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Abstract Software-as-a-Service is becoming the prevalent way of software delivery. The
popularisation of microservices architecture and containers has facilitated the efficient
development of complex SaaS applications. Yet, for average SaaS vendors, there are a lot of
challenges in managing microservices at a large scale while meeting the Quality-of-Service
constraints. In this paper, we present SmartVM, a business Service-Level-Agreement (SLA)
aware, microservice-centric deployment framework, designed to streamline the process of
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building and deploying dynamically-scalable microservices that can handle traffic spikes
in a cost-efficient manner. We also compare our approach with traditional monolithic and
the state-of-the-art microservice deployment approaches. The evaluation results show our
approach advances in deployment cost, resource utilisation, and SLA compliance.

Keywords Microservice · Container · SLA · Autoscaling · Cost efficiency

1 Introduction

Software-as-a-Service (SaaS) applications have become increasingly popular for enterprises
because they can alleviate the technical burden on organisations whose core business mod-
els do not involve IT [37]. Traditionally, software vendors deliver binary copies of their
applications, and the consumers are responsible for running and maintaining the software,
which implies the need for an investment in IT infrastructure and human resource [19].

Compared with the traditional, on-premises model, SaaS applications are offered with the
hosting options included by the SaaS vendors. In many cases, the application components
are not deployed onto the consumer’s servers. This allows the consumers (tenants) of SaaS
applications to focus on their business needs. On the other hand, with fully-controlled and
less heterogeneous environments, the SaaS vendors can roll out software updates and secu-
rity patches at a shorter interval [22]. Legal contracts between SaaS vendors and tenants,
namely Service-Level-Agreements (SLAs) are often used to specify the expected Quality-
of-Service (QoS) standards. The violation of SLAs can cause a penalty for the SaaS vendors
[28].

Although from the tenants’ perspectives, SaaS applications simplify technical issues in
a cost-efficient manner, this does not remove the need for software maintenance. Instead,
the responsibilities of software maintenance are handed over to the SaaS vendors. As a
result, SaaS vendors often face numerous new challenges including security and privacy,
scalability and resource optimisation, availability and fault tolerance, all rising from the
fact that the SaaS vendors are responsible for hosting the applications for millions of end
users (i.e., the users of the SaaS tenants). SaaS vendors are now becoming the middlemen
between IaaS cloud providers (such as AWS, Microsoft Azure and Tencent Cloud) and the
tenants, striving to find a balance point between minimising cost on the infrastructure and
maintaining the required QoS. In this paper, we examine those challenges from the SaaS
vendors’ perspective, i.e. how to utilise cloud resource more efficiently while maintaining
SLA compliance.

The popularisation of container deployment environments (e.g. Docker [7]) and
microservices architecture have alleviated some of these problems. Microservices are small,
independently running modules that are often deployed separately and developed by differ-
ent teams within a large organisation. Microservices architecture mandates loosely-coupled
components which run autonomously and communicate with each other using messages.
There is no standard yet which defines what constitutes a microservice and the granuality
of a microservice [8]. However, as we will show later in this paper, the granuality of each
microservice can have a significant impact on the performance and cost efficiency in the
deployment environment.

Microservices nowadays are often deployed to containers. Containers (with the Linux-
based Docker being the most popular one) provide isolation to applications usually by using
differential file system, Linux namespaces and cgroups. The key benefits of containers are
their low overhead, the capability of running each container with an isolated filesystem and
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allocated system resources, and on top of the same operating system. This greatly facilitates
finer control over hardware resource allocation and improves the cost efficiency of large-
scale microservice deployments.

Compared to monolithic deployment approaches, microservices architecture often leads
to smaller, more maintainable software, and consequently smaller teams and more rapid
development and deployment cycles [8]; on the other hand, containers have smaller resource
overhead than virtual machines and can therefore scale in and out more responsively.
Docker also makes it easier to have consistent development and deployment environments,
which significantly reduces the cost of managing dependencies and gains popularity among
software developers.

