis (SALSA)

is proposed by Lempel and Moran [32], which integrates the
authority and hub idea from HITS, and the random walk
idea from PageRank. Similar to HITS, SALSA also computes
the authority and hub score for each webpage, and the itera-
tive functions of SALSA are updated as

~aðkÞ ¼ WT
c Wr~a

ðk�1Þ; ~hðkÞ ¼ WrW
T
c
~hðk�1Þ; (7)

where Wc and Wr are the matrices generated from A by
dividing each entry of A by the sums of its column and row,
respectively.1

In this paper, we integrate SBFLwith PageRank algorithm
to boost SBFL since (1) SBFL does not utilize any text or code
similarity between tests and methods for fault localization,
and PageRank algorithm is query-independent as well; (2)
HITS and SALSA introduce two attributes (authority and
hub) of each node, but PageRank only has one attribute
(importance) of node, which is more compact than HITS and
SALSA. To the best of our knowledge, this work is the first to
apply the PageRank algorithm for fault localization.

2.3 Method-Level Aggregation

Method-level Aggregation (MA) is a technique developed by
Sohn et al. [33]. Instead of usingmethod coverage to calculate
SBFL scores, MA uses coverage of all the associated

Fig. 1. A small network and its transition matrix.

1. Due to space limit, we cannot introduce the details of HITS and
SALSA in the paper, and we encourage interested readers to get more
details in [38].

1092 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

statements within a method and calculates the correspond-
ing SBFL scores for all of them. Next, for each method, the
statement-level scores are ranked and the highest SBFL score
is identified as the SBFL score of the associated method. MA
has been demonstrated to be advanced as follows:

� Applicability: Method-level Aggregation is to aggre-
gate statement coverage into method level, and thus
can be applied to any SBFL technique.

� Effectiveness: In previous work [33], empirical evalua-
tion of this techniquewas applied to existing SBFL for-
mulas, which shows the formulas with Method-level
Aggregation can rank about 42 percent more faults at
the top.

Fig. 2 shows an example code snippet to illustrate the ben-
efits of MA. In this code snippet, m1 is faulty, because m1

should be a parity-check code, the output s will return 1 if
the input is an even number, and return -1 otherwise. We
assume that there are 4 tests (t1-t4), andt1 is failing. There-
fore the spectrum tuple ðef ; ep; nf ; npÞ of both m1 and m2 is
ð1; 2; 0; 1Þ, resulting in Ochiai ¼ efffi

ðefþepÞðefþnf Þ
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1ð1þ2Þ
p ¼ 0:578

and OP2 ¼ ef � ep
epþnpþ1 ¼ 1� 2

2þ1þ1 ¼ 0:50. The code defect

exists in m1, so m1 is expected to have a higher SBFL score
than m2. However, since m1 and m2 share the same spectrum,
the traditional SBFL techniques assign the same score for
both methods and make it impossible to differ m1 from m2

regarding their suspiciousness to be faulty.
In order to improve SBFL in the similar scenarios similar

to Fig. 2, we adapt MA to select the statement with the high-
est SBFL score within each method. In general, MA utilizes
the fine-grained statement-level information to help with
precise method-level fault localization [33]. When applying
MA to the example, we use the traditional SBFL techniques
(Ochiai and Op2) to assign SBFL scores for all statements in
m1 and m2, and the faulty statement has the highest SBFL
score (the Ochiai and Op2 scores are both 1.0). Then, accord-
ing to the fine-grained statement-level analysis, the SBFL
score of m1 is now higher than that of m2 due to the high
SBFL scores for the statementswithin m1.

Note that PRFL only computes method-level fault locali-
zation, making it impossible to directly applyMA after PRFL
due to the lack of statement-level fault localization results.
Therefore, in this paper, instead of directly using the highest

statement SBFL score as the SBFL score of the associated
method, MA is adapted such that for each method the spec-
trum of the statementwith the highest SBFL score substitutes
the method’s spectrum. For instance, ðef ; ep; nf ; npÞ of m1

becomes ð1; 0; 0; 3Þ which is the same as the faulty statement
and correctly reflects the suspiciousness of program meth-
ods. In this way, the adjusted more precise method spectrum
is used formore advanced PRFL.

3 MOTIVATING EXAMPLE

SBFL is designed based on program execution statistics,
which include both test coverage and test outcomes. Execu-
tion statistics can be treated as the information source of
SBFL’s analysis, so that they determine the upper bound of
SBFL’s accuracy. When execution statistics is built, SBFL
would distribute them to construct program spectra, then
apply various rank formulas to compute suspiciousness
score for each program entity. Program spectrum is a practi-
cal way to present execution statistics, however, it is risky
since it loses useful information during construction. Here
an example will be analyzed to show how program spectra
affect the accuracy of fault localization.

It can be shown from Fig. 3 that in example class Code,
method m2 is faulty since its conditional expression should
be (x > 10) instead of (x > 1). This fault leads t1 and t2

to fail. Based on the spectrum information in the left half of
Table 2, the traditional Tarantula technique would compute
all the suspiciousness scores of m1, m2 and m3 as the same,
i.e., 0.5. This result is no better than random guess, and thus
it is not quite helpful for fault localization. However, when
we observe the detailed test coverage shown in Fig. 4, we
can directly find that m2 is faulty since t2 fails and only cov-
ers m2. This example shows that different tests have differ-
ent capabilities to locate faults, and one limitation of the
original spectrum information is that it only focuses on
computing how many failing and passing tests cover the
program entities but ignores the test differences. This obser-
vation inspires us that if tests can be weighted based on
their capabilities in localizing potential faults, the SBFL will
be more accurate.

Fig. 2. Example code snippet for method-level aggregation.

Fig. 3. Example code and corresponding test suite.

ZHANG ET AL.: AN EMPIRICAL STUDY OF BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA PAGERANK 1093

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

Herewe just analyze failing tests. By our intuition, the test
weight should be impacted by the test capability and the cov-
ered program entities. First, if the failing test covers very few
program entities, this test has a very small scope and it is
more capable to infer faulty entities. Therefore its weight
should be high. On the other side, if its covered entities are
more likely to be faulty, it in turn also should get a higher
weight. Similarly, if a program entity is covered by more
highlyweighted tests, it should also bemore likely to contain
faults.

All the analysis above is constructed on the bi-directional
test coverage graph, which is a kind of network. Hence test
weight analysis can be solved by PageRank. Note that the
failing and passing tests cover different set of entities, Pag-
eRank analysis will be executed twice to generate the scores
of entity importance for failing and passing tests. We term
these scores faultiness and successfulness scores, respectively.
For example, when computing the failing test weights, we
use vector~x ¼ ½m1;m2;m3; t1; t2�T to present the node values
where m1, m2 andm3 present the faultiness scores of m1, m2
and m3 and t1, t2 show the test weights of t1 and t2. The
test capabilities can be presented by teleportation vector
~v ¼ ½0; 0; 0; w1; w2�T , where the first three 0s denote the three
corresponding source methods and w1 and w2 are the

weights of t1 and t2. They can be computed by wi ¼ c�1
iP
c�1
j

,

where ci is defined as the number of program entities cov-
ered by the ith test. For this example, c1 and c2 are 3 and 1
respectively and ~v is ½0; 0; 0; 0:25; 0:75�T . The construction of
transition matrix has been introduced in Section 2.2 and the
matrix PP can be found in Fig. 4. Assume that the damping
factor d is 0.7, ~xð0Þ is~0, based on Equation (4), we can get ~x
as ½0:061; 0:290; 0:061; 0:262; 0:326�T , where m2 is larger than
m1 and m3, indicating that m2 is highly connected with
failed tests and thus is more likely to be faulty, while w1 is
less than w2, indicating that t2 is more effective to help
with fault localization. This result reflects that PageRank
analysis computes faultiness score for each method and dis-
tributes weights for tests in tandem. In the next step, we
only utilize faultiness scores to construct weighted spectra
since they already include the information from test
weights. The weighted spectra can be computed by the nor-
malized faultiness score m̂i ¼ mi

maxðfmjgÞ. In this example,

only failing tests are considered, so only efi and nfi need to
be updated as êfi ¼ m̂i �Nf and n̂fi ¼ Nf � êfi, where Nf is
the total number of failing tests. The passing tests can be
analyzed in the similar way, whose details can be found in
Section 4.1.2. The right half of Table 2 shows the weighted
spectrum information and updated Tarantula scores for
each Code method. According to the table, PRFL boosts
Tarantula to rank m2 as the first, demonstrating the effec-
tiveness of PageRank for fault localization.

Actually, although PRFL can help with Tarantula with
the above example, some other formulas, e.g., Ochiai, actu-
ally can also rank the faulty method precisely. Therefore,
we further show another example. Suppose method m1 is
also faulty by changing Line 3 to if (x � 5), and also t4 is
modified as:

public void t4() {

int a = Code.m1(4) + 5;

int b = Code.m3(a);

assertEquals(81, b);

}

Since now both m1 and m2 are faulty, tests t1, t2 and t4

fail and only t3pass. This result leads all three methods
to share the same traditional spectrum information, i.e.,
ðef ; ep; nf ; npÞ = ð2; 1; 1; 0Þ – no matter which SBFL formula is
applied, all the methods will be ranked with the same suspi-
ciousness. However, as we analyzed before, m2 is clearly a
fault since it is the only method covered by the failed t2.
Based on our PRFL idea, we can get vector ~x as ½m1;m2;m3;

t1; t2; t4�T = ½0:099; 0:213; 0:099; 0:198; 0:238; 0:151�T . This out-
come shows that first, m2 is more likely to be faulty than m1

and m3 since 0.213 is greater 0.099. Second, as we expected,
m1 and m3 has the same score(0.099) and the reason is that
both of them are covered by the same tests. Third, t2 is the
most important (e.g., with the highest weight 0.238) test
among t1, t2 and t4 since it only covers m2. Moreover, t1
is more important than t4 since it covers more faulty meth-
ods. This multiple-fault example further demonstrates the
effectiveness of PageRank for fault localization.

4 APPROACH

In this section, we illustrate the approach of our study. An
overall framework of our approach is depicted in Fig. 5. Spe-
cifically, in Section 4.1, we propose our basic approach,
PRFL, which consists of three major phases: preparation, Pag-
eRank analysis and ranking. In the preparation phase (Section
4.1.1), PRFL first collects execution traces and test results
from the faulty program by running tests and further applies
static analysis to construct the connections between program
methods, i.e., the call graph. In the PageRank analysis phase
(Section 4.1.2), PRFL constructs the connection matrix
between tests and methods as well as among source meth-
ods, and generates the weighted spectrum information for
each tests. In the final ranking phase (Section 4.1.3), PRFL
takes as input the updated weighted spectra and uses exist-
ing ranking formulas to localize faultymethods.

In Section 4.2, we propose PRFL+, which further enhan-
ces PRFL on three major parts: call graph refinement, passing
test weight adjustment as well as test and method reduction.
Considering that not all methods in static call graphs are

TABLE 2
Original and Weighted Spectra of Code

Program Entity Original Spectrum Info Weighted Spectrum Info

ef ep nf np T ef ep nf np T

m1 1 1 1 1 0.5 0.42 1 1.58 1 0.30
m2 2 2 0 0 0.5 2 2 0 0 0.50
m3 1 1 1 1 0.5 0.42 1 1.58 1 0.30

(T denotes Tarantula score).

Fig. 4. Test coverage graph of Code and the transition matrix of failing
tests. (Red means the tests that failed).

1094 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

executed during runtime, in the call graph refinement part
(Section 4.2.1), we use dynamic rather than static call graphs
to collect the runtime connections of methods. In the passing
test weight adjustment part (Section 4.2.2), we take the differ-
ences of the capabilities of passing tests into consideration
by adjusting the their weights prior to PageRank analysis.
In the test and method reduction part (Section 4.2.3), since
some methods and tests make negligible impacts on the
PageRank analysis, we propose two approaches to identify
and remove such methods and tests to make PRFL more
efficient.

Furthermore, in Section 4.3, we propose an aggregation
and PageRank-based fault localization technique, namely
PRFLMA, which adaptsMethod-level Aggregation [33] to uti-
lize the detailed statement coverage information in order to
boost PRFL. Specifically, instead of applying SBFL scores
directly, PRFLMA first identifies the statement with the high-
est suspiciousness score within each method, then uses its
coverage as the method coverage for PRFL. Finally, in
Section 4.4, we analyze the time and space complexity of
PRFL theoretically.

4.1 Basic Approach: PRFL

4.1.1 Preparation Phase: Static and Dynamic Analysis

The preparation phase in PRFL is designed to collect graph
data from both dynamic execution and source code for the
PageRank analysis. In this phase, PRFL constructs test cover-
age graph via dynamic analysis. When each test is running,
the dynamic analysis performs code instrumentation to auto-
matically record which methods are executed by the test.
Note that different methodsmay be covered by the same fail-
ing and passing tests, whichmeans they cannot be differenti-
ated only by the coverage graph; hence, more information
should bemined to alleviate this issue. Our heuristic is that if
two methods have the same test coverage (e.g., the same
method and test connections), the connections between the
tied methods and other methods can help break the tie (e.g.,
a method connected with more fault-prone methods may
also be fault-prone since it may have propagated the error
states to the connected methods). Therefore, for each
method, PRFL further applies static analysis to extract the
static call graph to obtain the connections among source
methods. The constructed call graph will then be combined
with test coverage for the PageRank analysis.

4.1.2 Analysis Phase: PageRank Propagation

Here we first recall the original PageRank equation
(Equation (3)). The PageRank equation consists of three
elements, i.e., transition matrix P, damping factor d, and
teleportation vector ~v. To be specific, damping factor d and
teleportation vector ~v are parameters and transition matrix
P is constructed based on coverage and call graph.

Transition Matrix Construction. As we have illustrated in
Section 3, given the test coverage information (i.e., the con-
nections between tests and methods), the transition matrices
can be partitioned as

PP ¼ 00 PPTM

PPMT 00

� �
; (8)

where PPMT and PPTM denote the transition matrix between
methods and tests (based on the test coverage graph). Note
that since the test coverage graph is bipartite, the sub-matri-
ces on the top left and bottom right are zero-matrices.

The matrix PP can present the differences between meth-
ods based on test coverage; however, some methods may be
covered by the same failing and passing tests and they
cannot be differentiated only by PP . To alleviate this issue, we
utilize the Class Hierarchy Analysis (CHA) call graph algo-
rithm [44] to further distinguish these methods. The transi-
tion matrix of call graph is constructed in a different way.
First, we convert the call graph to adjacent matrix A as fol-
lows: suppose method mi invokes method mj, one edge
would be added from mi to mj with weight 1. Also, mj will
return to mi when finished and this return relation should
also be considered. Heuristically, the calling edges may be
more important than the return edges, thus we assign
smaller weight, d, on the return edge from mj to mi, i.e., Aij

and Aji can be computed as Aij ¼ 1 and Aji ¼ d. Note that
when mj and mi invoke each other (e.g., due to recursion),
bothAij andAji are equal to 1þ d. Finally, A will be column-
normalized to ÂA by

Âij ¼ AijP
k Aik

; (9)

and the method-to-method matrix (i.e., the transition matrix
of call graph), PMMPMM , can be computed as PMMPMM ¼ ÂAT .