While containers allow SaaS vendors to deploy microservices at a fine granularity, the
dynamic nature of microservices leads to new challenges given the scale and complexity of
SaaS applications. Specifically, the major challenges include:

– Uncertainty in load The business models of most SaaS products imply that the SaaS
vendors, who host the applications, are usually unaware of the business activities and
lack the domain knowledge of host applications’ specific business demands [34, 35].
For example, imagine a restaurant chain R using an online ordering system S devel-
oped and hosted by SaaS vendor V. When R launches a promotional campaign, it is
unlikely and impractical for R to inform V in advance, so that V could prepare for the
potential increase in traffic for S. It is also unrealistic for V to derive insights from
R’s internal business information and models, such as customer statistics and seasonal
income, in order to plan ahead. Instead, V needs to rely merely on the metrics of the
application itself, not the business models and internal information of its tenants, to
scale the service dynamically. Such limited information exacerbates the uncertainty
in load.

– Timeliness and accuracy of autoscaling Conventional container orchestration plat-
forms typically only offer limited rule-based autoscaling functionalities [1, 3, 20],
where only resource metrics such as CPU usage are considered in those scaling mecha-
nisms. While resource saturation possibly causes SLA violations, their exact correlation
is yet to be explicitly discovered. An ideal autoscaling strategy is expected to react
directly to application-level metric changes, such as increasing SLA violation rates. To
the best of our knowledge, this is not currently possible without substantial modification
of the infrastructure.

– Separation of functional and operational concerns Developers tend to be reluctant
to evolve software systems. It possibly leads to a disruption in an organisation’s oper-
ation if a deployment solution demands the refactoring of existing software systems.
Therefore, it is crucial to automatically apply best practices in deployment and separate
application developers’ concerns from those of the operational engineers (who usually
opt for the deployment changes).

Improper ways to handle these challenges can lead to under- or over-provisioning. If the
resources provisioned are insufficient, the SLA requirements might be violated. On the other
hand, allocating more resources than required incurs an unnecessary cost. It is difficult to
precisely determine the appropriate resource demands for optimal provisioning, it becomes
even harder when this has to be done continuously in real time.

Based on the observations above, in this paper, we propose an SLA-aware microser-
vice deployment framework, namely SmartVM, to bridge the gap between the industry best
practises and the developer-centric workflow of most SaaS vendors.
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SmartVM tackles the issues above by splitting and reorganising microservices into a
multi-tier architecture, where most resource intensive workloads (e.g. image rendering, log
processing, etc.) are treated differently from the other user-facing and business-domain-
bound operations (e.g. adding or removing orders, room booking, etc.). The traditional
library functions and middlewares are turned into separate API Microservices that can scale
independently. Business features are grouped into Business Microservices by their patterns
of API access, resulting in less conflicting resource requirements.

Furthermore, SmartVM maintains SLA compliance by utilising application-level met-
rics for autoscaling. This allows SmartVM to more accurately and dynamically scale to
accommodate fluctuating user traffic of SaaS applications while saving costs by reducing
over-provisioning. To evaluate the proposed design, we implemented simulated business
applications based on a real retail SaaS application. The business functionalities are imple-
mented and deployed in three manners, namely the Uniform deployment, the Monolithic
deployment, and SmartVM. The three deployments are then tested with different workloads,
with their performance and cost efficiency being compared. The results indicate a signifi-
cant performance advantage of SmartVM over the Uniform and Monolithic deployments,
e.g., around 60% in cost reduction.

The rest of the paper is organised as follows: Section 2 introduces some of the related
work; Section 3 presents the architecture and design decisions of SmartVM; Section 4
presents the results of our evaluation to validate the framework. Finally, Section 5 concludes
the paper and points out the future work.

2 Related work

Autoscaling and load prediction In recent years, there has been a decent amount of stud-
ies on the elastic allocation of cloud resource to meet SLA requirements and to reduce cost.
Queuing theory [14] is often used as a way to give formal proof or to create simulations for
evaluation. The work in [27] uses machine learning to predict load and provide accurate,
just-in-time allocation of resource, while incorporating factors such as the cost of recon-
figuration. The authors of [33] uses fuzzy time-series and genetic algorithm to improve
the accuracy of allocation even further. There are other methods for predicting time-series
data in real-time through pattern matching such as [40]. The limitation of these studies is
that they only consider hardware-level SLA instead of application-level requirements which
are aligned with the SaaS tenants’ business requirements and their customers’ experiences.
Moreover, they work on the granularity of machines or VMs, not on microservices and
Docker containers.

Application-level metrics A few studies investigate on how to use application metrics to
meet SLA requirements. The authors of [29] reports a dramatic decrease in SLA violation
and resource efficiency as application-level metrics are incorporated into autoscaling algo-
rithms. A low-overhead monitoring framework for application-level metrics is devised in
[11]; and the approaches to implementing complex SLA monitoring logic using knowledge
database are developed in [10]. However, these studies are tested in a VM-based deploy-
ment environment, and there is no discussion about the impact of splitting business features
on SLA performance. Our prior work [25, 39, 44] have investigated various aspects of mon-
itoring application-level metrics for microservice-based applications in theory. This work
not only implements a SLA-aware monitoring and autoscaling middleware based on indus-
try standard open-source tools but also evaluate the middleware against a real-world retail
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SaaS application, the middleware and the evaluation test data are all publicly available at
https://github.com/saasi.

Clustering of workload pattern The authors of [21] devise a formal framework to model
microservices, features, and architecture. They develop MicADO, a genetic algorithm tool
for automatically clustering microservices based on the access pattern derived from oper-
ational data. However, they only demonstrate reconfiguring microservice at a fixed scale.
In addition, it still needs to be improved since in reality the features in microservices are
not always separable, and reconfiguring the features within each microservices in runtime
is likely to cause disruption to normal service. The work in [41] proposes a way to map
application-level QoS requirements to the underlying hardware resource requirement so that
the ideal execution parameters can be decided. These approaches are complementary to
our SmartVM approach. But our focus in this paper is on the optimal way of autoscaling
microservice instances in our suggested microservice architecture.

Auto-enforcement of best practices It is not effective for the solutions that aim at
improving scalability and efficiency of the microservice deployment if a lot of efforts are
required from the application-level developers to change their established programming
paradigm. An industrial example, Netflix integrates best practices in the pipelines of their
continuous delivery platform Spinnaker [13, 30]. In the open-source communities, Open-
FaaS, a Function-as-a-service framework, alleviates developer burdens by building Docker
images and manages autoscaling for them [24]. However, OpenFaaS is limited in scalability
by providing a fixed-step rule-based autoscaling algorithm.

Compared with these relevant work, the contribution of our SmartVM architecture
includes the following:

– It is specifically designed for Microservices and at a granularity of Docker containers.
– It is SLA-aware in monitoring and autoscaling
– Its multi-tier microservice architecture resolves resource conflicts and improves cost

efficiency.

3 SmartVM architecture

SmartVM is proposed as an attempt to make an optimal solution in deploying SaaS appli-
cations. It can provide automation for deploying microservices in SaaS applications where
development concerns can be separated from deployment concerns so that SaaS developers
can compose Microservices to implement business functionalities without worrying about
its runtime performance.

In this section, the first subsection (Section 3.1) provides an overview of SmartVM archi-
tecture. Section 3.2 illustrates the classification of workloads, and Section 3.3 elaborates the
components of SmartVM.

3.1 Overview

The architecture of SmartVM is illustrated in Figure 1. We will first give a conceptual
overview of the system, and the technical details of each component in Figure 1 are
elaborated in Section 3.3.

As depicted in the diagram, applications are packaged as Docker container images and
orchestrated by a standard container scheduling platform (in this case, Docker Swarm),

https://github.com/saasi
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Figure 1 Overview of the architecture of SmartVM

which abstracts the underlying infrastructure such as virtual machines and cross-host
networking. Each container can be considered conceptually as hosting an instance of a
microservice. Note that even traditional monolithic applications can be containerised. Con-
tainers are fully compatible with other DevOps best practices such as Continuous Integration
and allow SmartVM users to leverage existing, well-tested DevOps tools such as Jenkins
[17] to continuously build, test and deploy applications, speeding up the development cycle.

The microservices in SmartVM can be conceptually divided into Business Microser-
vice(s) (BMS), which implements the business logic and are usually bound to certain
business domains, and API Microservice(s) (AMS), which implement resource-aware
library functions. Correspondingly, the workload can be divided into BMS and AMS con-
tainers (see Section 3.2). In general, once a SaaS application workload is deployed, the
Autoscaler monitors business SLA compliance for BMS and resource utilisation for AMS.

The user-facing functionalities are exposed by BMS through a gateway, which also acts
as the first-tier load balancer. When requests come in, it is first handled by the load balancer,
which then hands off the requests to one of the BMS containers. Whilst serving the user
requests, BMS containers might need to make API calls to AMS containers in order to
make certain low-level library calls. The communication between BMS and AMS containers
is handled by a service mesh [36], which creates a virtual IP for each microservice and
transparently routes requests to the relevant containers.