Fig. 5. Framework of the proposed approach.

ZHANG ET AL.: AN EMPIRICAL STUDY OF BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA PAGERANK 1095

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

Teleportation Vector Design. As we have discussed before,
test weight is not only impacted by the faultiness or success-
fulness likelihood of covered methods, but also by test capa-
bilities. Hence, PRFL uses different teleportation vectors to
present the impact of test capabilities. Teleportation vector~v

is composed by two sub-vectors: ~v ¼ ~vTm;~v
T
t

� �T
, where ~vm

and ~vt denote the teleportation vector of methods and tests
respectively. For both failing and passing tests, ~vm is ~0. For

failing tests, ~vt is ½w1; w2; . . . ; wm�T , where wi ¼ c�1
iP
c�1
j

and ci

denotes the number ofmethods covered by test i. This setting
is based on the property that if a test fails, it covers at least
one faulty method so that a failing test with smaller scope is
more capable to locate the faults. However, a passing test
does not satisfy this property since it may cover a faulty
method whose fault is not triggered. Therefore, the capabil-
ity of a passing test does not depend on the number of cov-
ered methods and all test capabilities share the same weight.
Due to the normalization of weight wi,~vt for passing tests is
defined as ½1t ; 1t ; . . . ; 1t�T , where t denotes the number of the
passing tests.

Constrained PageRank Algorithm. In this work, we extend
the standard PageRank algorithm [26] to analyze the integra-
tion of test coverage and call graph. The standard PageRank
algorithm is applied to a graph whose nodes and edges are
all congeneric. However, in our application scenario, this
prerequisite is not satisfied since the edges in the test cover-
age graph present the connections between methods and
tests, which are not congeneric with the ones in call graph.
Thus, the standard PageRank algorithm may be underper-
formed because of edge variance.

To overcome this issue, we propose a constrained Pag-
eRank algorithm to differentiate the edges based on their
connection types. Our intuition is that the test coverage
graph makes the main contribution for fault localization, so
the edges in test coverage graph deserve more weights; on
the other hand, the edges in call graph should be set less
weights.We use parameter a to tune theweight of call graph,
and the constrained transitionmatrix is

PP ¼ aPMMPMM PTMPTM

PMTPMT 00

� �
: (10)

The PageRank vector ~x in Equation (3) can be decom-
posed as~x ¼ ~xT

m;~x
T
t

� �T
, where~xm denotes the method faulti-

ness or successfulness scores and and~xt denotes the weights
of tests. Then, the iterative Equation (3) can be updated as

~yðkÞm ¼ d �
�
aPPMM �~xðkÞ

m þ PPTM �~xðkÞt

�
(11)

~y
ðkÞ
t ¼ d � PPMT �~xðkÞ

m þ ð1� dÞ �~vt (12)

~xðkþ1Þ
m ¼ ~yðkÞm

maxð~yðkÞm Þ
(13)

~x
ðkþ1Þ
t ¼ ~y

ðkÞ
t

maxð~yðkÞt Þ
; (14)

where the both initial settings of ~xm and ~xt are~0.

4.1.3 Ranking Phase: Weighted-Spectrum-Based Fault

Localization

The weighted spectrum can be constructed using faultiness,
successfulness score and failing, passing test number. In the
second phase, the PageRank Analysis is executed twice to gen-
erate vector~xmf and~xms, which consist of faultiness and suc-
cessfulness scores of all covered methods. For each method
mi, its faultiness score sfi and successfulness score ssi are
extracted from ~xmf and ~xms respectively, and the weighted
spectrum can be computed as

êfi ¼ sfi �Nf;n̂fi ¼ Nf � êfi

êpi ¼ ssi �Np;n̂pi ¼ Np � êpi;
(15)

whereNf andNp denote the total number of failing and pass-
ing tests, respectively. PRFL then applies SBFL formulas to
compute suspiciousness scores on weighted spectra and
ranks all method. The weighted spectra include information
not only from test coverage, but also from test capabilities
and call graph information. Therefore, the weighted spectra
are more accurate to reflect the method faultiness and suc-
cessfulness, and can consequently boost the effectiveness of
SBFL techniques.

4.2 Extended Approach 1: PRFL+

4.2.1 PRFL+ Call Graph Refinement

Generally, call graph represents the method invocation rela-
tions in a given project, which can help developers efficiently
understand the code structure. In the literature, various static
analysis techniques [44], [45], [46] have been proposed to
capture static call graphs for Java programs to obtain the con-
nections among source codemethods.

In our previous work [25], we analyzed source code and
directly applied static call graph analysis to build the connec-
tions of program entities (i.e., methods). However, this set-
ting could count more connections than necessary since
some methods in static call graphs might not be executed
during test execution. In this work, we explore the efficacy of
PRFL by replacing static call graphs with dynamic call
graphs traced during runtime for PageRank analysis to study
the impact of call graph types.

4.2.2 PRFL+ Passing Test Weight Adjustment

The original PRFL only differentiates failing tests by the
number of their covered methods to explore the effects on
fault localization, while the effects of differentiated passing
tests are yet to be studied. In particular, recall that in Section
4.1.2, we design the teleportation vectors to present the
impact of test capabilities in PRFL. Specifically, the teleporta-
tion vector ~v ¼ ~vTm ~vTt

� �T
, where ~vm and ~vt represent the

teleportation vectors of methods and tests respectively. For
passing tests, ~vm is designed to be~0, and the weight of ~vt is
defined as ½1t ; 1t ; . . . ; 1t�T after normalization, where t denotes
the number of the passing tests. As a result, all passing test
capabilities are assignedwith the same teleportation weights
based on this assumption that the capability of a passing test
is not influenced by the number of its coveredmethods.

In this section, we study the effects of adjusting the tele-
portation weights ~vt for the passing tests. In Section 4.1.2,
we design the teleportation weights of failing tests based on

1096 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

the property that a failing test covering very few program
entities will have a smaller scope, which is more helpful to
infer faulty entities. Here, we make similar assumption that
the teleportation weights of passing tests should follow the
same principle: if the passing test covers very few program
entities, these entities would more likely be fault-free, and
this indicates the passing test is more important and should
be assigned a higher weight. The reason is that such passing
tests would have failed with high probability if the element
is faulty since it is easy for any fault within the covered ele-
ment to propagate to the test output due to the small number
of covered elements. Therefore, we design the teleportation

weights of passing tests ~vt as ½w1; w2; . . . ; wm�T , where wi ¼
c�1
iP
c�1
j

and ci denotes the number of methods covered by test

i, which are the same as failing tests.

4.2.3 PRFL+ Test and Method Reduction

Recall that in the PageRank analysis phase, the faultiness and
successfulness scores of all suspicious methods (i.e., the
methods covered by failing test cases) and their spectra are
computed based on the construction of the method-to-test
transition matrix PPMT and test-to-method transition matrix
PPTM , whose computational costs strongly depend on the
matrix dimensions. Furthermore, note that not all tests and
methods contribute to computing their corresponding tele-
portation vectors and thus impact negligibly on modeling
PRFL. These tests andmethods are listed as follows:

� Methods: which are covered only by passing tests
� Tests: which cover the methods that are not covered

by any failing tests
Accordingly, we propose two approaches: test-based

reduction andmethod-based reduction, to identify such tests
and methods and remove them prior to modeling PRFL for
the purpose of reducing its computational cost.

Test-Based Reduction. The test-based reduction approach
removes the elements inPPTM andPPMT when the correspond-
ing tests contain no failing-test-covered methods. For
instance, in Fig. 6a, t2 and t3 are passing tests. t1 is a failing

test (in red) that covers themethods m1, m2, and m3. Since the
passing test t2also covers m2 that is covered by t1, the test-
based reduction approach retains all the t2-related elements
(t2–m2, t2–m4, t2–m5). On the other hand, the passing test
t3covers m4, m5, and m6, and none of which is covered by
t1. Therefore, all the t3-related elements (t3–m4, t3–m5,
t3–m6) would be deleted from PPTM , and dually, m4–t3, m5–
t3 and m6–t3would also be deleted from PPMT .

Method-Based Reduction. Similarly, the method-based
reduction approach removes the elements in PPMT and PPTM

when the corresponding methods are only covered by pass-
ing tests. For instance, in Fig. 6b, the test t1 is failed (in red)
and the tests t2-t5 are passed. According to the method-
based reduction approach, since m1and m2 are covered by
the failing test t1, both of them will be retained for PRFL
analysis. On the other side, since m4 is covered by all the
passing tests t2, t3, and t5, all the m4-related elements (m4-
t2, m4-t3, m4-t5) will be deleted from PPMT , and dually, t2-
m4, t3-m4, t5-m4will also be deleted from PPTM .

4.3 Extended Approach 2: PRFLMA

In Section 2.3, it is observed that the traditional SBFL techni-
ques cannot differentiate the faultiness of m1 and m2 only
using method coverage. In order to improve the accuracy
of fault localization, we further propose PRFLMA, a novel
technique which integrates Method-level Aggregation and
PRFL.

In general, PRFLMA includes the following steps:

� Step 1: PRFLMA extracts the spectrum (ef , ep, nf , np)
for all statements and applies SBFL formula (e.g.,
Ochiai2) to compute the suspiciousness scores of all
statements.

� Step 2: For each method, PRFLMA chooses the most
suspicious statement covered by the given method,
and uses the statement coverage to replace themethod
coverage.

� Step 3: PRFLMA executes PRFL on the updated cover-
age to rank all the methods.

We use Table 3 as an example to illustrate the process of
PRFLMA. Columns t1-t4 demonstrate the coverage infor-
mation of four test cases on m1, m2, and their statements. Spe-
cifically, 1 and 0 represent the method/statement being
covered and uncovered by each test, respectively. For
instance, m1 is covered by t1, t2, and t3. In addition, line
s4 in m1, “elsef” is covered by t2 and t3. Column Och.2

presents the results of traditional Ochiai2 scores of the two
methods and their statements. It can be shown that m1 and
m2 are assigned with the same SBFL scores and hence cannot
be properly ranked because they have the same spectra. On
the other hand, the SBFL scores of statements are different.
The reason is that some methods are partially executed by
tests, leading to different SBFL scores among the statements.
Column Agg. shows that the statements s2 and s3 are
assigned with the highest SBFL score within m1 after apply-
ing Ochiai2. Next the spectrum and SBFL scores of s2 or s3
are assigned to m1. In other words, originally, m1 is executed
by the tests t1-t3, and s2 and s3 are executed by t1. After
applying MA, m1 is perceived to be executed by t1, leading
to aMethod-level Aggregation of the statement-level spectra.
As a result, m1 is ranked higher than m2.

Fig. 6. Test-based Reduction (a) and method-based reduction (b).

ZHANG ET AL.: AN EMPIRICAL STUDY OF BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA PAGERANK 1097

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

4.4 Computational Complexity

Suppose the numbers of failing and passing tests are Tf and
Tp, and the numbers of their covered methods are Mf and
Mp respectively. In general, the program quality is relatively
high and only a few of tests fail, hence, we can make a mild
assumption that Tp � Tf andMp � Mf . Therefore, the com-
plexity of our approaches is derived mostly based on the
complexity of the passing tests. Recall that in the Equa-
tions (11) and (12), vector ~xm and ~xt denote the PageRank
scores of methods and tests, and their sizes are Mp and Tp.
The dimensions of matrix PMM , PTM and PMT are MP �MP ,
MP � TP and TP �MP , respectively. Hence, the time complex-
ity of computing Equations (11) and (12) depends on the
complexity of themultiplication of matrix and vector. Specif-
ically, the time complexity of Equation (11) is OðM2

P þMP �
TP Þ and the time complexity of Equation (12) is OðMP � TP Þ.
Therefore, the total time complexity of PRFL is OðM2

P þ
MP � TP Þ. On the other hand, compared to SBFL, we need
more space to store these matrices, therefore, the space com-
plexity isOðM2

P þMP � TP Þ as well.

5 EXPERIMENTAL SETUP

Our experimental study aims to answer the following
research questions:

� RQ1:How does PRFL compare with traditional SBFL
techniques in term of effectiveness and efficiency?

� RQ2: How do different configurations impact the
effectiveness of PRFL?

� RQ3: How do different numbers of faults impact the
effectiveness of PRFL?

� RQ4: How does PRFL compare with the recent pro-
posed learning and spectrum-based fault localiza-
tion technique?

� RQ5: How does PRFL compare with the recent pro-
posed mutation-based fault localization techniques?

� RQ6: How does PRFL perform using different link
analysis algorithms?

� RQ7: How does PRFL+ perform on localizing real
faults?

� RQ8: How does PRFLMA perform on localizing real
faults?

� RQ9: How do PRFL and PRFLMA perform on a large
number of artificial faults?

� RQ10: How statistically significant is the improve-
ment of the proposed techniques?

5.1 Subjects

Real-Fault Subjects.We use Defects4J [27] and Bugs.jar [34] as
the benchmarks for our evaluations.

Defects4J [27] is a mature real fault dataset for testing
experiments, and has been widely used in software testing
research [18], [29], [47], [48], [49]. Defects4J(v1.2.0, update in
December 2017) includes 395 real faults from 6 open-source
projects: JFreeChart, Google Closure Compiler, Apache
Commons Lang, Apache Commons Math, Joda-Time and
Mockito. For each fault, Defects4J provides the faulty pro-
gram, the fixed program with minimum code change and
the failing tests.We identify the faultymethods in the follow-
ing ways. First, we compare the modified source files to
collect code changes. If all changes are located in a single
method, we label suchmethod as a faulty method. However,
in some other cases, the program changes are distributed in
multiple methods which may not all be faulty. To precisely
identify the actual fault-triggering methods, we then manu-
ally apply all the possible combinations of the modified
methods to get the minimum change set that can pass all
tests. Note that we used all the 395 Defects4J faults except the
faults not withinmethod bodies. Table 4 (except the last row)
shows the statistics of the Defects4J subjects – Column 1
presents the subject IDs that will be used in the remaining
text; Column 2 presents the full name of the subjects; Column
3 presents the number of faults for each subject; finally, Col-
umns 4 and 5 present the LoC (i.e., Lines of Code) and test
number information of the most recent version of each sub-
ject in Defects4J.

Bugs.jar [34] is a recently proposed real fault dataset,
which includes 1,158 faults and patches extracted from 8
open-source Java projects: Accumulo, Camel, Apache Com-
mons Math, Flink, Jackrabbit Oak, Log4J2 Logging, Maven,
Wicket. In our experiments, we successfully built and applied
560 out of 1,158 bugs (Accumulo 56/98, Apache Commons
Math 89/147, Flink 69/70, Jackrabbit Oak 238/278, Log4J2
Logging 65/81,Wicket 43/289) to evaluate our approach.