AMS containers run the tasks delegated by BMS containers and return the results to BMS
containers. Because these AMS containers are usually resource-intensive, SmartVM col-
lects metrics regarding CPU, memory and network usage of each container, and stores them
in a time-series database. Subsequently, the Autoscaler queries the time-series database,
and makes scaling decisions based on these metrics. Additionally, monitoring dashboards
and alerting tools can also query the time-series database regularly, informing the admin-
istrators of the overall “health” of the system. Our monitoring algorithm is time-based and
centralized but can be tailed to be event-based and distributed as in our prior work [43, 45].

Upon finishing the requests, BMS also checks whether non-functional business SLA
requirements (such as time constraints) are met. If they are not, it logs a business violation
event, which is then picked up by the log aggregator and enables the Autoscaler to decide
whether more BMS containers are needed.

For both AMS and BMS, if the Autoscaler decides to scale out or scale in a microservice,
it would call the scheduler, e.g., Docker Swarm via its API, to specify the required number of
containers. And the scheduler would provision new containers for AMS or BMS. The Load
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Balancer is also aware of the addition and removal of containers via Docker Swarm API,
and the configuration of the Load Balancer is dynamically updated to reflect the changes.

3.2 The two-tier classification of workload

Organisational structure implications Conway’s law [38] states that the software archi-
tecture is often correlated with the organisational structure of its developers. This correlation
effect has been testified in some studies. For example, it is discovered in [23] that the soft-
ware developed by loosely-organised open source communities has more loosely-coupled
components than its commercial counterpart. The internal structure of most software
organisations can be generally divided into product teams and research and development
teams [16]. Generally, the product teams are responsible for developing software products
with specific business features, which are usually closely related to customer experience,
while the research and development teams provide generic software tools such as middle-
ware, libraries and system-level services for the product teams. Accordingly, we propose a
two-tier microservice structure in the SmartVM.

We separate the workloads on the SmartVM platform into two tiers (illustrated in the
upper part of Figure 1):

– The first tier consists of BMS, which are often directly accessed by the users, and are
generally not reusable outside of their business domains and do not require hardware
specific resources directly.

– The second tier is made up byAMS, which can be further distinguished into CPU-, I/O-
or memory-intensive microservices. AMS are usually not bound to business domains
or directly accessible by the users but reusable across multiple applications. Some typ-
ical AMS include database access, PDF generation, image manipulation, training of
machine-learning algorithms, and so on.

Figure 2 provides a logical overview of the two-tiered structure of microservices in
SmartVM. Note that although not depicted in the figure, there are internal communications
among microservices in the same tier. Such communication is less significant compared to
inter-tier communication, which we try to optimise in SmartVM.

Figure 2 A logical view of the 2-tier microservice architecture in SmartVM
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SmartVM is responsible for the monitoring, service discovery, networking, and autoscal-
ing of all the workloads. Different microservices are associated with different scaling
algorithms based on their characteristics. For example, for BMS, the compliance of non-
functional business SLA requirements such as timing constraints, is taken into consideration
by the Autoscaler (detailed below in Section 3.3).

3.3 Components

The SmartVM platform is built upon state-of-the-art SaaS deployment practices, most of
which are strongly related to Docker containers with wide-spread supports of public cloud
providers including AWS and Google. SmartVM enables multi-tier microservice deploy-
ments that are aware of business SLA requirements while being developer-friendly. The
components involved in the architecture are listed below:

– Scheduler: As illustrated in Figure 1, underneath the microservices layers is the
Scheduler that is responsible for scheduling and running containers on multiple phys-
ical nodes. At the current stage, we use Docker Swarm as the scheduler, which
also provides a cluster-wide overlay network and built-in service discovery mech-
anism. The scheduler does not, however, make any decisions about whether, when
and how to scale the microservice: it merely executes the scaling decision of the
Autoscaler. Note that although some other components of SmartVM are drawn side-
by-side to the Scheduler in Figure 1, they actually run as containers on top of the
Scheduler.

– Load Balancer: The load-balancer is designed to equally spread the traffic across mul-
tiple instances of a specific microservice. Since we separate microservices in SmartVM
into two tiers, different load balancing strategies can be applied to each tier. In this
paper, we use Traefik [32], an HTTP reverse proxy and round-robin reverse proxy for
the first tier (Figure 2) between end users and BMS. The second tier load-balancing, i.e.
communication between BMS and AMS, utilises Docker Swarms’ ingress network[36].