Artificial-Fault Dataset.Although Defects4J and Bugs.jar are
suitable for evaluating testing techniques, their projects and
faults are rather limited, posing threats to validity. Mean-
while, mutation testing has been shown to be suitable for vari-
ous software engineering tasks, such as facilitating automated
debugging [15], and simulating real faults for software-testing
experimentation [28], [29]. Therefore, we further use the PIT
mutation testing tool [50] (with all its 16 supported mutation
operators) to generate artificial faults for evaluating PRFL. To
be specific, we start from the first 3,804 most popular Java
projects from GitHub [51]. 1,855 projects of those were built
successfully with Maven and passed all tests. Then, 786 proj-
ects were further removed since PIT crashed or could not ter-
minate within our time limit, i.e., 2 hours. Therefore, finally,
we have 240 projects with mutation faults, ranging from 112
to 31,3016 lines of code. The last row of Table 4 presents the
statistics of themutation faults used in our study.

5.2 Implementation and Supporting Tools/Platform

Data Preparation. We use ASM bytecode analysis frame-
work [52] together with JavaAgent [53] to perform on-the-fly

TABLE 3
The Process of PRFLMA

C Subject t1 t2 t3 t4 Och.2 Agg.

m1 static int m1ðint xÞ f 1 1 1 0 0.08 1*
s1 y ¼ Math:absðxÞ; 1 1 1 0 0.08 0.08
s2 ifðy % 2 ¼¼ 1Þ 1 0 0 0 1* 1*
s3 int s ¼ 1; ==buggy 1 0 0 0 1* 1*
s4 else 0 1 1 0 0 0
s5 int s ¼ y; 0 1 1 0 0 0
s6 return s;g 1 1 1 0 0.08 0.08

m2 static int m2ðint xÞ f 1 0 1 1 0.08 0.08
s7 int s ¼ xþ 1; 1 0 1 1 0.08 0.08
s8 return s;g 1 0 1 1 0.08 0.08

Test case outcome f p p p m1/2 m1
Number of candidates 4

1098 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

code instrumentation to capture the test coverage for each
test. Furthermore, we also implement the static Class Hierar-
chy Analysis call graph algorithm [44] based on ASM frame-
work. Note that we ignore all the 3rd party libraries and Java
internal libraries during the call graph analysis for time
efficiency.

Data Analysis.We use Numpy [54], one of the most popu-
lar scientific computing package in Python, to implement
and evaluate PRFL and other traditional SBFL techniques.
PRFL applies an iterative algorithm to compute the faulti-
ness and successfulness scores. For our application scenario,
the test number is relative small, which leads the sizes of
transitionmatrices PPTM and PPMT limited. On the other hand,
since the method invocations are not frequent, the transition
matrix PPMM is sparse. This property makes PRFL execute
fast, and for all following experiments, PRFL is iterated 25
times for both failing and passing tests.

Tool Supports. Currently all the proposed techniques
(including PRFL and PRFLMA) have been implemented and
integrated in our IntelliFL tool.2 IntelliFL has been imple-
mented as a practical Maven Plugin for debugging Java pro-
grams with JUnit tests, and now is also publicly available in
Maven Central Repository [55]. IntelliFL currently supports
both single-module and multi-module Maven projects, as
well as unit (via Maven Surefire Plugin [56]) and integration
(via Maven Failsafe Plugin [57]) tests. Furthermore, IntelliFL
supports tests developed under both JUnit 3 and 4, and can
also support source code developed under JDKversions 7 to 9.

Platform. All our experiments were performed on an Intel
(R) XeonE5-4610 v4CPU(1.80GHz)withUbuntuLinux 16.04.

5.3 Evaluation Metrics

We use the absolute wasted effort (AWE) and Top-N, two
widely used metrics [10], [12], [47] to evaluate the effective-
ness of the studied fault localization techniques. Note that
all our metrics do not consider test code.

AWE. Given a faulty program and a ranking formula
(such as Tarantula), AWE is defined as the ranking number
of the faulty method. However, in some cases, there are
more than one method sharing the same SBFL score with
faulty method, and AWE is defined as the average ranking
of all the tied methods. The AWE is computed as

AWEðbÞ ¼ jfmjsuspðmÞ > suspðbÞgj
þ jfmjsuspðmÞ ¼ suspðbÞgj=2þ 1=2;

(16)

where b is the faulty method andm is any candidate method
except b and jf�gj is the cardinality of a set. The range of
AWE is from 1 to the total number of methods. A smaller
AWE means the fault localization is more effective and the
ideal value is 1.

Top-N. Thismetric counts the number of successfully local-
ized faulty methods within the Top-N (N=1, 3, 5) ranked
results. If the faulty methods share the same score, we use the
average position to present fault location; if a bug has multiple
methods ranked within Top-N, we count all such buggy
method instances of this bug for the Top-N metric. Higher
Top-N denotes more effective fault localization. Note that this
metric can be quite important in practice since developers
usually only inspect top-ranked elements, e.g., over 70percent
developers only check Top-5 ranked elements [58].

6 RESULT ANALYSIS

6.1 RQ1: PRFL’s Overall Effectiveness
and Efficiency

6.1.1 Effectiveness of PRFL

To answer this RQ, we present the experimental results of
PRFL using the default configuration (d ¼ 0:7, a ¼ 0:001 and
d ¼ 1:0) on all the real faults from the Defects4J dataset.
Table 5 presents the overall results. In the table, different col-
umns present different effectiveness metrics. (for each met-
ric, Column S represents the traditional spectrum-based
techniques while Column P represents our PRFL) and differ-
ent rows present the subjects and fault localization formulas
used. Also, the bottom portion of the table presents the over-
all results for all Defects4J subjects, e.g., the total Top-N val-
ues and the average AWE values. From Table 5, we can have
the following observations. First, overall Ochiai and Dstar2
(marked in gray) are the two most effective SBFL techniques
for all the faults in Defects4J. Also, both of them are able to
localize 109+ faults within Top-1 and 209+ faults within Top-
3. Second, in general, PRFL is able to boost all the studied tra-
ditional SBFL techniques. For example, the overall Top-1/3/
5 and AWE values of all traditional techniques are all outper-
formed by the corresponding PRFL techniques. Third, inter-
estingly, PRFL tends to boost more effective traditional SBFL
techniques even more. For example, PRFL is able to boost the
number of faulty methods ranked as Top-1 by Ochiai from 79
to 110 (i.e., 39 percent more), a higher improvement than the
other inferior techniques.

Table 7 presents the performance of PRFL and SBFL on
Bugs.jar dataset. Similarly, as presented in Table 5, we can
observe that overall Ochiai and Dstar2 are still the two most
effective SBFL techniques for all the faults in Bugs.jar. Specif-
ically, by applying PRFL , Ochiai can locate 47 (30%+), 139
(27.5%+), and 187 (18.4%+) faults, and Dstar2 can locate 48
(26.3%+), 141 (22.6%+), and 190 (15.8%+) faults within Top 1,
3 and 5. However, we found the improvements of AWE on
Bugs.jar is not globally consistent to the observation on
Defects4J. For example, overall PRFL can improvemore than
8 percent AWE using Ochiai and Dstar2, but it increases
around 13 percent AWE onMath.

6.1.2 Efficiency of PRFL

We record the overhead of our PRFL technique. Table 6
presents the average overhead results for all versions of each

TABLE 4
Subject Statistics

ID Program #Faults LoC #Tests

Chart JFreeChart 26 96K 2,205
Closure Closure Compiler 133 90K 7,927
Lang Commons Lang 65 22K 2,245
Math Commons Math 106 85K 3,602
Time Joda-Time 27 28K 4,130
Mockito Mockito 38 23k 1,366

Real-Fault Total 6 Projects 395 344k 21,475

Mutation-Fault Total 240 Projects 96925 2565K 19556

2. http://www.intellifl.org/

ZHANG ET AL.: AN EMPIRICAL STUDY OF BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA PAGERANK 1099

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

http://www.intellifl.org/

subject from Defects4J. In Table 6, each column presents the
time(seconds) spent in each phase of PRFL while the last col-
umn presents the total overhead; each row presents the over-
head for each subject while the last row presents the average
results for all the subjects. Column COV, Column CG and Col-
umn Analysis respectively represent coverage collection,
call graph construction, and PageRank analysis costs. Col-
umn DP represents time of processing data, which includes

reading data (statement coverage and call graph) and con-
structing matrices for PageRank analysis. Based on the table,
the PRFL technique is lightweight and can finish within
around 6minutes for the studied subject on average. Further-
more, the most time-consuming phase is DP while the over-
heads of other PRFL phases (i.e., the call graph and PageRank
analysis time) are comparably low, e.g., less than 10 seconds
for CG and less than 2 seconds for Analysis. The reason is
that DP is implemented in Python, which is relatively slow
and also does not enablemulti-threading.

Furthermore, we investigate the memory consumption of
PRFL. In Table 8, the column “F-matrix” and “P-matrix”
present the allocated memory of PageRank matrices of fail-
ing and passing tests respectively. It can be found that these
results are consistent to our assumption that there are much
more passing tests than failing tests. Moreover, we can
observe that the memory overhead is less than 2 Gigabyte
which can be easily handled by a commonly-configured per-
sonal computer.

6.2 RQ2: Configuration Impacts

In this section, we extend our experiments with different con-
figurations to investigate the influence of internal factors of
PRFL so as to learn how to make PRFL achieve better perfor-
mance. Fig. 7 presents the impacts of different damping fac-
tors (i.e., d) on the effectiveness of PRFL using the default
a ¼ 0:001 and d ¼ 1:0. In the figure, the x axis presents various
damping factor values, while the y axis presents the AWE
improvements of PRFL techniques over the original pure
SBFL techniques (different formulas are represented using
different lines). From the figure, we have the following obser-
vations. First, the damping factor does not impact the PRFL
effectiveness much. For example, for all the formulas on all
the subjects, the largest improvement difference among
different damping factors is only 4 percent. Second, for the
majority cases, when the damping factor increases, the
improvement rates slightly decrease. This observation is as
expected. The reason is that when damping factor increases,
the test capabilities will be distributed a smaller weight, caus-
ing it tomake less contributions in localizing the faults.

Fig. 8 shows the impact of the call graph weights (i.e., a)
using the default d ¼ 0:7 and d ¼ 1:0. Similar to Fig. 7, the x
axis presents different call graph weights, the y axis presents
the improvement rates of PRFL over pure SBFL techniques
(different line represents different formulas). From the figure,
we have the following observations. First, on all the subjects,
the improvement rates of PRFL dramatically increase at the
very beginning, but then slowly increase or even decrease for
some formulas. One major reason is that when the call graph

TABLE 6
Fault Localization Overheads

Sub COV CG DP Analysis Ranking Total

Chart 35.18 66.71 6.49 1.33 0.01 109.72
Closure 231.73 431.71 888.87 6.61 0.01 1558.94
Lang 23.85 22.26 0.81 0.38 0.01 47.31
Math 268.32 106.21 8.33 1.47 0.01 384.34
Mockito 45.37 38.93 4.30 0.15 0.01 88.76
Time 21.56 25.72 19.39 1.32 0.01 68.00

Avg. 104.33 115.23 154.70 1.87 0.01 376.17

TABLE 5
Results of SBFL and PRFL on All Defects4J Faults

Tech
Top-1 Top-3 Top-5 AWE

S P S P S P S P Impr.

Chart

Tarantula 7 12 20 21 22 24 14.92 13.63 8.63%
SBI 7 11 20 21 22 24 14.92 13.63 8.63%

Ochiai 6 11 17 20 19 24 11.83 10.21 13.66%
Jaccard 6 11 17 20 20 24 12.12 10.60 12.54%
Ochiai2 6 12 17 21 21 24 12.15 11.40 6.17%

Kulczynski 6 11 17 20 20 24 12.12 10.60 12.54%
Dstar2 5 10 16 21 19 24 13.65 9.83 28.03%
Op2 5 7 14 17 16 20 66.19 61.37 7.29%

Lang

Tarantula 21 27 45 50 57 57 5.81 5.26 9.40%
SBI 21 27 45 50 57 57 5.81 5.26 9.40%

Ochiai 22 30 44 51 56 58 5.35 4.76 10.94%
Jaccard 22 28 44 50 56 57 5.39 4.88 9.42%
Ochiai2 21 28 45 50 55 57 5.35 5.33 0.29%

Kulczynski 22 28 44 50 56 57 5.39 4.88 9.42%
Dstar2 23 30 45 50 55 58 5.33 4.65 12.70%
Op2 23 29 45 48 56 56 5.48 4.61 15.99%

Math

Tarantula 24 32 61 65 73 78 8.89 7.36 17.20%
SBI 24 32 61 65 73 78 8.87 7.36 17.07%

Ochiai 24 33 60 65 73 83 9.25 6.92 25.23%
Jaccard 24 32 61 66 73 79 8.87 7.33 17.39%
Ochiai2 24 31 61 67 73 79 8.88 7.35 17.16%

Kulczynski 24 32 61 66 73 79 8.87 7.33 17.44%
Dstar2 24 33 60 65 73 83 9.40 6.91 26.46%
Op2 23 28 54 61 65 76 10.66 8.35 21.64%

Time

Tarantula 5 7 11 14 16 16 25.37 23.30 8.18%
SBI 5 7 11 14 16 16 25.37 23.30 8.18%

Ochiai 6 7 11 13 18 18 22.93 19.93 13.09%
Jaccard 5 7 9 12 18 17 25.41 23.44 7.73%
Ochiai2 5 7 11 14 16 17 25.44 23.33 8.30%

Kulczynski 5 7 9 12 18 17 25.41 23.44 7.73%
Dstar2 6 7 11 12 12 12 25.22 21.48 14.83%
Op2 8 4 12 11 14 13 62.67 60.19 3.96%

Closure

Tarantula 12 13 26 33 36 45 120.30 87.01 27.68%
SBI 12 13 26 33 36 45 120.30 87.02 27.66%

Ochiai 14 20 29 43 39 59 108.70 75.74 30.33%
Jaccard 13 14 27 34 37 47 119.40 86.29 27.73%
Ochiai2 13 13 26 33 37 46 120.01 86.83 27.64%

Kulczynski 13 14 27 34 37 47 119.40 86.29 27.73%
Dstar2 14 21 28 42 39 59 108.23 74.77 30.91%
Op2 17 10 33 32 42 43 119.26 87.76 26.41%

Mockito

Tarantula 6 7 18 22 25 31 39.51 34.89 11.69%
SBI 6 7 18 22 25 31 39.51 34.89 11.69%

Ochiai 7 9 18 20 25 32 49.91 36.66 26.55%
Jaccard 6 7 18 22 25 30 39.32 34.42 12.45%
Ochiai2 6 7 18 22 25 30 39.46 35.24 10.70%

Kulczynski 6 7 18 22 25 30 39.32 34.42 12.45%
Dstar2 7 8 17 19 23 33 57.96 44.34 23.50%
Op2 6 5 14 16 19 23 155.43 154.03 0.91%

Overall

Tarantula 75 98 181 205 229 251 35.80 28.58 20.18%
SBI 75 97 181 205 229 251 35.80 28.58 20.17%

Ochiai 79 110 179 212 230 274 34.66 25.70 25.85%
Jaccard 76 99 176 204 229 254 35.08 27.83 20.68%
Ochiai2 75 98 178 207 227 253 35.21 28.25 19.78%

Kulczynski 76 99 176 204 229 254 35.08 27.83 20.68%
Dstar2 79 109 177 209 221 269 36.63 27.00 26.30%
Op2 82 83 172 185 212 231 69.95 62.72 10.34%

Column S and P indicate SBFL and PRFL respectively.

1100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

weight is 0, PRFL degrades to use only the test coverage infor-
mation and cannot differentiate the methods with the same
test coverage, hence the improvement rates are relative low.
Note that even without call graph information (i.e., a ¼ 0),
PRFL is still able to outperform the traditional SBFL techni-
ques for the majority cases. Second, the call graph weight has
different impacts on different formulas. For example, the
improvement rate of PRFL over Op2 eventually decreases

dramatically for subjects Time and Closure, while the
improvement rates keep stable or increasing for the other
formulas on the most subjects. Also, the impact of call graph
weight is similar for Tarantula and SBI, as well as Jaccard and
Kulczynski due to the similarities in the formula definition.

Fig. 9 shows the impact of the return edge weights (i.e., d)
using d ¼ 0:7 and a ¼ 0:001. Similar with Figs. 7 and 8 , the
x axis presents different return edge weights, while the y axis
presents the improvement rates of PRFL over the traditional
SBFL techniques. From this figure, it is observed that the
improvement rates of PRFL (especially onOp2) on all the sub-
jects are low and sometimes even below zero when d ¼ 0:0.
The potential reason is that when d ¼ 0:0, all return edges are
ignored in call graphs, and the invoked methods are assigned
with too much faultiness or successfulness scores. Especially,
faultiness score plays a leading role in Op2 and can make
callee methods more suspicious than the caller methods, thus
decreasing the effectiveness of PRFL. Furthermore, interest-
ingly, it can also be observed that the return edgeweight does

TABLE 7
Results of SBFL and PRFL on All Bugs.jar Faults

Tech
Top-1 Top-3 Top-5 AWE

S P S P S P S P Impr.

Accumulo

Tarantula 2 2 16 23 20 24 228.66 232.94 -1.87%
SBI 2 2 16 18 20 22 228.66 233.07 -1.93%

Ochiai 3 6 14 28 19 32 230.25 229.68 0.25%
Jaccard 3 6 15 28 19 33 228.95 231.00 -0.89%
Ochiai2 3 7 13 26 19 28 228.06 231.70 -1.59%

Kulczynski 3 6 15 28 19 33 228.95 231.00 -0.89%
Dstar2 4 7 18 27 21 33 232.41 230.57 0.79%
Op2 5 6 20 23 20 26 245.24 236.45 3.58%

Math

Tarantula 9 12 29 34 34 35 18.01 19.13 -6.21%
SBI 9 12 29 34 34 35 18.01 19.13 -6.21%

Ochiai 11 14 29 34 34 35 18.90 21.46 -13.49%
Jaccard 11 14 29 34 34 35 18.12 19.11 -5.42%
Ochiai2 11 13 29 34 34 35 18.01 19.11 -6.08%

Kulczynski 11 14 29 34 34 35 18.12 19.11 -5.42%
Dstar2 11 14 29 34 34 35 18.96 21.47 -13.25%
Op2 9 12 19 28 25 30 22.09 28.75 -30.14%

Flink

Tarantula 3 5 20 20 33 31 62.35 53.06 14.90%
SBI 3 5 20 20 33 31 62.35 53.06 14.90%

Ochiai 3 4 17 20 28 34 75.32 58.36 22.51%
Jaccard 3 6 18 22 25 31 70.64 53.80 23.83%
Ochiai2 4 6 19 22 27 32 65.15 52.90 18.80%

Kulczynski 3 6 18 22 25 31 70.64 53.80 23.83%
Dstar2 3 4 17 19 28 31 82.89 62.37 24.76%
Op2 2 3 15 19 24 28 96.73 79.12 18.20%

Oak

Tarantula 8 8 21 21 36 36 148.54 141.45 4.77%
SBI 8 8 21 21 36 36 148.54 141.41 4.80%

Ochiai 10 10 23 22 38 37 140.66 140.10 0.40%
Jaccard 10 10 23 22 38 37 149.50 142.65 4.58%
Ochiai2 10 10 23 22 37 36 148.28 141.26 4.73%

Kulczynski 10 10 23 22 38 37 149.50 142.69 4.55%
Dstar2 10 11 24 25 40 39 140.31 140.37 -0.04%
Op2 10 11 25 25 35 35 206.58 206.00 0.28%

Log4j2

Tarantula 2 2 12 13 20 21 145.11 123.64 14.80%
SBI 2 2 12 13 20 21 145.11 123.58 14.84%

Ochiai 3 6 12 17 20 23 154.55 133.10 13.88%
Jaccard 3 6 12 19 20 24 156.99 132.03 15.90%
Ochiai2 3 5 12 16 21 24 150.45 124.75 17.08%

Kulczynski 3 6 12 19 20 24 156.99 132.03 15.90%
Dstar2 4 5 13 18 20 24 163.12 138.77 14.93%
Op2 3 5 12 18 15 21 202.07 165.82 17.94%

Wicket

Tarantula 5 5 12 12 17 17 145.07 133.12 8.23%
SBI 5 5 12 12 17 17 145.07 133.20 8.18%

Ochiai 6 7 14 18 19 26 249.55 215.63 13.59%
Jaccard 6 7 14 18 19 26 178.07 144.38 18.92%
Ochiai2 6 7 15 16 20 24 163.85 170.91 -4.31%

Kulczynski 6 7 14 18 19 26 178.07 144.38 18.92%
Dstar2 6 7 14 18 21 28 267.15 230.00 13.91%
Op2 6 6 14 17 19 23 311.37 273.23 12.25%

Overall

Tarantula 29 34 110 123 160 164 124.62 117.22 5.94%
SBI 29 34 110 118 160 162 124.62 117.24 5.92%

Ochiai 36 47 109 139 158 187 144.87 133.05 8.16%
Jaccard 36 49 111 143 155 186 133.71 120.49 9.89%
Ochiai2 37 48 111 136 158 179 128.97 123.44 4.29%

Kulczynski 36 49 111 143 155 186 133.71 120.50 9.88%
Dstar2 38 48 115 141 164 190 150.81 137.26 8.98%
Op2 35 43 105 130 138 163 180.68 164.90 8.74%

Column S and P indicate SBFL and PRFL respectively.

TABLE 8
Average Memory Consumption of PRFL

Proj. F-matrix P-matrix

Chart 0.037 248.618
Closure 0.075 1616.352
Lang 0.002 112.479
Math 0.005 382.071
Time 0.007 207.31
Mockito 0.023 42.011

Unit: MB

Fig. 7. Impact of damping factor.

ZHANG ET AL.: AN EMPIRICAL STUDY OF BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA PAGERANK 1101

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

not impact the PRFL effectiveness much when d 5 0.1, e.g.,
the largest improvement difference among different return
edge weights is nomore than 5 percent for all the formulas on
all the subjects.

6.3 RQ3: Impact of Fault Number

As mentioned by existing work [59], over 82 percent of
faults are single-faults, where the systems can be repaired
by only eliminating one fault. This observation inspires us
that it is plausible to apply simpler and near-optimal fault
localization in most cases. In our experiment, we obtain sim-
ilar observation that around 80.0 percent of subjects are sin-
gle-fault subjects (309 out of 395 subjects in Defects4J v1.2),
which also validates the prevalence of single-fault faults in

software development. Hence, we classify the program
faults as single-fault and multi-location-faults. Specifically,
for method-level fault localization, single-fault is defined as
all bug fixes located in a single method. In contrast, multi-
location-faults refers to bug fixes in multiple methods. In
our evaluation, we define localizing multi-location-faults as
multiple tasks of single-fault localization where an ideal
technique is expected to rank all faulty methods on the top.

The real faults from Defects4J include both single-fault
and multi-location-faults. Table 9 presents the experimental
results, where the left half presents the results on single-fault
versions while the right half presents the results on themulti-
location-faults versions. From the table, we have the follow-
ing findings. First, we find that the traditional techniques per-
form differently on single-fault and multi-location-faults

Fig. 8. Impact of call graph weight.

Fig. 9. Impact of return weight.

TABLE 9
Overall Fault Localization Results on Single-Fault and Multi-Location-Faults of Defects4J

Single-fault versions Multi-location-faults versions

Tech Top-1 Top-3 Top-5 AWE Top-1 Top-3 Top-5 AWE

S P S P S P S P Impr. S P S P S P S P Impr.

Tarantula 58 70 122 135 150 161 30.81 24.20 21.44% 17 28 59 70 79 90 27.28 20.88 23.45%
SBI 58 70 122 135 150 161 30.81 24.20 21.44% 17 27 59 70 79 90 27.28 20.89 23.41%
Ochiai 63 82 128 144 156 178 26.41 19.00 28.06% 16 28 51 68 74 96 26.22 20.43 22.08%
Jaccard 60 73 123 137 153 163 29.42 23.02 21.74% 16 26 53 67 76 91 27.27 20.66 24.26%
Ochiai2 59 71 122 136 151 162 29.83 23.64 20.76% 16 27 56 71 76 91 27.22 20.83 23.47%
Kulczynski 60 73 123 137 153 163 29.42 23.02 21.74% 16 26 53 67 76 91 27.28 20.66 24.27%
Dstar2 64 82 129 146 156 179 26.35 18.81 28.62% 15 27 48 63 65 90 27.19 20.58 24.31%
Op2 68 67 136 142 162 174 24.17 19.75 18.30% 14 16 36 43 50 57 63.98 53.23 16.81%

Column S and P indicate SBFL and PRFL respectively.

1102 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

versions. For example, Dstar2 andOp2 (marked in gray in the
left half) are the two overall most effective techniques for sin-
gle-fault versions, while Tarantula and SBI (marked in gray
in the right half) are the two overall most effective techniques
for multi-location-faults versions. In particular, Op2 per-
forms the best on single-fault versions (also confirmed by
prior work [35]), e.g., with the highest Top-1 value (i.e., 68)
and the lowest AWEvalue (i.e., 24.17), but performs theworst
on multi-location-faults versions, e.g., with the lowest Top-1
value (i.e., 14) and the highest AWE value (i.e., 63.98). The
major reason might be that Op2 is specifically designed and
also shown to be optimal for single-fault programs [6], but it
cannot perform well for multi-location-faults programs.
Second, we find that despite the fact that various techniques
perform differently on single-fault or multi-location-faults
programs, PRFL is able to boost almost all the studied techni-
ques similarly on both single-fault and multi-location-faults
fault programs. For example, the Top-1 value improvement
for Tarantula is 20.7 percent (from 58 to 70) on single-fault
programs and 64.7 percent (from 17 to 28) on multi-location-
faults programs. Finally, PRFL is also able to boost the origi-
nally effective techniques (e.g., Dstar2, SBI, and Tarantula)
significantly. For example, the AWE improvement for Dstar2
(i.e., 28.62 percent) is the highest for single-fault versions. For
multi-location-faults versions, the AWE improvement for
two optimal techniques, Tarantula and SBI, are 23.45 and
23.41 percent respectively.

6.4 RQ4: Comparison of PRFL and Recent
Proposed SBFL Technique

We compare PRFL withMultric [12], a recent proposed spec-
trum-based fault localization technique. Multric [12] applies
pairwise learning-to-rank algorithm to ensemble multiple
SBFL formulae in order to improve the accuracy of SBFL
techniques. To be specific, in the experiment, we first select

34 SBFL formulae [16] to compute the suspiciousness scores
for generating feature vectors for eachmethod.

Then, we adopted LIBSVM,3 a widely-used library for
support vector machines, and XGBoost,4 an widely-used
optimized distributed gradient boosting library, to investi-
gate the effectiveness. More specifically, we used RankSVM
with linear kernel fromLIBSVM (default settings), andLamb-
daRank from XGBoost (booster = gbtree, max_depth =60,
num_round = 100, colsample_bytree = 0.85, and eta =0.5).
Moreover, we performed a leave-one-out cross valida-
tion [16], [47] not only across each version of the six projects,
but also across whole six projects. For the total N bugs, we
can separate them into two groups: (1) one group only
includes one bug is the test data for predicting its rank; (2)
and the other groupwith remainingN - 1 bugs as the training
data is to build the rankingmodel.

Table 10 presents the results of Multric, Ochiai, and PRFL.
From the table, we can observe that Multric can totally locate
80/188/236 faults within Top-1/3/5, which performs slightly
better than Ochiai. However, after applying PRFL, Ochiai is
effectively boosted and it can rank more faults within Top-1/
3/5. We can learn from the results that Multric can generate
better formula to compute suspiciousness scores. However,
the program spectrum is still the bottleneck which limits its
performance. On the other hand, the improvement from
PRFL suggests the benefit of using PageRank for extracting
more information from coverage and call graphs.

6.5 RQ5: Comparison of PRFL, MBFL and the
Integrated Approach

We first compare PRFL with two recent proposed mutation-
based fault localization techniques: Metallaxis [30] and
MBFL-hybrid-avg [18]. Then, we study a simple integration of
PRFL andMBFL and present its performance.

Metallaxis [30] is the first mutation-based fault localiza-
tion technique. Metallaxis supposes that a mutant leads to
different failure outputs/messages for the failing tests, and
the mutated program entity may have high impact on the
failing tests, whichmeans it ismore likely to be the root cause
of the test failures. MBFL-hybrid-avg is an improved muta-
tion-based fault localization technique which averages each
statement’s MBFL suspiciousness with the suspiciousness
calculated by a SBFL technique, and it performs better than
other proposed techniques in [18].