– Instrumentation: It is important to collect real-time information about the system for
making auto-scaling decisions. In SmartVM, we collect both runtime numeric metrics
and log messages of each container. Runtime metrics (stats) are retrieved from Docker
Engine’s APIs and pre-processed by cAdvisor [5].

– Numeric metrics refer to those metrics of the application status that can be
measured quantitatively. Some numeric metrics include the current number of
active connections, total service requests, average response time, etc. For those
metrics, we use Prometheus [26], a time-series database as the central storage,
which pulls the metrics from the containers in the cluster and stores them for
later querying. Each BMS or AMS, which handles the workload, can choose to
expose numeric metrics for Prometheus to pull from, by using a client library
and/or by a sidecar container, which runs side-by-side to the main container
being monitored, and reads and transforms the application performance data
to a Prometheus-compatible format [4].

– Log messages are essential for accurate monitoring of compliance with
business SLA requirements. Whenever a business violation occurs, an error
message is written to stderr by the respective BMS. Such log messages
are aggregated to a central monitoring location for the Autoscaler to make
decisions. We use Fluentd [12] as the log aggregator and pre-processor, and
Elaticsearch [9] for storage and log queries. Such settings allow us to easily
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distinguish and keep track of log messages related to different business func-
tionalities (as handled by BMS) and cope with the dynamic nature of SaaS
applications.

– Autoscaler: The Autoscaler is a key component of the SmartVM architecture. It essen-
tially involves a control loop which periodically checks the status of each microservice
and makes autoscaling decisions based on several algorithms we developed. It is
designed to be extensible such that different scaling algorithms can be included and
integrated. It comes with a few following built-in autoscaling algorithms that applica-
tion developer can choose to use by attaching labels to their containers to identify which
algorithms suit their applications the best, either by the runtime or historical application
status:

– state-based: this autoscaling algorithm is inspired by Kubernetes’ Horizon-
tal Pod Autoscaler [20], the algorithm calculates the desired scale of a certain
microservice, based on a given metric average value over a fixed duration
of time. For example, in terms of CPU utilisation, the desired number of
containers can be calculated as:

Desired number of containers = Total average CPU usage

CPU threshold for each container
(1)

The advantage of the state-based algorithm is that it only takes one control
cycle to reach the desired scale, hence making the system adaptive to burst
surges and drops in traffic. The downside is that such algorithm is only suitable
for metrics for which simple arithmetics (addition and division) operations are
valid, and whose value is set to 0 by default when there is no load. The suitable
metrics include CPU and I/O usage. However, such algorithm is not suitable
for all scenarios.

– trigger-based: this autoscaling algorithm checks whether certain predefined
rules are met. When the metrics meet certain thresholds, e.g., the memory
usage is above the limit, the business SLA violation rate is too high, a “scale
out” rule is triggered, and a fixed number of new containers is provisioned for
the microservice. “Scale in” works in a similar fashion. There is also a cool-
down mechanism in place to avoid scaling too rapidly resulting in an unstable
state.

Trigger-based autoscaling algorithm can be applied in most scenarios. The
downside is that with a burst surge in traffic, it might take multiple steps for a
trigger-based algorithm to reach a suitable-sized number of containers. With
machine learning algorithms, we can train the algorithm to adjust the “step
size” based on the traffic pattern, so that scaling can be done with fewer steps,
in order for a real-time performance to provision enough containers for the
incoming traffic.

– Visualisation and dashboards: In order for system administrators and developers to
watch the performance of the system in real time, as well as to inspect and localise bugs,
a few dashboards are provided to show graphs on resource utilisation and business com-
pliance. Specifically, Grafana [15] is used for displaying dashboards and Kibana [18]
is used for inspecting logs. Note that such visualisation tools are optional: they do not
store any information, nor do they play a functional role in the actual orchestration of
microservices. Nevertheless, they are included here to demonstrate the best practice.
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4 Evaluations

To evaluate the effectiveness of SmartVM architecture, we devise a series of experiments.
A prototype is generated to simulate a generic real-world SaaS retail application for the
evaluation purpose. In this section, the design and setting of the simulation experiments are
depicted as well as discuss the outcome of the experiments.1

Evaluation application Our evaluation application is based on a flagship retail SaaS
application from a public listed software powerhouse [31], which has a middleware and
library team and a product team creating dedicated customer-facing business features. In our
evaluation applications, the middleware and libraries are generalised as AMS and the busi-
ness features are generalised as BMS. In order to ensure the workload generated from the
evaluation application is as genuine as the real-world application, we simulate the following
three types of functions to generate specific resource intensive workload respectively:

– CPU-intensive workload involves generation of random strings. We define one unit of
CPU-intensive task to generate 10000 random strings that are 1000 characters long.

– Memory-intensive workload involves HTML parsing, that fetches the front page of
http://news.ycombinator.com and parses the article list and returns an array of arti-
cle titles and URLs. Specifically, One unit of memory-intensive task is equivalent to
receiving and parsing the above-mentioned webpage once. A locally cached copy of
the webpage is used as a fallback in case the network is unstable.

– I/O-intensive workload involves reading a configurable number of bytes (default is 1
MB) from a random file on disk and then returning it, causing both disk- and network-
input/output streams. One unit of I/O-intensive task is equivalent to randomly reading
and transmitting 1 MB of files.

Business operations 6 business operations are used in the simulation. They are com-
binations of the aforementioned task units with waiting (idle) time which simulates
human-intervention (e.g. confirmation of orders) and calls to external services, as shown in
Table 1. These simulated operations are modelled after a real retail SaaS application from
the aforementioned SaaS provider [31].

Benchmarks We implement the above-simulated application features in three different
architectures and deploy them in three different environments. The first and the second are
used as benchmarks, while the third one represents the SmartVM architecture.

1. Monolithic deployment: As illustrated in Figure 3, in this benchmark architecture, all
workload functions, together with business logic and the user-facing Web server are
compiled into a single binary that runs as a single process. There is no network commu-
nication involved when the business logic utilises any of the workload functions. This
simulates the architecture where all functionalities are compiled into a single, mono-
lithic application. Intent-based autoscaling rules using the CPU and memory metrics
are used for autoscaling this application.

2. Uniform deployment: As shown in Figure 4, The three business features are built into
three different microservices that can scale independently. However, lower-level APIs

1Our solution prototype and corresponding evaluation dataset are publicly available at https://github.com/
saasi/saasi-experiment and https://github.com/saasi/saasi-data.

http://news.ycombinator.com
https://github.com/saasi/saasi-experiment
https://github.com/saasi/saasi-experiment
https://github.com/saasi/saasi-data
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Table 1 Descriptions of the simulated business operations

Operation Description SLA (Timeout)

#1 Wait 5 s. 10 s

#2 Parallelly perform 1 unit of CPU-intensive task and 1 unit

of I/O-intensive task. Wait for both tasks to finish, then

wait for another 2 s, prior to performing 2 units of memory-intensive tasks. 25 s

#3 Perform 1 unit of CPU-intensive task, wait for 5 s,

prior to performing 1 unit of memory- and I/O-intensive tasks sequentially. 30 s

#4 Perform 1 unit of I/O intensive task, wait for 1 s, prior to performing

3 units of memory-intensive tasks. 20 s

#5 Perform 1 unit of memory- and CPU-intensive task sequentially 30 s

#6 Perform 1 unit of I/O intensive task, wait for 1 s, prior to

performing 3 units of CPU-intensive task. 30 s

are still compiled into the microservices as libraries. Autoscaling is based on resource
metrics, include CPU, memory and network throughput. Note that no monitoring of
SLA-compliance is present. This simulates the state-of-the-art microservices architec-
ture where applications run on top of an out-of-the-box container orchestration platform
with no SLA-awareness.

3. SmartVM: Figure 5 shows how our approach differentiates from the uniform deploy-
ment, with the following key differences: 1) separation of business and API microser-
vices, plus the splitting of API microservices’ features based on access patterns; 2)
monitoring of SLA compliance, where the autoscaling for Business microservice is
based on application-level metrics, i.e. business SLA-violation rate, while the API
microservices are monitored by the general, resource-based metrics.

4.1 Evaluation metrics

There are mainly 3 types of metrics that we collected during the evaluation:

1. Resource utilisation: We collect the basic resource utilisation metrics, including per-
container CPU percentage and memory usage. These metrics reflect how “saturated”
the hardware resource is in each running container. Within a reasonable limit, the higher
values of these metrics indicate the better utilisation of provisioned hardware.