In the experiment, we choose Ochiai as the basic SBFL
technique for it is the most effective one on PRFL, and we
customize MBFL-hybrid-avg as follows: first, to reduce the
time complexity, we only mutate the methods covered by
failing tests following the original work [18]; second, instead
of statement-level fault localization, we average the MBFL
scores of all the statements within each method and use it to
present the method suspiciousness. Since project Closure
is much larger than other projects and its associated muta-
tion testing is very time consuming, we ignore Closure and
apply the approaches on the other five projects of Defects4J
benchmark. Moreover, we choose Metallaxis as the basic
MBFL technique of MBFL-hybrid-avg, and we use the fol-
lowing formula to computeMetallaxis score:

TABLE 10
Effectiveness of Ochiai, Multric and PRFL

Tech. Proj. Top1 Top3 Top5 AWE

Ochiai

Chart 6 17 19 11.83
Lang 22 44 56 5.35
Math 24 60 73 9.25
Time 6 11 18 22.93

Mockito 7 18 25 49.91
Closure 14 29 39 108.70
Overall 79 179 230 34.66

Multric

Chart 7 18 21 10.88
Lang 23 47 59 6.9
Math 21 57 69 25.17
Time 6 14 14 39.11

Mockito 6 14 24 48.55
Closure 17 38 49 134.44
Overall 80 188 236 44.18

PRFL-Ochiai

Chart 11 20 24 10.21
Lang 30 50 58 4.76
Math 33 65 83 6.92
Time 7 13 18 19.93

Mockito 9 20 32 36.66
Closure 20 43 59 75.74
Overall 110 212 274 25.70

3. https://www.csie.ntu.edu.tw/ cjlin/libsvm
4. https://github.com/dmlc/xgboost

ZHANG ET AL.: AN EMPIRICAL STUDY OF BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA PAGERANK 1103

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

https://www.csie.ntu.edu.tw/

sðeÞ ¼ max
m2MðeÞ

jT ðmÞ
f ðeÞjffi

ðjT ðmÞ
f ðeÞj þ jT ðmÞ

p ðeÞjÞ � jTf j
q

0
B@

1
CA; (17)

where MðeÞ denotes the set of all mutants of method e,
jT ðmÞ

f ðeÞj and jT ðmÞ
p ðeÞj denote the number of the failing and

passing tests impacted by mutant m, and jTf j denotes the
total number of failing tests.

Furthermore, we study a simple integration of PRFL and
Metallaxis, PR-MBFL, which combines the passing and fail-
ing test weights to the native Metallaxis. Specifically, the PR-
MBFL score can be computed using the following formula:

sðeÞ ¼ max
m2MðeÞ

P
s
ðmÞ
f ðeÞffi

ðP s
ðmÞ
f ðeÞ þP

s
ðmÞ
p ðeÞÞ �P sf

q
0
B@

1
CA: (18)

Similar to Formula (17),
P

s
ðmÞ
f ðeÞ and P

sðmÞ
p ðeÞ present the

sum of the weights of the failing and passing tests impacted
by mutantm,

P
sf denotes the sum of the weights of all fail-

ing tests, and the test weight sf and sp can be extracted from
Equation (14).

We present the experimental results of PRFL, Metallaxis,
MBFL-hybrid-avg (abbreviated as MB-hy-avg) and PR-
MBFL in Table 11. It can be observed that, first, PRFL per-
forms better than other techniques on all subjects. Second,
MBFL-hybrid-avg locates less faults with in Top-1/3/5 than
Metallaxis for the method-level fault localization. Third, PR-
MBFL can locatemore faults at Top-1, but it does not perform
very on Top-3/5 compared toMetallaxis.

6.6 RQ6: Comparison of the Constrained PageRank
and Other Link Analysis Algorithms

We compare the accuracy of PRFL using different link analy-
sis algorithms: the standard PageRank (STPR), the con-
strained PageRank (PRFL), HITS, and SALSA. To implement
these approaches, we first construct graphs with the nodes
presenting the methods/tests and edges presenting the
method invocation and test coverage. Note that in this graph
all nodes and edges are congeneric. Next, we generate adja-
cent matrices based on the graphs and implement the corre-
sponding algorithms introduced in [38]. For HITS and
SALSA, every node has authority and hub scores, and in this
experiment, we only choose the authority score to present
the node importance. Table 12 shows the results of the
approaches with different link analysis algorithms, and we
can observe that the constrained PageRank outperforms the
standard PageRank, which validates the necessity of edge
differentiation. On the other hand,HITS and SALSAperform
poorly compared to the constrained PageRank. Such results
inspire us that it is necessary for the the vanilla link analysis
algorithms to be customized for fault localization. Interest-
ingly, SALSA computes the same score on all the formalae.
We study the intermediate results and find that all the meth-
ods share the same faultiness and successfulness scores,
because the graphs and adjacentmatrices of failing and pass-
ing tests are symmetric, and SALSA sets the same score to all
nodes.

6.7 RQ7: Effectiveness of PRFL+

We study the effecivesness of PRFL+ by analyzing the impact
of dynamic call graph, passing test weight adjustment, and
test andmethod reduction, respectively.

6.7.1 Impact of Dynamic Call Graph

In this section, we design experiments in order to verify
whether adopting dynamic call graphs would impact on Top-
N rank, that is presented in Table 13. The results show that
using dynamic call graphs instead of static call graphs makes
no obvious changes on Top-N. For instance, in row Ochiai,

TABLE 11
Overall Results of the Comparison of PRFL,

MBFL and Their Combination

Tech. Proj. Top 1 Top 3 Top 5 AWE

Metallaxis

Chart 7 19 22 11.88
Lang 31 55 60 3.12
Math 19 69 84 6.77
Time 6 11 15 18.20

Mockito 9 19 27 52.42
Overall 72 173 208 15.40

PR-MBFL

Chart 8 20 21 18.16
Lang 24 48 57 4.22
Math 20 55 68 10.53
Time 4 9 12 18.52

Mockito 6 13 25 52.58
Overall 62 145 183 17.33

MB-hy-avg

Chart 7 15 22 14.00
Lang 31 54 60 3.38
Math 24 63 80 7.24
Time 7 12 14 18.17

Mockito 9 20 27 56.05
Overall 78 164 203 16.47

PRFL

Chart 11 20 24 10.21
Lang 30 50 58 4.76
Math 33 65 83 6.92
Time 7 13 18 19.93

Mockito 9 20 32 36.66
Overall 90 168 215 13.08

TABLE 12
Overall Results of the Comparison of Link Analysis Algorithms

Tech
STPR PRFL

Top1 Top3 Top5 AWE Top1 Top3 Top5 AWE

Overall

Tarantula 63 135 171 50.45 98 204 251 28.58
SBI 63 135 171 50.45 97 204 251 28.58

Ochiai 62 130 160 48.11 110 211 274 25.70
Jaccard 62 128 160 53.00 99 203 254 27.83
Ochiai2 61 134 164 50.72 98 206 253 28.25

Kulczynski 62 128 160 53.00 99 203 254 27.83
Dstar2 61 126 157 53.29 109 208 269 27.00
Op2 62 122 160 58.38 83 184 231 62.72

Tech
HITS SALSA

Top1 Top3 Top5 AWE Top1 Top3 Top5 AWE

Overall

Tarantula 72 174 222 31.26 21 81 101 118.65
SBI 72 174 222 31.26 21 81 101 118.65

Ochiai 81 189 239 28.03 21 81 101 118.65
Jaccard 74 178 226 30.65 21 81 101 118.65
Ochiai2 74 178 225 31.04 21 81 101 118.65

Kulczynski 74 178 226 30.65 21 81 101 118.65
Dstar2 81 186 235 28.83 21 81 101 118.65
Op2 72 161 198 62.33 21 81 101 118.65

1104 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

PRFL with static call graphs captures 110 faults while PRFL
with dynamic call graphs captures 109 faults. On the other
hand, PRFL can perform slightly better on Tarantula using
dynamic call graphs, which can localize 2 more faults on Top-
3 (205 versus 206) and Top-5 (251 versus 253). We suspect the
reason to be two-fold: (1) the majority of static call graph
edges and nodes are also within the dynamic call graphs, (2)
call graphs are used to fine-tune the final fault localization
results andmay not impact the results significantly.

6.7.2 Impact of Passing Test Weight Adjustment

In this section, we extend our experiments to explore the per-
formance of passing test weight adjustment. Table 14 shows
the fault localization results of PRFL without passing test
weight adjustment. Specifically, the columns represent the
evaluated metrics (i.e., Top-1/3/5, and AWE). For each met-
ric, Column P represents PRFL without passing test weight
adjustment and Column WA represents PRFL with passing
test weight adjustment. The rows represent the subjects with
the eight fault localization formulas. The overall results of
the six Defects4J subjects are displayed in the bottom row of
the table.

From this table, it can be generally observed that passing
test weight adjustment do not incur significant differences
for PRFL analysis. For instance, for Ochiai, that is the most
effective SBFL technique for PRFL analysis, PRFL can locate
110 out of 395 faults within Top-1, while PRFL with passing
weight adjustment can locate 113, which slightly improves
the performance of PRFL.

We intercept a resulting snippet from Project Math, ver-
sion 1 in Table 15, where the SBFL scores of PRFL without
passing test weight adjustment are displayed. FromTable 15,
it can be observed that the failing score for eachmethod is not
affected since the weights of failing tests are not tuned. On
the other hand, after modifying the weights on passing tests,
the most scores are changed by lower than 10�3. The SBFL
scores can be subsequently computed in PRFL based on
weighted spectra. Therefore, we can conclude that passing
test weight adjustment has only slight impact on PRFL.

6.7.3 Impact of Test and Method Reduction

The efficacy of reducing tests andmethods for PRFL analysis
are demonstrated in Tables 16 and 17, respectively. In both
tables, the columns present the evaluated metrics in Top-N
and AWE of PRFL without test and method reduction, and

the rows represent the subjects and fault localization for-
mulas. In the bottom rows of both tables, we present the
overall results for six Defects4J subjects. Moreover, the per-
formance improvement and deterioration by adopting test
and method reduction is marked being dark and light gray,
respectively.

Impact of Test-Based Reduction. From Table 16, it can be
observed that the overall performance of fault localization
is only slightly changed. For instance, for PRFL with test-
based reduction, Ochiai2 and Op2 deteriorate, and Jaccard,
Kulczynski, and Dstar improve at Top-1, within a slight

TABLE 13
Overall Results of Dynamic Call Graph

Tech
Top-1 Top-3 Top-5

S D S D S D

Tarantula 98 98 205 206 251 253
SBI 97 97 205 206 251 251
Ochiai 110 109 212 212 265 265
Jaccard 99 99 204 204 254 254
Ochiai2 98 98 207 207 253 253
Kulczynski 99 99 204 204 254 254
Dstar2 109 109 209 209 269 269
Op2 83 83 185 185 231 231

Column S and D indicate static and dynamic call graph.

TABLE 14
Results of Passing Test Weight Adjustment

TABLE 15
Result Snippet of Project: Math in Version 1

Method Name
Failing Score Passing Score

PRFL WA PRFL WA

*.Fraction:getNumerator()I 0.484206 0.484206 0.015727 0.015912
*.BigFraction:getDenominatorAsInt()I 0.486999 0.486999 0.007583 0.007799
*.BigFraction:<init>(DDII)V 0.511939 0.511939 0.003186 0.003262
*.util.FastMath:floor(D)D 0.978647 0.978647 0.366248 0.366175
*.util.FastMath:abs(J)J 0.487929 0.487929 0.440933 0.439075

ZHANG ET AL.: AN EMPIRICAL STUDY OF BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA PAGERANK 1105

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

range, compared with the original PRFL. The changes on
AWE are mostly limited within 2 percent.

Impact of Method-Based Reduction. From Table 17, it can be
shown that similar to the test-based reduction approach, the
method-based reduction approach does not incur signifi-
cant changes on Top-N and AWE.

The Number of Tests and Methods after Pruning. We further
explore the average number of remaining tests and methods
after pruning, as shown in Table 18. We design a metric,
namely reducing rate, to present the level of the reducing the
number of tests and methods after applying the pruning.
Specifically, the reducing rate R ¼ ð1� F

I Þ � 100%, where I
and F are the numbers of the original and remained tests/
methods after pruning, respectively.

In Table 18, the left part of the table presents the results of
the number of the remaining tests after applying the test-
based reduction approach in terms of the six projects. It indi-
cates that the test-based reduction lead to different remaining
number of tests among different projects. For instance, for
project Lang, the reducing rate is as large as 97 percent, while

the reducing rate in project Closure is only 2.71 percent. More-
over, the right part of the table presents the results of the
remaining number of themethods after applying themethod-
based reduction approach. It can be observed that the reducing
rate of methods of all the projects are higher than their corre-
sponding reducing rates of tests, ranging from 85 to 99 percent.

Time Efficiency. Reducing the size of the transition matri-
ces is expected to reduce the computational cost of PRFL.
Therefore, we collect the computation time for PRFLwithout

TABLE 16
Results of Test-Based Reduction

TABLE 17
Results of Method-Based Reduction

TABLE 18
Average Test (Left) and Method (Right) Number after Reduction

Test-based Reduction Method-based Reduction

Project Initial Final Reducing Rate Project Initial Final Reducing Rate

Chart 1821 628 65.50% Chart 4473 103 97.70%
Lang 1856 55 97.00% Lang 1994 10 99.50%
Math 2871 1064 63.00% Math 3871 43 98.89%
Time 3924 3432 12.50% Time 3442 122 96.46%
Closure 7187 6993 2.71% Closure 7260 780 89.26%
Mockito 1136 1113 2.03% Mockito 1171 169 85.57%

1106 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

applying the test andmethod reduction approaches to verify
how exactly the computational cost can be optimized, as in
Table 19. It can be shown that both the test and method
reduction approaches result in shorter computation time
than PRFL.

Table 19 shows the average computation time in each
phase of PRFL, the test-based reduction approach, and the
method-based reduction approach. Column DP, Column
Analysis and Column Ranking represent data processing
of PRFL(i.e., transitionmatrices construction), PageRank anal-
ysis, and suspiciousness computation/ranking, respectively.
Since the time of test coverage and call graph collection is not
affected by test andmethod reduction, we do not present it in
Table 19 and the readers can find it in Table 6 (Column COV

and CG). The main differences are presented in Column DP

and Column Analysis. “-” represents the time taken by this
phase is negligible (far below 0.01s). It can be shown that both
test- and method-based reduction approaches are timely effi-
cient compared with PRFL. Specifically, the projects Chart,
Lang, and Math using the test-based reduction approach
shorten less than 2.5 percent computation time of the original
PRFL. The method-based reduction approach can shorten
more computation time, resulting in around 40 and 27 percent
computation time of the original PRFL for project Closure and
Time.

6.8 RQ8: Effectiveness of PRFLMA

In order to study the effectiveness of PRFLMA, we add an
additional experiment to study the performance of MA
combined with naive SBFL, namely SBFLMA. Table 20 shows
the impact of SBFL, PRFL, SBFLMA and PRFLMA for 8 SBFL
formulas.

FromTable 20, the overall results suggest that SBFLMA per-
forms much better than the naive SBFL, further conforming
the study results of prior work [33]. For instance, on Closure,
SBFLMA can locate 33 faults within Top-1 while the naive
SBFL can only locate 14 faults within Top-1 by usingDstar2.

We also observe that PRFLMA can locate even more faults
compared with PRFL and SBFLMA. PRFLMA successfully

localizes 137 and 133 at Top-1, with Ochiai and Dstar2 as the
overall twomost effective SBFL techniques. Compared to the
state-of-the-art SBFL techniques, PRFLMA can rank 73.4, 49.2,
and 31.3 percent more faults at Top-1, Top-3 and Top-5,
respectively.

6.9 RQ9: Impact of Fault Type

So far we have studied the effectiveness of PRFL, SBFLMA

and PRFLMA on real faults from the Defects4J dataset. In
this section, we further study the effectiveness of above
techniques on artificial mutation faults from other projects
to reduce the threats to external validity.