Figure 3 Monolithic deployment: business logic and low-level API libraries are compiled into a single
binary
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Figure 4 Uniform deployment: each distinct business logic and its used API libraries are composed into
each independent running microservice

2. Number of running containers:On commercial cloud providers, such as AWS container
service, the cost is usually associated the number of containers and how long each con-
tainer has been running. Therefore, we use the number of running containers, averaged
over time as a metric to depict how costly each deployment is.

3. Occurrences of business violations: We measure the average business violation rate,
which is the number of SLA violation occurrences divided by the number of service
requests from the applications in each deployment scenario. A lower value indicates
better business SLA compliance.

Figure 5 SmartVM: each distinct business logic operation is composed into a separate microserivce and
API functions are split into 3 different kinds of microservices based on their resource utilisation pattern
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4.2 Experiment setups

14 Virtual Machines on Tencent Cloud [6] are used for this experiment, with the following
specifications:

– CPU: Intel Xeon E5-26xx v4 (2) @ 2.394 GHz
– RAM: 2 GB
– Hard drive: 64 GB HDD
– Networking: Tencent Cloud VLAN. 1000+ Mbps (ref)
– Operating System: CentOS Linux 7 (Core) x86 64
– Kernel: 3.10.0-693.11.6.el7.x86 64
– Docker Engine version: 17.09-ce

As for the containerised components, the software versions are:

– .NET Core: 2.1.4
– Elasticsearch: 5.6.6
– Fluentd: 0.12
– Traefik: Docker image containous/traefik:b60edd9ee900
– Prometheus 2.0.0

10 virtual machines are used for running the workload and 4 are used for running the
supporting and management software.

4.3 Results

4.3.1 Deployment cost

All the three deployment approaches utilise containers under different resource configura-
tions. In general, SmartVM can deploy microservices using containers with lower hardware
specification, as a result of finer classification of microservices based on resource utilisation
patterns. Specifically, in the experiment, we use 3 types of containers.

We are inspired by the pricing model of AWS Elastic Container Engine [2] to form a
relative realistic pricing model for this evaluation. Since we are only interested in the relative
costs of the three evaluation scenarios, we assume that for every unit of time, 1 vCPU is
worth 16 units of cost, and 1 GB of memory costs 4 units. We assume a pay-as-you-cost
model where the total cost is calculated as:

Total cost =
n∑

i=1

Ci × Ti (2)

where n is the number of container instances that has been provisioned (including those that
has been terminated, Ci is the unit cost of container i, and Ti is the units of time container i

has been running for. As shown in Table 2, the “larger” each container type is and the longer
each container instance runs, the higher the cost turns out to be.

Figure 6a shows the cost of each component under different load (ranging from 10 to
250 concurrent users). SmartVM performs consistently better than the Uniform deploy-
ment, costing as low as 1/3 of the latter, which can be attributed to the fact that SmartVM
resolves conflicting resource requirements (e.g. when a microservice consumes a lot of CPU
resources but a very limited memory) by splitting them into two tiers and clustering busi-
ness features, which improves cost efficiency. Although in some test cases, the Monolithic
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Table 2 Simulation container types and unit costs

Container CPU Memory Cost (per unit Used by

type of time)

Standard 0.4 vCPU 512MB 16.8 units All applications / microservices in

theMonolithic and the Uniform applications

Small 0.2 vCPU 256MB 8.4 units Business Microservice in the SmartVM

application

Small 0.2 vCPU 128MB 7.4 units CPU Microservice in the SmartVM

(low-memory) application

Small 0.1 vCPU 256MB 5.2 units I/O Microservice and Memory Microservice

(low-CPU) in the SmartVM application

deployment appears to cost slightly less than SmartVM, this comes at a price of much higher
SLA violations (see Section 4.3.3).

In this experiment, we do not count Network I/O as a factor of cost, because most of the
network I/O happens in the internal network (LAN) of the cloud provider, which is free of
charge.

4.3.2 Resource utilisation

We measure resource utilisation rates by the weighted average of CPU and memory usage
divided by the allocated quota for each container, where weights are derived based on the
unit cost and the number of instances of each container type (as listed in Section 4.3.1). It
is expected that for a costly container type, it tends to cause inefficient resource usage (i.e.
not using it to the maximum).