Table 21 presents our results on 96925 mutation faults
from 240 GitHub projects. In the table, different rows pres-
ent the results of different fault localization formulas, while
different columns present the different metrics used.

According to the table, we find that most effective techni-
ques of SBFL are the same with those for single real faults
on Defects4J (shown in Table 9), i.e., Dstar2 and Op2
(marked in gray in the table), demonstrating the consistent
result on single real and mutation faults (Note that mutation
faults are all single faults since PIT only makes one syntactic
modification for each mutant).

The most effective techniques of PRFL on artificial muta-
tion faults are Ochiai and Dstar2, which are the same with
those on Defects4J. PRFL can locate 27378, 49253 and 59547
faults within Top-1/3/5. Compared to the state-of-the-art
SBFL techniques, PRFL can rank 82.3 percent (24613 versus
13505) more faults at Top-1, and reduce the AWE values
from 7.59 to 6.82 (10.1 percent more precise) on Op2.

PRFL performs better than SBFLMA on artificial mutation
faults at Top-1, 3 and 5. However, it is worth noting that the
AWE values of SBFLMA is lower than PRFL. According to
Section 4.3, we infer that MA enables the faulty method to
have a higher SBFL score than other methods in most cases.

PRFLMA can locate more faults compared with PRFL and
SBFLMA on artificial mutation faults, with Ochiai and
Ochiai2 as the two most effective SBFL techniques. PRFLMA

successfully locates 35058 faults within Top-1, that is
36 percent of total mutation faults. Compared with PRFL
and SBFLMA, PRFLMA can further rank 28 percent (35058
versus 27231) and 87 percent (35058 versus 18703) more
faults at Top-1.

6.10 RQ10: Statistical Significance

To further validate the effectiveness of the proposed
approaches, we use paired t-test [60], [61] to investigate the
statistical significance of the experimental results. Specifi-
cally, we regard each subject in Defects4J dataset as an indi-
vidual item, and group its experimental results (e.g., Top 1
scores) of two different techniques (e.g., SBFL and PRFL) as a
pair. Next, the paired t-test is applied on such pairs to com-
pute the p-values to analyze the significance of difference
between the two approaches.

We present the results of paired t-test in Table 22. From
the table, it can be observed that the p-values of most ranking
formulae are less than 0.05 of Top 1, 3 and 5 (except Op2),
and these results suggest the statistical significance that
PRFL and Method-level Aggregation can boost most SBFL
techniques in term of the accuracy of fault localization on
Top N.

TABLE 19
Computation Time of PRFL, Test-Based
Reduction and Method-Based Reduction

Tech Sub DP Analysis Ranking Total Time Radio

PRFL

Chart 6.49 1.33 0.01 109.72 100.00%
Closure 888.87 6.61 0.01 1558.95 100.00%
Lang 0.81 0.38 0.01 47.31 100.00%
Math 8.33 1.47 0.01 384.34 100.00%

Mockito 4.30 0.15 0.01 88.76 100.00%
Time 19.39 1.32 0.01 68.00 100.00%

Test-based

Chart 2.52 0.45 0.01 104.87 95.58%
Closure 835.75 6.56 0.01 1505.76 96.59%
Lang 0.01 - 0.01 46.133 97.51%
Math 3.22 0.50 0.01 378.26 98.42%

Mockito 4.25 0.14 0.01 88.70 99.93%
Time 17.4 1.14 0.01 65.83 96.80%

Method-based

Chart 0.01 0.01 0.01 102.09 93.04%
Closure 279.12 0.46 0.01 943.03 60.49%
Lang 0.01 - 0.01 46.13 97.51%
Math 0.18 0.01 0.01 374.73 97.49%

Mockito 1.49 0.02 0.01 85.82 96.68%
Time 2.78 0.03 0.01 50.10 73.68%

ZHANG ET AL.: AN EMPIRICAL STUDY OF BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA PAGERANK 1107

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

7 THREATS TO VALIDITY

The main threats to the validity of our work are consisted of
three parts: internal, external, and construct validity threat.

Threats to internal validity are mainly concerned with
uncontrolled factors. These factors may impact the results
and reduce their creditability. In this work, the main threat
to internal validity is potential defects in the implementation
of our own technique and the reimplementation of other

baselines. To reduce this threat, we utilize state-of-the-art
tools and frameworks, such as Java Agent, ASM bytecode
manipulation framework and Numpy library to build our
technique. Moreover, we also reimplement other baseline
techniques by following their papers.We carefully review all
our code and experiment scripts to ensure their correctness.
However, there is always a small possibility of defects, which
introduces risk to the result’s correctness.

TABLE 20
Result of SBFL,PRFL,SBFLMA and PRFLMA on All Defects4J Bugs

Tech
SBFL PRFL SBFLMA PRFLMA

Top1 Top3 Top5 AWE Top1 Top3 Top5 AWE Top1 Top3 Top5 AWE Top1 Top3 Top5 AWE

Chart

Tarantula 7 20 22 14.92 12 21 24 13.63 7 23 25 10.10 12 24 27 9.98
SBI 7 20 22 14.92 11 21 24 13.63 7 23 25 10.10 11 24 27 9.98

Ochiai 6 17 19 11.83 11 20 24 10.21 7 19 21 9.37 12 23 26 7.52
Jaccard 6 17 20 12.12 11 20 24 10.60 7 19 22 9.02 12 22 25 7.37
Ochiai2 6 17 21 12.15 12 21 24 11.40 7 19 23 8.37 12 24 27 7.02

Kulczynski 6 17 20 12.12 11 20 24 10.60 7 19 22 9.02 12 22 25 7.37
Dstar2 5 16 19 13.65 10 21 24 9.83 6 18 21 11.25 11 23 27 7.52
Op2 5 14 16 66.19 7 17 20 61.37 6 16 19 62.90 7 16 20 60.67

Lang

Tarantula 21 45 57 5.81 27 49 57 5.26 26 49 59 4.28 29 53 61 4.11
SBI 21 45 57 5.81 27 49 57 5.26 26 49 59 4.28 29 53 61 4.12

Ochiai 22 44 56 5.35 30 50 58 4.76 28 48 58 3.85 34 54 61 3.55
Jaccard 22 44 56 5.39 28 49 57 4.88 28 47 58 3.95 32 53 61 3.72
Ochiai2 21 45 55 5.35 28 49 57 5.33 27 48 57 3.86 32 53 61 3.96

Kulczynski 22 44 56 5.39 28 49 57 4.88 28 47 58 3.95 32 53 61 3.72
Dstar2 23 45 55 5.33 30 49 58 4.65 29 49 55 4.02 34 53 61 3.44
Op2 23 45 56 5.48 29 47 56 4.61 29 46 56 4.15 36 48 56 3.76

Math

Tarantula 24 61 73 8.89 32 65 78 7.36 30 79 92 5.25 38 80 90 5.09
SBI 24 61 73 8.87 32 65 78 7.36 30 79 92 5.25 37 80 90 5.09

Ochiai 24 60 73 9.25 33 65 83 6.92 31 74 92 5.17 40 83 90 4.63
Jaccard 24 61 73 8.87 32 66 79 7.33 32 75 92 5.28 38 79 91 5.11
Ochiai2 24 61 73 8.88 31 67 79 7.35 30 77 92 5.27 38 81 91 5.09

Kulczynski 24 61 73 8.87 32 66 79 7.33 32 75 92 5.28 38 79 91 5.11
Dstar2 24 60 73 9.40 33 65 83 6.91 31 74 91 5.24 40 82 90 4.64
Op2 23 54 65 10.66 28 61 76 8.35 29 67 80 7.79 33 62 77 7.99

Time

Tarantula 5 11 16 25.37 7 14 16 23.30 6 14 21 15.57 7 17 20 14.30
SBI 5 11 16 25.37 7 14 16 23.30 6 14 21 15.57 7 17 20 14.30

Ochiai 6 11 18 22.93 7 13 18 19.93 7 14 18 15.06 8 17 21 13.33
Jaccard 5 9 18 25.41 7 12 17 23.44 7 13 20 15.83 8 16 21 14.33
Ochiai2 5 11 16 25.44 7 14 17 23.33 7 15 22 15.43 8 17 21 14.44

Kulczynski 5 9 18 25.41 7 12 17 23.44 7 13 20 15.83 8 16 21 14.33
Dstar2 6 11 12 25.22 7 12 12 21.48 7 14 16 18.39 7 14 16 16.00
Op2 8 12 14 62.67 4 11 13 60.19 7 13 15 63.13 4 11 11 63.56

Closure

Tarantula 12 26 36 120.30 13 33 45 87.01 27 57 66 69.44 28 58 65 69.32
SBI 12 26 36 120.30 13 33 45 87.02 27 57 66 69.44 28 58 65 69.32

Ochiai 14 29 39 108.70 20 43 59 75.74 31 64 70 62.17 32 63 69 62.04
Jaccard 13 27 37 119.40 14 34 47 86.29 30 62 68 68.67 31 61 67 68.54
Ochiai2 13 26 37 120.01 13 33 46 86.83 30 61 68 69.10 30 60 67 68.94

Kulczynski 13 27 37 119.40 14 34 47 86.29 30 62 68 68.67 31 61 67 68.54
Dstar2 14 28 39 108.23 21 42 59 74.77 33 63 70 61.72 32 62 69 61.65
Op2 17 33 42 119.26 10 32 43 87.76 32 59 61 124.32 32 59 61 124.19

Mockito

Tarantula 6 18 25 39.51 7 22 31 34.89 10 26 29 25.07 12 26 31 22.01
SBI 6 18 25 39.51 7 22 31 34.89 10 26 29 25.07 12 26 31 22.01

Ochiai 7 18 25 49.91 9 20 32 36.66 11 26 30 38.12 11 27 35 28.25
Jaccard 6 18 25 39.32 7 22 30 34.42 10 26 30 25.92 12 26 31 22.36
Ochiai2 6 18 25 39.46 7 22 30 35.24 10 26 29 25.33 12 26 31 22.51

Kulczynski 6 18 25 39.32 7 22 30 34.42 10 26 30 25.92 12 26 31 22.36
Dstar2 7 17 23 57.96 8 19 33 44.34 10 25 28 47.38 9 26 36 37.25
Op2 6 14 19 155.43 5 16 23 154.03 10 19 23 151.86 7 19 25 151.96

Overall

Tarantula 75 181 229 35.80 98 204 251 28.58 106 248 292 21.62 126 258 294 20.80
SBI 75 181 229 35.80 97 204 251 28.58 106 248 292 21.62 124 258 294 20.80

Ochiai 79 179 230 34.66 110 211 274 25.70 115 245 289 22.29 137 267 302 19.89
Jaccard 76 176 229 35.08 99 203 254 27.83 114 242 290 21.45 133 257 296 20.24
Ochiai2 75 178 227 35.21 98 206 253 28.25 111 246 291 21.22 132 261 298 20.33

Kulczynski 76 176 229 35.08 99 203 254 27.83 114 242 290 21.45 133 257 296 20.24
Dstar2 79 177 221 36.63 109 208 269 27.00 116 243 281 24.67 133 260 299 21.75
Op2 82 172 212 69.95 83 184 231 62.72 113 220 254 69.02 119 215 250 68.69

1108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

Threats to external validity are mainly concerned with
whether the performance of our techniques can still hold in
other experimental settings. In our work, the subjects
(including tests and faults) may introduce threats to external
validity. To reduce these threats, we use the real-word sub-
jects from Defects4J and Bugs.jar dataset to evaluate our
approach, respectively. However, the total subject number is
relatively small and it may limit the generalization of our
technique. We further utilize a bunch of artificial faults to
evaluate the effectiveness of our approach. However, the
artificial faults are generated by mutation testing tool, and
this can limit the diversity of artificial faults. Therefore,
although the experimental results of artificial faults have low
variance (due to the large number of mutants), they may be
biased. To further reduce the threats, we are planning to col-
lect more real-world subjects to evaluate our technique.

One of the threats to construct validity is the suitability of
our evaluation metrics. To reduce this risk, we follow the
suggestions of Parnin and Orso [62]. Specifically, first,
instead of locating faulty statement, we focus on method-
level fault localization since existing work has demonstrated
that this is more practical in the general development [58].
For example, suppose a faulty constructor method misses

some field-initialization statements, statement-level fault
localization even does not have a ground truth since such
field-initialization statement can be added anywhere within
the constructor, but method-level fault localization can still
work. Second, instead of using percentage, we use Top-N
and AWE, two absolute-rank-based metrics to evaluate the
effectiveness of our approaches. However, as Parnin and
Orso [62] argued, fault ranking should be more specific
under different scenarios, including absolute ranking, search
rank, etc. On the other hand, fault localization techniques
should also providemore information to developers in roder
to help themunderstanding the faults instead of just the loca-
tions. Honestly, these two points are not fully considered in
our approach. In the further work, we plan to conduct user
study to further investigate the effectiveness and practicality
of our approach in daily development.

8 RELATED WORK

To the best of our knowledge, this paper is the first extensive
study on improving SBFL using PageRank andMethod-level
Aggregation. We list the related work in fault localization as
follows.

TABLE 21
Fault Localization Results on Mutation Faults

Tech
SBFL PRFL SBFLMA PRFLMA

Top1 Top3 Top5 AWE Top1 Top3 Top5 AWE Top1 Top3 Top5 AWE Top1 Top3 Top5 AWE

Tarantula 12026 34891 45460 10.61 23327 45491 55044 9.35 18688 44365 55546 6.00 32561 55053 64482 4.95
SBI 10871 32704 43549 10.76 19728 42150 52263 9.64 16613 41885 52625 6.15 27269 51057 61594 5.23
Ochiai 13113 37500 49096 8.05 27231 48953 59146 6.76 18671 44387 55568 6.00 34960 55460 63181 5.03
Jaccard 13072 37334 48919 8.35 27088 48619 58863 7.07 18671 44387 55568 6.00 34928 55442 63121 5.05
Ochiai2 12976 36804 48166 9.40 26389 47381 57215 8.51 18703 44387 55568 6.00 35058 55544 63263 4.98
Kulczynski 13072 37336 48919 8.35 27088 48619 58863 7.07 18671 44387 55568 6.00 34928 55442 63121 5.05
Dstar2 13179 37667 49329 7.92 27378 49253 59547 6.57 18671 44387 55568 6.00 34642 55249 62873 5.10
Op2 13505 38288 49915 7.59 24613 45940 56298 6.82 18228 43784 54929 6.02 23970 42743 50323 6.08

TABLE 22
Paired t-Test Results of Different Techniques

Comp. Tech. Top 1 Top 3 Top 5 AWE

SBFL vs PRFL

Tarantula 0.0119* 0.0024^ 0.0278* 0.1134
SBI 0.0131* 0.0024^ 0.0278* 0.1135

Ochiai 0.0053^ 0.0174* 0.0268* 0.0715
Jaccard 0.0119* 0.0004 0.0230* 0.1111
Ochiai2 0.0160* 0.0003 0.0077^ 0.1219

Kulczynski 0.0119* 0.0004 0.0230* 0.1110
Dstar2 0.0073^ 0.0204* 0.0197* 0.0590
Op2 0.4697 0.0798 0.0675 0.0994

PRFL vs PRFLMA

Tarantula 0.0494* 0.0300* 0.0324* 0.0171*
SBI 0.0534 0.0300* 0.0324* 0.0171*

Ochiai 0.0257* 0.0151* 0.0075^ 0.0151*
Jaccard 0.0330* 0.0354* 0.0360* 0.0182*
Ochiai2 0.0363* 0.0343* 0.0303* 0.0153*

Kulczynski 0.0330* 0.0354* 0.0360* 0.0182*
Dstar2 0.0356* 0.0216* 0.0041^ 0.0172*
Op2 0.0688 0.1466 0.1709 0.1876

SBFLMA vs PRFLMA

Tarantula 0.0153* 0.0211* 0.3397 0.0767
SBI 0.0117* 0.0211* 0.3397 0.0771

Ochiai 0.0265* 0.0265* 0.0683 0.0878
Jaccard 0.0075^ 0.0321* 0.1146 0.0393*
Ochiai2 0.0181* 0.0321* 0.1509 0.0500*

Kulczynski 0.0075^ 0.0321* 0.1146 0.0393*
Dstar2 0.0764 0.0495* 0.0665 0.0591
Op2 0.2812 0.2171 0.2580 0.2167

* p < 0:05,^ p < 0:01, p < 0:001.

ZHANG ET AL.: AN EMPIRICAL STUDY OF BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA PAGERANK 1109

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

Spectrum-Based Fault Localization. Various formulas have
been proposed for computing suspiciousness scores of pro-
gram entities based on passing and failing test cases. Jones
et al. [3] proposed the first foundational ranking formula,
Tarantula, which is based on the intuition that program
entries which are frequently executed by failing test cases and
infrequently executed by passing test cases are more likely to
be faulty. Dallmeier et al. [5] proposed Ample, an Eclipse
plug-in for identifying faulty classes in Java software. Abreu
et al. [4] designed Ochiai, which is also widely-studied and
state-of-the-art ranking formula. Naish et al. [6] proposed the
theoretical-best ranking formulas for single faults, Op and
Op2, and empirically analyzed the existing ranking formulas
on C programs. Yoo [7] generated a group of ranking formu-
las using genetic programming (GP). Xie et al. [8] summarized
existing ranking formulas and theoretically compared them,
finding that formulas of two families are optimal, including
Op, Op2 and four GP-generated formulas. Lucia et al. [17]
investigated the effectiveness of existing work and concluded
that there is no best single ranking formula for all cases. Simi-
larly, Steimann et al. [63] studied the threats to the validity in
SBFL on ten open-source programs and showed that well-
known fault locators do not uniformly perform better.

Machine-Learning-Based Fault Localization. Several existing
work has appliedmachine learning techniques to improve the
accuracy of SBFL. Abreu et al. [64] proposed Barinel, in which
Bayesian reasoning is used to deduce multiple-fault candi-
dates and their probabilities. Nath et al. [65] proposed TFLMs,
a Relational Sum-Product Network model for fault localiza-
tion. TFLMs can be learned from a corpus of faulty programs
and localizes faults in a new context more accurately. Feng
et al. [11] proposed Error Flow Graph (EFG), a Bayesian Net-
work to predict fault locations. EFG is constructed from the
dynamic dependency graphs of the programs and then
standard inference algorithms are employed to compute the
probability of each executed statement being faulty. Xuan
et al. [12] proposedMultric, which applied RankBoost, a pair-
wise learning-to-rank algorithm to combine 25 existing for-
mulas. Roychowdhury et al. [66] utilized feature selection for
fault localization and Le et al. [67] extended a standard feature
selection to identify program entities. Recently, Sohn et al. [33]
and Li et al. [16] combined SBFLwith source codemetrics and
mutation information, respectively, for learning-to-rank
based fault localization. Perez et al. [68], [69] proposed Q-SFL,
which leverages qualitative reasoning to augment the infor-
mationmade available to improve SBFL techniques. Actually,
our work can be treated as an unsupervised-learning-based
fault localization technique. Different from most existing
learning-based work, our work does not require training data
which can be hard to collect.

Mutation-Based Fault Localization. Besides spectrum-based
and machine-learning-based fault localization, there is one
category of approach utilizing mutation analysis [30], [70],
[71]. Papadakis et al. [15] first appliedmutation testing to tra-
ditional fault localization. Zhang et al. [14] first applied
mutation testing to localize faults during regression testing.
Later on, Moon et al. [13] proposedMUSE, a mutation-based
fault localization technique by analyzing mutant impacts on
faulty and correct program entities. Hong et al. [72] devel-
oped newmutation operators as well as traditional operators
to improve fault localization in real-world multilingual

programs. There are also empirical studies evaluating muta-
tion-based fault localization techniques [16], [18], [73]. More
specifically, recently, Li et al. [16] demonstrated that muta-
tion-based fault localization can be effective for localizing
real-world bugs at themethod level.

Slicing-Based Fault Localization. Slicing technique is also
widely used in fault localization [74], [75], [76]. Zhang
et al. [77] proposed a forward and a bidirectional dynamic
slicing techniques for improving fault localization. Alves
et al. [78] used dynamic slicing technique and change-impact
analysis to prune irrelative code statements to improve
Tarantula [3]. Sinha et al. [79] focused on the fault localization
of Java Runtime Exceptions. They combined dynamic analy-
sis and static backward data-flow analysis to detect source
statements which lead to exceptions. Xuan et al. [10] pro-
posed to use program slicing to trim test cases into minimal
fractions to achieve more precise SBFL. Gupta et al. [80]
combined delta debuggingwhich can identify a minimal fail-
ure-inducing input with forward and backward dynamic
program slicing to narrow down probably faulty code for
improving fault localization. Ocariza et al. [81] also proposed
an automated technique to improve fault localization for
JavaScript code via backward slicing.

Other Fault Localization Techniques. Similar to mutation-
based fault localization, Jeffrey et al. [82] proposed a value-
profile-based approach for ranking program statements
according to their likelihood of being faulty. Campos
et al. [83] applied entropy theory in fitness function to gener-
ate new test cases in order to improve fault localization.
Alipour et al. [84] extracted extended invariants such as exe-
cution features to improve fault localization. Zhang et al. [85]
identified the causes of faults by switching predicates’ out-
come at runtime and altering the control flow. Yu et al. [86]
introduced multiple kinds of spectrum types such as control
and data dependences to build fault localization model. Le
et al. [87] and Dao et al. [88] combined SBFL with informa-
tion-retrieval-based fault localization, which recommends a
set of program entities with similar contents of bug reports.
Perez et al. [89] proposed a metric, DDU, which applies a
quantified test-suite‘s diagnosability to SBFL to improve
the effectiveness of fault localization. Gonzalez-Sanchez
et al. [90] proposed RAPTOR , a test prioritization algorithm
to improve fault localization, based on reducing the similarity
between statement execution patterns. Le et al. [47] employed
likely invariants and suspiciousness scores to locate faults. In
this work, they used Daikon’s Invariant Diff [91] tool to mine
changes in invariant sets between failing and passing pro-
gram executions, and applied learning-to-rank algorithm to
predict fault locations.

9 CONCLUSION

Manual debugging remains costly and painful. Researchers
have developed various techniques to automate debugging.
A particularly well-studied class of techniques is spectrum-
based fault localization (SBFL), which help developers infer
the positions of faulty program entities. Despite the research
progresses, current SBFL techniques are not precise enough
for practical debugging. In this paper, we propose PRFL, a
novel approach to boost SBFL’s accuracy. PRFL uses Pag-
eRank algorithm to analyze the importance of each test, and

1110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

then ranks methods by considering the corresponding test
importance. We further extend the studies on PRFL by vari-
ous aspects for effectiveness and performance optimization
and propose PRFLMA that integrates the statement-level cov-
erage. We evaluate our approach on 395 real faults and 96925
mutation faults. The experimental results showed that PRFL
and PRFLMA outperforms existing state-of-the-art SBFL tech-
niques significantly (e.g., ranking 39.2%/82.3% and 73.4%/
159.6% more real/artificial faults within Top-1 compared
with the most effective traditional SBFL technique, respec-
tively), with low overhead.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and
Technology of China (Grant No. 2017YFC0804002), Shenz-
hen Peacock Plan (Grant No.KQTD2016112514355531), Sci-
ence and Technology Innovation Committee Foundation
of Shenzhen (Grant No.ZDSYS201703031748284 and No.
JCYJ20170817110848086), US National Science Foundation
grants (CCF-1566589, CCF-1763906, CCF-1704790 and CCF-
1718903), Amazon, Futurewei, and Samsung.

REFERENCES

[1] G. Tassey, The Economic Impacts of Inadequate Infrastructure for Soft-
ware Testing. Collingdale, PA, USA: Diane, 2002.

[2] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Trans. Softw. Eng., vol. 42, no. 8,
pp. 707–740, Aug. 2016.

[3] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proc. Int. Conf. Softw.
Eng., 2002, pp. 467–477.

[4] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proc. Testing: Academic
Ind. Conf. Practice Res. Techn.-MUTATION, 2007, pp. 89–98.

[5] V. Dallmeier, C. Lindig, andA. Zeller, “Lightweight bug localization
with AMPLE,” in Proc. 6th Int. Symp. Automated Anal.-Driven Debug-
ging, 2005, pp. 99–104.

[6] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Trans. Softw. Eng. Methodology,
vol. 20, no. 3, 2011, Art. no. 11.

[7] S. Yoo, “Evolving human competitive spectra-based fault localiza-
tion techniques,” in Proc. Int. Symp. Search Based Softw. Eng., 2012,
pp. 244–258.

[8] X. Xie, F.-C. Kuo, T. Y. Chen, S. Yoo, and M. Harman, “Provably
optimal and human-competitive results in SBSE for spectrum
based fault localization,” in Proc. Int. Symp. Search Based Softw.
Eng., 2013, pp. 224–238.

[9] X. Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang, “Slice-based statistical
fault localization,” J. Syst. Softw., vol. 89, pp. 51–62, 2014.

[10] J. Xuan and M. Monperrus, “Test case purification for improving
fault localization,” in Proc. ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2014, pp. 52–63.

[11] M. Feng and R. Gupta, “Learning universal probabilistic models for
fault localization,” in Proc. 9th ACM SIGPLAN-SIGSOFT Workshop
ProgramAnal. Softw. Tools Eng., 2010, pp. 81–88.

[12] J. Xuan and M. Monperrus, “Learning to combine multiple rank-
ing metrics for fault localization,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evol., 2014, pp. 191–200.

[13] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in Proc. IEEE Int. Conf.
Softw. Testing Verification Validation, 2014, pp. 153–162.

[14] L. Zhang, L. Zhang, and S. Khurshid, “Injectingmechanical faults to
localize developer faults for evolving software,” in Proc. Annu. Conf.
Object-Oriented Program. Syst. Languages Appl., 2013, pp. 765–784.

[15] M. Papadakis and Y. Le Traon, “Using mutants to locate
”unknown” faults,” in Proc. IEEE Int. Conf. Softw. Testing Verifica-
tion Validation, 2012, pp. 691–700.

[16] X. Li and L. Zhang, “Transforming programs and tests in tandem
for fault localization,” in Proc. Annu. Conf. Object-Oriented Program.
Syst. Languages Appl., 2017, pp. 92–122.

[17] L. Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended com-
prehensive study of association measures for fault localization,” J.
Softw.: Evolution Process, vol. 26, no. 2, pp. 172–219, 2014.

[18] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault local-
ization,” in Proc. Int. Conf. Softw. Eng., 2017, pp. 609–620.

[19] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Trans. Softw.
Eng., vol. 38, no. 1, pp. 54–72, Jan./Feb. 2012.

[20] J. Xuan, M. Martinez, F. Demarco, M. Cl�ement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic
repair of conditional statement bugs in java programs,” IEEE
Trans. Softw. Eng., vol. 43, no. 1, pp. 34–55, Jan. 2017.

[21] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus, “Automatic
repair of buggy if conditions and missing preconditions with
SMT,” in Proc. 6th Int. Workshop Constraints Softw. Testing Verifica-
tion Anal., 2014, pp. 30–39.

[22] F. Long and M. Rinard, “Staged program repair with condition
synthesis,” in Proc. ACM SIGSOFT Int. Symp. Found. Softw. Eng.,
2015, pp. 166–178.

[23] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C.Wang, “The strength of random
search on automated program repair,” in Proc. Int. Conf. Softw. Eng.,
2014, pp. 254–265.

[24] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: A large-scale experiment on the
defects4J dataset,” Empirical Softw. Eng., vol. 22, pp. 1936–1964, 2017.

[25] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-
based fault localization using PageRank,” in Proc. Int. Symp. Softw.
Testing Anal., 2017, pp. 261–272.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank cita-
tion ranking: Bringing order to theweb,” Stanford InfoLab, 1999.

[27] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of exist-
ing faults to enable controlled testing studies for java programs,”
in Proc. Int. Symp. Softw. Testing Anal., 2014, pp. 437–440.

[28] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” in Proc. Int. Conf. Softw.
Eng., 2005, pp. 402–411.

[29] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser, “Are mutants a valid substitute for real faults in soft-
ware testing?” in Proc. ACM SIGSOFT Int. Symp. Found. Softw.
Eng., 2014, pp. 654–665.

[30] M. Papadakis and Y. Le Traon, “Metallaxis-FL: Mutation-based
fault localization,” Softw. Testing Verification Rel., vol. 25, no. 5–7,
pp. 605–628, 2015.

[31] J. M. Kleinberg, “Authoritative sources in a hyperlinked environ-
ment,” J. ACM, vol. 46, no. 5, pp. 604–632, 1999.

[32] R. Lempel and S.Moran, “The stochastic approach for link-structure
analysis (SALSA) and the TKC effect1,” Comput. Netw., vol. 33,
no. 1–6, pp. 387–401, 2000.

[33] J. Sohn and S. Yoo, “FLUCCS: Using code and change metrics to
improve fault localization,” in Proc. Int. Symp. Softw. Testing Anal.,
2017, pp. 273–283.

[34] R. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. Prasad, “Bugs.jar: A
large-scale, diverse dataset of real-world java bugs,” in Proc. IEEE/
ACM15th Int. Conf.Mining Softw. Repositories, 2018, pp. 10–13.

[35] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar method for
effective software fault localization,” IEEE Trans. Rel., vol. 63, no. 1,
pp. 290–308,Mar. 2014.

[36] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan,
“Scalable statistical bug isolation,” ACM SIGPLAN Notices, vol. 40,
no. 6, pp. 15–26, 2005.

[37] A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. Tsaparas, “Link
analysis ranking: Algorithms, theory, and experiments,” ACM
Trans. Internet Technol., vol. 5, no. 1, pp. 231–297, 2005.