Figure 6 Metrics of each deployment, in terms of the number of concurrent users
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Figure 6b shows the CPU utilisation rates of each deployment approach. Despite being
a little counter-intuitive, the Monolithic deployment has the highest utilisation rate of CPU
resource. However, as in Section 4.3.3, the high SLA violation rate of theMonolithic appli-
cation indicates that it is hard to justify its cost efficiency since in reality, the penalties
for SLA violations surely surpass the savings on CPU resource. On the other side, The
SmartVM application is less cost-efficient than the Uniform application under low traffic,
possibly due to the fact that there are more microservices in the SmartVM deployment, and
therefore more containers are initially provisioned. As the load increases, SmartVM starts
to outperform Uniform deployment.

As for memory utilisation, Figure 6c shows that SmartVM performs consistently better
than the other two approaches. Overall, SmartVM’s memory usually is 1.5 times more
efficient than the Monolithic deployment, and more than twice efficient then the Uniform
deployment. Also as explained in Section 4.3.3, SmartVM has the least violation of SLA.

Figure 6d illustrates the total network traffic of each deployment approach under dif-
ferent loads. SmartVM consumes significantly more network traffic than the other two
approaches. This could be interpreted for the following reasons: 1) A large portion of the
network traffic occurs inside the cluster LAN, which does not incur charges in most cloud
providers. 2) Network difference is predictable since monolithic and uniform deployments
are likely to have less much network I/O than SmartVM, because most invocations of library
functions are conducted by internal function calls, while in SmartVM, BMS hands off inten-
sive computations to AMS through network communications. It is important, however, to be
aware that breaking down applications into microservices of finer granularity, especially as
in SmartVM, demands stable and performance cluster networking, that can be easily solved
in most state-of-the-art IaaS cloud providers.

4.3.3 Business SLA compliance

Figure 7 shows the performance of each evaluation application in terms of minimising
SLA violations. Overall, SLA violation rates increase as the number of concurrent users
increases. The Monolithic deployment performs better than the Uniform deployment under
low traffic (where concurrent users ≤100) but the Uniform deployment outperforms the
monolithic deployment in high-traffic situation. This shows the benefits of the microser-
vices architecture. Furthermore, SmartVM perform consistently better than the other two

Figure 7 SLA violation rate versus the number of concurrent users
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Figure 8 The growth of CPU usage of SmartVM components compared with the workload, as the load
increases

deployment approaches, maintaining violation rates under 10% most of the time. This val-
idates the effectiveness of application-level metrics-based monitoring in SmartVM, in that
it can detect and react to SLA violations more promptly.

4.3.4 Overhead of SmartVM components

As in Figure 8, we also measure the overhead of SmartVM components. We normalise
the CPU and memory usage of both the workload (the applications) and the “controllers”
(SmartVM components) by dividing the usage metrics with their respective values in the
lowest-load case (i.e. when the number of concurrent users= 25). When the traffic increases
to 10 times of the initial load (i.e. when the number of concurrent users= 250), it is observed
with a 391.0% surge in the CPU usage of the workload, but a mere 14.7% increase in
the CPU usage of the “controllers”. In terms of memory overhead, the figures (an 80.6%
increase in workload versus a slight increase of 9.1% in the “controllers”) similarly demon-
strated that SmartVM does not incur an increasing overhead (rather, the resource consumed

Figure 9 The network overhead of SmartVM components under different load conditions
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by the “controllers” decreases relative to the workload) when the traffic increases, and there-
fore is fully scalable. Finally, Figure 9 shows that the overhead of SmartVM components
drops below 4% as there are over 175 concurrent users.

5 Conclusions and future work

In this paper, we identify a number of challenges facing SaaS development and deployment,
with a specific focus on SLA compliance. We proposed SmartVM, an SLA-aware, multi-tier
microservices deployment framework, to ease the deployment workflow of microservices
based on industry widely used open source repositories (e.g., Docker Swarm). The evalua-
tion results indicate the advantages of SmartVM’s features, that are splitting microservices
into multiple-tiers and further separating business microservices. SmartVM’s autoscaling
mechanism and application-level metrics monitoring also demonstrate that minimising costs
is achievable with low SLA violation rates. Our experiments show up to 66% cost reduc-
tion compared with the state-of-the-art uniform microservices approach with reduced SLA
violation.

In the future, similar to our piror work [42], we will look into using machine learning
techniques to automatically cluster business features and resource microservices based on
their access patterns. This will serve as the next step to further alleviating the infrastructure
maintenance overhead for SaaS vendors.
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