[38] A. Farahat, T. LoFaro, J. C. Miller, G. Rae, and L. A. Ward,
“Authority rankings from HITS, PageRank, and SALSA: Existence,
uniqueness, and effect of initialization,” SIAM J. Sci. Comput.,
vol. 27, no. 4, pp. 1181–1201, 2006.

[39] D. F. Gleich, “PageRank beyond the web,” SIAM Rev., vol. 57, no. 3,
pp. 321–363, 2015.

[40] A. D. Chepelianskii, “Towards physical laws for software
architecture,” arXiv:1003.5455, 2010.

[41] M. Kim, R. Sumbaly, and S. Shah, “Root cause detection in a service-
oriented architecture,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 41, no. 1, pp. 93–104, 2013.

[42] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos,
“Graph-based analysis and prediction for software evolution,” in
Proc. Int. Conf. Softw. Eng., 2012, pp. 419–429.

ZHANG ET AL.: AN EMPIRICAL STUDY OF BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA PAGERANK 1111

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

[43] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Guided mutation
testing for javascript web applications,” IEEE Trans. Softw. Eng.,
vol. 41, no. 5, pp. 429–444,May 2015.

[44] J. Dean, D. Grove, and C. Chambers, “Optimization of object-ori-
ented programs using static class hierarchy analysis,” in Proc. Eur.
Conf. Object-Oriented Program., 1995, pp. 77–101.

[45] D. Grove and C. Chambers, “A framework for call graph construc-
tion algorithms,”ACMTrans. Program. Languages Syst., vol. 23, no. 6,
pp. 685–746, 2001.

[46] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan, “An
empirical study of static call graph extractors,” ACM Trans. Softw.
Eng. Methodology, vol. 7, no. 2, pp. 158–191, 1998.

[47] T.-D. B Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-
to-rank based fault localization approach using likely invariants,”
in Proc. Int. Symp. Softw. Testing Anal., 2016, pp. 177–188.

[48] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and
A. Arcuri, “Do automatically generated unit tests find real faults?
an empirical study of effectiveness and challenges (T),” in Proc.
ACM/IEEE Int. Conf. Automated Softw. Eng., 2015, pp. 201–211.

[49] G. Laghari, A. Murgia, and S. Demeyer, “Fine-tuning spectrum
based fault localisation with frequent method item sets,” in Proc.
ACM/IEEE Int. Conf. Automated Softw. Eng., 2016, pp. 274–285.

[50] Pit mutation testing tool, 2018. [Online]. Available: http://pitest.
org/, Accessed on: Oct. 02, 2018.

[51] GitHub a web-based version control repository and internet hosting
service, 2018. [Online]. Available: https://github.com/, Accessed
on: Oct. 02, 2018.

[52] ASM java bytecode manipulation and analysis framework, 2018.
[Online].Available: http://asm.ow2.org/,Accessed on:Oct. 02, 2018.

[53] Java programming language agents, 2018. [Online]. Available:
https://docs.oracle.com/javase/7/docs/api/java/lang/
instrument/package-summary.html, Accessed on: Oct. 02, 2018.

[54] Numpypackage for scientific computingwith python, 2018. [Online].
Available: http://www.numpy.org/,Accessed on: Oct. 02, 2018.

[55] Maven central repository, 2018. [Online]. Available: https://
search.maven.org/, Accessed on: Oct. 02, 2018.

[56] Maven surefire plugin, 2018. [Online]. Available: http://maven.
apache.org/surefire/maven-surefire-plugin/, Accessed on: Oct. 02,
2018.

[57] Maven failsafe plugin, 2018. [Online]. Available: http://maven.
apache.org/surefire/maven-failsafe-plugin/, Accessed on: Oct. 02,
2018.

[58] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations
on automated fault localization,” in Proc. Int. Symp. Softw. Testing
Anal., 2016, pp. 165–176.

[59] A. Perez, R. Abreu, and M. d’Amorim, “Prevalence of single-fault
fixes and its impact on fault localization,” in Proc. IEEE Int. Conf.
Softw. Testing Verification Validation, 2017, pp. 12–22.

[60] H. Hsu and P. A. Lachenbruch, “Paired t test,” in Wiley Encyclope-
dia of Clinical Trials. Hoboken, NJ, USA: Wiley, 2007, pp. 1–3.

[61] B. Rosner, “A generalization of the paired t-test,” J. Roy. Statistical
Soc.: Series C (Appl. Statist.), vol. 31, no. 1, pp. 9–13, 1982.

[62] C. Parnin and A. Orso, “Are automated debugging techniques
actually helping programmers?” in Proc. Int. Symp. Softw. Testing
Anal., 2011, pp. 199–209.

[63] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” inProc. Int. Symp. Softw. TestingAnal., 2013, pp. 314–324.

[64] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “Spectrum-based
multiple fault localization,” in Proc. IEEE/ACM Int. Conf. Auto-
mated Softw. Eng., 2009, pp. 88–99.

[65] A. Nath and P. Domingos, “Learning tractable probabilistic mod-
els for fault localization,” in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 1294–1301.

[66] S. Roychowdhury and S. Khurshid, “Software fault localization
using feature selection,” in Proc. Int. Workshop Mach. Learn. Technol.
Softw. Eng., 2011, pp. 11–18.

[67] T.-D. B. Le, D. Lo, and M. Li, “Constrained feature selection for
localizing faults,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol.,
2015, pp. 501–505.

[68] A. Perez, R. Abreu, and I.-T. HASLab, “Leveraging qualitative
reasoning to improve SFL,” in Proc. Int. Joint Conf. Artif. Intell.,
2018, pp. 1935–1941.

[69] A. Perez and R. Abreu, “A qualitative reasoning approach to spec-
trum-based fault localization,” in Proc. 40th Int. Conf. Softw. Eng.:
Companion Proc., 2018, pp. 372–373.

[70] M. Papadakis and Y. Le Traon, “Effective fault localization via
mutation analysis: A selective mutation approach,” in Proc. 29th
Annu. ACM Symp. Appl. Comput., 2014, pp. 1293–1300.

[71] M. Papadakis, M. E. Delamaro, and Y. Le Traon, “Proteum/FL: A
tool for localizing faults usingmutation analysis,” in Proc. IEEE 13th
Int.Work. Conf. Source Code Anal.Manipulation, 2013, pp. 94–99.

[72] S. Hong, B. Lee, T. Kwak, Y. Jeon, B. Ko, Y. Kim, and M. Kim,
“Mutation-based fault localization for real-world multilingual pro-
grams (T),” in Proc. ACM/IEEE Int. Conf. Automated Softw. Eng., 2015,
pp. 464–475.

[73] T. T. Chekam,M.Papadakis, andY. L. Traon, “Assessing and compar-
ing mutation-based fault localization techniques,” arXiv:1607.05512,
2016.

[74] X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimental evalua-
tion of using dynamic slices for fault location,” in Proc. Int. Symp.
Automated Anal.-Driven Debugging, 2005, pp. 33–42.

[75] B. Hofer and F. Wotawa, “Spectrum enhanced dynamic slicing for
better fault localization,” in Proc. 20th Eur. Conf. Artif. Intell., 2012,
pp. 420–425.

[76] X. Zhang, N. Gupta, and R. Gupta, “A study of effectiveness of
dynamic slicing in locating real faults,” Empirical Softw. Eng., vol. 12,
no. 2, pp. 143–160, 2007.

[77] X. Zhang,N.Gupta, andR.Gupta, “Locating faulty code bymultiple
points slicing,” Softw.: Practice Experience, vol. 37, no. 9, pp. 935–961,
2007.

[78] E. Alves,M. Gligoric, V. Jagannath, andM. d’Amorim, “Fault-locali-
zation using dynamic slicing and change impact analysis,” in Proc.
ACM/IEEE Int. Conf. Automated Softw. Eng., 2011, pp. 520–523.

[79] S. Sinha, H. Shah, C. G€org, S. Jiang, M. Kim, and M. J. Harrold,
“Fault localization and repair for java runtime exceptions,” in
Proc. Int. Symp. Softw. Testing Anal., 2009, pp. 153–164.

[80] N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating faulty code
using failure-inducing chops,” in Proc. ACM/IEEE Int. Conf. Auto-
mated Softw. Eng., 2005, pp. 263–272.

[81] F. S. Ocariza Jr, K. Pattabiraman, and A. Mesbah, “AutoFLox: An
automatic fault localizer for client-side javascript,” in Proc. IEEE
Int. Conf. Softw. Testing Verification Validation, 2012, pp. 31–40.

[82] D. Jeffrey, N. Gupta, and R. Gupta, “Fault localization using value
replacement,” inProc. Int. Symp. Softw. TestingAnal., 2008, pp. 167–178.

[83] J. Campos, R. Abreu, G. Fraser, and M. d’Amorim, “Entropy-
based test generation for improved fault localization,” in Proc.
ACM/IEEE Int. Conf. Automated Softw. Eng., 2013, pp. 257–267.

[84] M. A. Alipour and A. Groce, “Extended program invariants:
Applications in testing and fault localization,” in Proc. 9th Int.
Workshop Dyn. Anal., 2012, pp. 7–11.

[85] X.Zhang,N.Gupta, andR.Gupta, “Locating faults throughautomated
predicate switching,” in Proc. Int. Conf. Softw. Eng., 2006, pp. 272–281.

[86] K. Yu, M. Lin, Q. Gao, H. Zhang, and X. Zhang, “Locating faults
using multiple spectra-specific models,” in Proc. ACM Symp. Appl.
Comput., 2011, pp. 1404–1410.

[87] T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: Better together,” in Proc. ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2015, pp. 579–590.

[88] T. Dao, L. Zhang, and N. Meng, “How does execution information
help with information-retrieval based bug localization?” in Proc.
Int. Conf. Program Comprehension, 2017, pp. 241–250.

[89] A. Perez, R. Abreu, and A. van Deursen, “A test-suite diagnosabil-
ity metric for spectrum-based fault localization approaches,” in
Proc. 39th Int. Conf. Softw. Eng., 2017, pp. 654–664.

[90] A. Gonzalez-Sanchez, R. Abreu, H.-G. Gross, andA. J. van Gemund,
“Prioritizing tests for fault localization through ambiguity group
reduction,” in Proc. 26th IEEE/ACM Int. Conf. Automated Softw. Eng.,
2011, pp. 83–92.

[91] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco,
M. S. Tschantz, and C. Xiao, “The Daikon system for dynamic
detection of likely invariants,” Sci. Comput. Program., vol. 69, no. 1,
pp. 35–45, 2007.

Mengshi Zhang received the BS degree in elec-
tronic engineering from Tsinghua University, in
July 2014. He is working toward the PhD degree
in the Department of Electrical and Computer
Engineering, University of Texas at Austin, and
supervised by Dr. Sarfraz Khurshid. His research
interests include fault localization, program
repair, and machine-learning-oriented software
engineering.

1112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 6, JUNE 2021

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

http://pitest.org/
http://pitest.org/
https://github.com/
http://asm.ow2.org/
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/package-summary.html
http://www.numpy.org/
https://search.maven.org/
https://search.maven.org/
http://maven.apache.org/surefire/maven-surefire-plugin/
http://maven.apache.org/surefire/maven-surefire-plugin/
http://maven.apache.org/surefire/maven-failsafe-plugin/
http://maven.apache.org/surefire/maven-failsafe-plugin/

Yaoxian Li received the BS degree in electronic
engineering from the University of Electronic Sci-
ence and Technology of China. He is a research
assistant with the Department of Computer
Science and Engineering, Southern University of
Science and Technology, and supervised by
Dr. Yuqun Zhang. His research interests include
fault localization, test generation, and machine-
learning-oriented software engineering.

Xia Li received the BS degreemajor in mathemat-
ics from the Jiangxi University of Science and
Technology. He is working toward the PhD degree
supervised by Dr. Lingming Zhang in the Depart-
ment of Computer Science, University of Texas at
Dallas. His research interests include fault loca-
lization, program analysis, and mining software
repositories.

Lingchao Chen received the BS degree in com-
puter science from the University of Electronic
Science and Technology of China, in July 2016. He
is working toward the PhD degree advised by
Dr. Lingming Zhang at the University of Texas at
Dallas. His research interests include mutation
testing, regression testing, and machine-learning-
oriented software engineering.

Yuqun Zhang received the BS degree in commu-
nication engineering from Tianjin University, in
2008, the MS degree in electrical and computer
engineering from the University of Rochester, in
2010, and the PhD degree from the Department of
Electrical and Computer Engineering, University of
Texas at Austin, in December 2016. He is currently
an assistant professor with the Department of
Computer Science and Engineering, Southern Uni-
versity of Science and Technology, Shenzhen,
Guangdong, China. His research interests include

software analysis and testing, AI-oriented software engineering, and serv-
ices computing. He has authoredmore than20 papers in premier conferen-
ces and journals in software engineering and services computing.

Lingming Zhang received the BS degree in com-
puter science from Nanjing University, in 2007, the
MS degree in computer science from Peking Uni-
versity, in 2010, and the PhD degree from the
Department of Electrical and Computer Engineer-
ing, University of Texas at Austin, in May 2014. He
is an assistant professor with the Computer Sci-
ence Department, University of Texas at Dallas.
His research interests lie broadly in software engi-
neering and programming languages, including
automated software analysis, testing, debugging,

and verification, as well as software evolution and mobile computing. He
has authored more than 50 papers in premier software engineering or pro-
gramming language conferences and transactions. He has also served on
the program/organization committee or artifact evaluation committee for
various international conferences (including ICSE, ISSTA, FSE, ASE,
ICST, ICSM, and OOPSLA). He has won the Google Faculty Research
Award, his research is also being supported by NSF, Futurewei, Amazon,
NVIDIA, and Samsung. More information available at: http://www.utdallas.
edu/lxz144130/.

Sarfraz Khurshid received the BSc degree in
mathematics and computer science from Imperial
College London and read Part III of the Mathemati-
cal Tripos at Trinity College Cambridge, and the
PhD degree in computer science from the MIT, in
2004. He is a professor with the Department of
Electrical and Computer Engineering, University of
Texas at Austin, where he leads the Software Veri-
fication and Testing Research Group. His work on
automated test generation won awards at top con-
ferences in software testing (ISSTA 2002), soft-

ware engineering (ICSE 2010), and security and privacy (IEEE S&P 2014),
and was recognized for its impact and awarded the ACMSIGSOFT Impact
Paper Award (2012), the ASE Most Influential Paper Award (2015), and
the ISSTA Retrospective Impact Paper Award (2018). He is a recipient of
the NSF CAREER award (2009). He is an avid player and keen follower of
squash (the racket sport, not the vegetable).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ET AL.: AN EMPIRICAL STUDY OF BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA PAGERANK 1113

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on October 05,2021 at 11:15:52 UTC from IEEE Xplore. Restrictions apply.

http://www.utdallas.edu/
http://www.utdallas.edu/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

